Knowledge

Finite impulse response

Source 📝

4749: 4735: 4704: 155: 2419:) or the frequency domain (most common). Matched filters perform a cross-correlation between the input signal and a known pulse shape. The FIR convolution is a cross-correlation between the input signal and a time-reversed copy of the impulse response. Therefore, the matched filter's impulse response is "designed" by sampling the known pulse-shape and using those samples in reverse order as the coefficients of the filter. 4718: 127: 2568:, because the corresponding sinc function is zero at every other sample point (except the center one). The product with the window function does not alter the zeros, so almost half of the coefficients of the final impulse response are zero. An appropriate implementation of the FIR calculations can exploit that property to double the filter's efficiency. 5531: 3634: 3947: 2557:) and the height of the ripples, and thereby derive the frequency-domain parameters of an appropriate window function. Continuing backward to an impulse response can be done by iterating a filter design program to find the minimum filter order. Another method is to restrict the solution set to the parametric family of 2508:
response is corrected according to the desired specs, and the inverse DFT is then computed. In the time-domain, only the first N coefficients are kept (the other coefficients are set to zero). The process is then repeated iteratively: the DFT is computed once again, correction applied in the frequency domain and so on.
1599: 1179: 2507:
Equiripple FIR filters can be designed using the DFT algorithms as well. The algorithm is iterative in nature. The DFT of an initial filter design is computed using the FFT algorithm (if an initial estimate is not available, h=delta can be used). In the Fourier domain, or DFT domain, the frequency
2561:, which provides closed form relationships between the time-domain and frequency domain parameters. In general, that method will not achieve the minimum possible filter order, but it is particularly convenient for automated applications that require dynamic, on-the-fly, filter design. 5336: 3275: 5581:(DFT) of the impulse response. And because of symmetry, filter design or viewing software often displays only the region. The magnitude plot indicates that the moving-average filter passes low frequencies with a gain near 1 and attenuates high frequencies, and is thus a crude 862: 5585:. The phase plot is linear except for discontinuities at the two frequencies where the magnitude goes to zero. The size of the discontinuities is π, representing a sign reversal. They do not affect the property of linear phase, as illustrated in the final figure. 5186: 388: 2405: 3673: 1414: 2540:. The result is a finite impulse response filter whose frequency response is modified from that of the IIR filter. Multiplying the infinite impulse by the window function in the time domain results in the frequency response of the IIR being 983:, especially when low frequency (relative to the sample rate) cutoffs are needed. However, many digital signal processors provide specialized hardware features to make FIR filters approximately as efficient as IIR for many applications. 1032: 2731: 2269: 1302: 4180: 5029: 2551:. The result of the frequency domain convolution is that the edges of the rectangle are tapered, and ripples appear in the passband and stopband. Working backward, one can specify the slope (or width) of the tapered region ( 4459: 4688: 5195:. Zero frequency (DC) corresponds to (1, 0), positive frequencies advancing counterclockwise around the circle to the Nyquist frequency at (−1, 0). Two poles are located at the origin, and two zeros are located at 1962: 5526:{\displaystyle {\begin{aligned}H\left(e^{j\omega }\right)&={\frac {1}{3}}+{\frac {1}{3}}e^{-j\omega }+{\frac {1}{3}}e^{-j2\omega }\\&={\frac {1}{3}}e^{-j\omega }\left(1+2\cos(\omega )\right).\end{aligned}}} 3266: 3629:{\displaystyle {\text{MSE}}=\int _{-1/2}^{1/2}\sum _{n=0}^{k}s\cos(2\pi nF)\sum _{\tau =0}^{k}s\cos(2\pi \tau F)\,dF-2\int _{-1/2}^{1/2}\sum _{n=0}^{k}s\cos(2\pi nF)H_{d}\,dF+\int _{-1/2}^{1/2}H_{d}(F)^{2}\,dF} 3143: 4522: 5315: 5254: 721: 5341: 2444:
is commonly used to find an optimal equiripple set of coefficients. Here the user specifies a desired frequency response, a weighting function for errors from this response, and a filter order
199: 4043: 5043: 909:
Require no feedback. This means that any rounding errors are not compounded by summed iterations. The same relative error occurs in each calculation. This also makes implementation simpler.
