Knowledge (XXG)

Whitehead theorem

Source 📝

655:
subset of the plane, has all homotopy groups zero, but the map from the Warsaw circle to a single point is not a homotopy equivalence. The study of possible generalizations of Whitehead's theorem to more general spaces is part of the subject of
264: 395: 511: 148: 91:
in two landmark papers from 1949, and provides a justification for working with the concept of a CW complex that he introduced there. It is a model result of
442:.) The Whitehead theorem states that a weak homotopy equivalence from one CW complex to another is a homotopy equivalence. (That is, the map 730: 95:, in which the behavior of certain algebraic invariants (in this case, homotopy groups) determines a topological property of a mapping. 714: 706: 174: 628:; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the 329: 657: 584: 434:, the first condition is automatic, and it suffices to state the second condition for a single point 84: 35: 484: 121: 166: 92: 88: 54: 643:
The Whitehead theorem does not hold for general topological spaces or even for all subspaces of
629: 466:, which is not at all clear from the assumptions.) This implies the same conclusion for spaces 710: 702: 610: 518: 112: 31: 514: 478: 42: 27:
When a mapping that induces isomorphisms on all homotopy groups is a homotopy equivalence
17: 669: 431: 308: 76: 724: 696: 652: 648: 614: 672:, a weak equivalence between cofibrant-fibrant objects is a homotopy equivalence. 578: 72: 46: 61: 401: 525:
Spaces with isomorphic homotopy groups may not be homotopy equivalent
573:
inducing an isomorphism on homotopy groups. For instance, take
259:{\displaystyle f_{*}\colon \pi _{n}(X,x)\to \pi _{n}(Y,f(x)),} 701:, Cambridge University Press, Cambridge, 2002. xii+544 pp. 517:
CW complexes that induces an isomorphism on all integral
390:{\displaystyle f_{*}\colon \pi _{0}(X)\to \pi _{0}(Y)} 487: 332: 177: 124: 692:, Bull. Amer. Math. Soc., 55 (1949), 453–496 685:, Bull. Amer. Math. Soc., 55 (1949), 213–245 505: 389: 258: 142: 561:are homotopy equivalent. One really needs a map 529:A word of caution: it is not enough to assume π 474:that are homotopy equivalent to CW complexes. 8: 481:yields a useful corollary: a continuous map 620:/2, and the same universal cover, namely 486: 372: 350: 337: 331: 223: 195: 182: 176: 123: 7: 664:Generalization to model categories 521:groups is a homotopy equivalence. 25: 640:are not homotopy equivalent. 506:{\displaystyle f\colon X\to Y} 497: 384: 378: 365: 362: 356: 250: 247: 241: 229: 216: 213: 201: 143:{\displaystyle f\colon X\to Y} 134: 1: 115:. Given a continuous mapping 87:. This result was proved by 731:Theorems in homotopy theory 690:Combinatorial homotopy. II. 747: 683:Combinatorial homotopy. I. 553:in order to conclude that 29: 321:weak homotopy equivalence 477:Combining this with the 404:, and the homomorphisms 307:) just means the set of 30:Not to be confused with 18:Whitehead's theorem 454:has a homotopy inverse 507: 411:are bijective for all 391: 287:-th homotopy group of 260: 144: 508: 392: 261: 145: 688:J. H. C. Whitehead, 681:J. H. C. Whitehead, 539:) is isomorphic to π 485: 330: 175: 122: 103:In more detail, let 85:homotopy equivalence 36:Whitehead conjecture 647:. For example, the 161:, consider for any 698:Algebraic topology 503: 387: 256: 140: 113:topological spaces 93:algebraic topology 89:J. H. C. Whitehead 55:continuous mapping 717:(see Theorem 4.5) 611:fundamental group 53:states that if a 51:Whitehead theorem 32:Whitehead problem 16:(Redirected from 738: 515:simply connected 512: 510: 509: 504: 479:Hurewicz theorem 396: 394: 393: 388: 377: 376: 355: 354: 342: 341: 323:if the function 291:with base point 265: 263: 262: 257: 228: 227: 200: 199: 187: 186: 165:≥ 1 the induced 149: 147: 146: 141: 21: 746: 745: 741: 740: 