194: 3942:{\displaystyle {\frac {\partial {\text{MSE}}}{\partial s}}=2\sum _{\tau =0}^{k}s\int _{-1/2}^{1/2}\cos(2\pi nF)\cos(2\pi \tau F)\,dF-2\int _{-1/2}^{1/2}H_{d}(F)^{2}\cos(2\pi nF)\,dF=0} 2277: 2954: 1825: 5575: 1703: 4872: 2544:
with the Fourier transform (or DTFT) of the window function. If the window's main lobe is narrow, the composite frequency response remains close to that of the ideal IIR filter.
1363: 2163: 979:
The main disadvantage of FIR filters is that considerably more computation power in a general purpose processor is required compared to an IIR filter with similar sharpness or
4821: 1594:{\displaystyle H_{2\pi }(\omega )\ \triangleq \sum _{n=-\infty }^{\infty }h\cdot \left({e^{i\omega }}\right)^{-n}=\sum _{n=0}^{N}b_{n}\cdot \left({e^{i\omega }}\right)^{-n},} 1329: 2122: 2077: 1778: 2474:
coefficients that minimize the maximum deviation from the ideal. Intuitively, this finds the filter that is as close as possible to the desired response given that only
2826: 1396: 617: 590: 954: 5321: 1648: 2759: 1748: 1645: 1174:{\displaystyle \underbrace {{\mathcal {F}}\{x*h\}} _{Y(\omega )}=\underbrace {{\mathcal {F}}\{x\}} _{X(\omega )}\cdot \underbrace {{\mathcal {F}}\{h\}} _{H(\omega )}} 2789: 2028: 1999: 1881: 1625: 4556: 4904: 891: 97: 5706: 5679: 644: 554: 4242: 4213: 3667: 3015: 2986: 2871: 1854: 1723: 1018: 2498: 2472: 525: 2587: 2175: 690: 499: 479: 457: 426: 1184: 4049: 2536:
In the window design method, one first designs an ideal IIR filter and then truncates the infinite impulse response by multiplying it with a finite length
4918: 5756:
Rabiner, Lawrence R., and Gold, Bernard, 1975: Theory and Application of Digital Signal Processing (Englewood Cliffs, New Jersey: Prentice-Hall, Inc.)
4248: 2500:
coefficients can be used. This method is particularly easy in practice since at least one text includes a program that takes the desired filter and
963:
by making the coefficient sequence symmetric. This property is sometimes desired for phase-sensitive applications, for example data communications,
5772:
A. E. Cetin, O.N. Gerek, Y. Yardimci, "Equiripple FIR filter design by the FFT algorithm," IEEE Signal Processing Magazine, pp. 60–64, March 1997.
4564: 2415:
FIR filters are designed by finding the coefficients and filter order that meet certain specifications, which can be in the time domain (e.g. a
5740:
Oppenheim, Alan V., Willsky, Alan S., and Young, Ian T.,1983: Signals and Systems, p. 256 (Englewood Cliffs, New Jersey: Prentice-Hall, Inc.)
712:
The impulse response of the filter as defined is nonzero over a finite duration. Including zeros, the impulse response is the infinite sequence
3154: 5594: 1890: 3022: 5787: 4748: 5761: 5745: 4529:
In addition, we can treat the importance of passband and stopband differently according to our needs by adding a weighted function,
107: 4464: 705:
that in many implementations or block diagrams provides the delayed inputs to the multiplication operations. One may speak of a
2582:
To design FIR filter in the MSE sense, we minimize the mean square error between the filter we obtained and the desired filter.