739: 737: 736: 735: 721: 720: 678: 666: 630:Künneth formula 544: 534: 527: 483: 482: 410: 368: 346: 333: 328: 327: 309:path components 302: 274: 219: 191: 178: 173: 172: 120: 119: 101: 77:homotopy groups 43:homotopy theory 39: 28: 23: 22: 15: 12: 11: 5: 744: 742: 734: 733: 723: 722: 719: 718: 693: 686: 677: 674: 670:model category 665: 662: 609:have the same 540: 530: 526: 523: 502: 499: 496: 493: 490: 432:path-connected 408: 398: 397: 386: 383: 380: 375: 371: 367: 364: 361: 358: 353: 349: 345: 340: 336: 300: 283:) denotes the 270: 267: 266: 255: 252: 249: 246: 243: 240: 237: 234: 231: 226: 222: 218: 215: 212: 209: 206: 203: 198: 194: 190: 185: 181: 151: 150: 139: 136: 133: 130: 127: 100: 97: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 743: 732: 729: 728: 726: 716: 715:0-521-79540-0 712: 708: 707:0-521-79160-X 704: 700: 699: 694: 691: 687: 684: 680: 679: 675: 673: 671: 663: 661: 659: 654: 650: 649:Warsaw circle 646: 641: 639: 635: 631: 627: 623: 619: 616: 613:, namely the 612: 608: 604: 600: 596: 592: 588: 587: 582: 581: 576: 572: 568: 564: 560: 556: 552: 548: 543: 538: 533: 524: 522: 520: 516: 500: 494: 491: 488: 480: 475: 473: 469: 465: 461: 457: 453: 449: 445: 441: 437: 433: 430: 426: 422: 418: 414: 407: 403: 381: 373: 369: 359: 351: 347: 343: 338: 334: 326: 325: 324: 322: 318: 314: 310: 306: 298: 294: 290: 286: 282: 278: 273: 253: 244: 238: 235: 232: 224: 220: 210: 207: 204: 196: 192: 188: 183: 179: 171: 170: 169: 168: 164: 160: 156: 137: 131: 128: 125: 118: 117: 116: 114: 110: 106: 98: 96: 94: 90: 86: 82: 78: 74: 70: 66: 63: 59: 56: 52: 48: 45:(a branch of 44: 37: 33: 19: 697: 695:A. Hatcher, 689: 682: 667: 658:shape theory 644: 642: 637: 633: 625: 621: 617: 615:cyclic group 606: 602: 598: 594: 590: 585: 579: 574: 570: 566: 562: 558: 554: 550: 546: 541: 536: 531: 528: 476: 471: 467: 463: 459: 455: 451: 447: 443: 439: 435: 428: 424: 420: 416: 412: 405: 399: 320: 316: 312: 304: 296: 292: 288: 284: 280: 276: 271: 268: 167:homomorphism 162: 158: 154: 153:and a point 152: 108: 104: 102: 80: 73:isomorphisms 68: 64: 62:CW complexes 57: 50: 40: 549:) for each 47:mathematics 676:References 423:≥ 1. (For 632:); thus, 498:→ 492:: 402:bijective 370:π 366:→ 348:π 344:: 339:∗ 315:.) A map 221:π 217:→ 193:π 189:: 184:∗ 135:→ 129:: 99:Statement 725:Category 565: : 519:homology 513:between 419:and all 71:induces 60:between 668:In any 653:compact 601:. Then 295:. (For 269:where π 79:, then 75:on all 49:), the 713:  705:  299:= 0, π 319:is a 83:is a 711:ISBN 709:and 703:ISBN 651:, a 636:and 605:and 589:and 557:and 470:and 427:and 107:and 67:and 438:in 415:in 400:is 311:of 157:in 111:be 41:In 34:or 727:: 660:. 624:× 597:× 595:RP 593:= 586:RP 583:× 577:= 569:→ 462:→ 458:: 450:→ 446:: 645:R 638:Y 634:X 626:S 622:S 618:Z 607:Y 603:X 599:S 591:Y 580:S 575:X 571:Y 567:X 563:f 559:Y 555:X 551:n 547:Y 545:( 542:n 537:X 535:( 532:n 501:Y 495:X 489:f 472:Y 468:X 464:X 460:Y 456:g 452:Y 448:X 444:f 440:X 436:x 429:Y 425:X 421:n 417:X 413:x 409:* 406:f 385:) 382:Y 379:( 374:0 363:) 360:X 357:( 352:0 335:f 317:f 313:X 305:X 303:( 301:0 297:n 293:x 289:X 285:n 281:x 279:, 277:X 275:( 272:n 254:, 251:) 248:) 245:x 242:( 239:f 236:, 233:Y 230:( 225:n 214:) 211:x 208:, 205:X 202:( 197:n 180:f 163:n 159:X 155:x 138:Y 132:X 126:f 109:Y 105:X 81:f 69:Y 65:X 58:f 38:. 20:)

Index

Whitehead's theorem
Whitehead problem
Whitehead conjecture
homotopy theory
mathematics
continuous mapping
CW complexes
isomorphisms
homotopy groups
homotopy equivalence
J. H. C. Whitehead
algebraic topology
topological spaces
homomorphism
path components
bijective
path-connected
Hurewicz theorem
simply connected
homology
S
RP
fundamental group
cyclic group
Künneth formula
Warsaw circle
compact
shape theory
model category
Algebraic topology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.