857:{\displaystyle h=\sum _{i=0}^{N}b_{i}\cdot \delta ={\begin{cases}b_{n}&0\leq n\leq N\\0&{\text{otherwise}}.\end{cases}}} 5718: 5259: 5198: 2166: 1366: 4770: 4709:
Block diagram of a simple FIR filter (second-order/3-tap filter in this case, implementing a moving average smoothing filter)
5181:{\displaystyle H(z)={\frac {1}{3}}+{\frac {1}{3}}z^{-1}+{\frac {1}{3}}z^{-2}={\frac {1}{3}}{\frac {z^{2}+z+1}{z^{2}}}.} 3956: 5034:
The block diagram on the right shows the second-order moving-average filter discussed below. The transfer function is
2437: 383:{\displaystyle {\begin{aligned}y&=b_{0}x+b_{1}x+\cdots +b_{N}x\\&=\sum _{i=0}^{N}b_{i}\cdot x,\end{aligned}}} 5614: 5578: 47: 4734: 2400:{\displaystyle H_{2\pi }(\omega )=\left.{\widehat {H}}(z)\,\right|_{z=e^{j\omega }}={\widehat {H}}(e^{j\omega }).} 916:, since the output is a sum of a finite number of finite multiples of the input values, so can be no greater than 5629: 902: 59: 2876: 62:(IIR) filters, which may have internal feedback and may continue to respond indefinitely (usually decaying). 5539: 4829: 5792: 5192: 4723: 1787: 1334: 5624: 2129: 1658: 5708:, a convenient choice for plotting software that displays the interval from 0 to the Nyquist frequency. 4780: 867:
If an FIR filter is non-causal, the range of nonzero values in its impulse response can start before
651: 1310: 800: 1021: 980: 2082: 2037: 1757: 99:
samples (from first nonzero element through last nonzero element) before it then settles to zero.
5604: 1399: 702: 2794: 1372: 595: 563: 5757: 5741: 5609: 4703: 2422:
When a particular frequency response is desired, several different design methods are common:
1781: 919: 31: 2736: 1630: 2764: 2565: 2003: 1974: 66: 51: 1859: 1607: 5599: 5582: 4766: 4532: 3640:
Step 3: Minimize the mean square error by doing partial derivative of MSE with respect to
2553: 2537: 2441: 972: 968: 115: 70: 4883: 901:
An FIR filter has a number of useful properties which sometimes make it preferable to an
870: 76: 5688: 5661: 2726:{\displaystyle {\text{MSE}}=f_{s}^{-1}\int _{-f_{s}/2}^{f_{s}/2}|H(f)-H_{d}(f)|^{2}\,df} 2264:{\displaystyle {\widehat {H}}(z)\ \triangleq \sum _{n=-\infty }^{\infty }h\cdot z^{-n}.} 1728: 4762: 4218: 4189: 3643: 2991: 2962: 2847: 2416: 1830: 1708: 1403: 994: 913: 622: 532: 1297:{\displaystyle y=x*h={\mathcal {F}}^{-1}{\big \{}X(\omega )\cdot H(\omega ){\big \}},} 5781: 5619: 4175:{\displaystyle s=\int _{-1/2}^{1/2}\cos(2\pi nF)H_{d}(F)\,dF,\ {\text{ for }}n\neq 0} 2558: 2548: 2477: 2451: 504: 185:, each value of the output sequence is a weighted sum of the most recent input values 178: 175: 103: 17: 5024:{\displaystyle h={\frac {1}{3}}\delta +{\frac {1}{3}}\delta +{\frac {1}{3}}\delta } 960: 660: 484: 464: 433: 402: 111: 4454:{\displaystyle h=s,h=s/2,h=s/2,\;for\;n=1,2,3,\ldots ,k,{\text{ where }}k=(N-1)/2} 154: 5577:
are plotted in the figure. But plots like these can also be generated by doing a
5638: 5634: 4774: 167: 147: 1369:(DTFT) and its inverse. Therefore, the complex-valued, multiplicative function 4754:
Amplitude and phase responses of the example second-order FIR smoothing filter
4740:
Magnitude and phase responses of the example second-order FIR smoothing filter
2517: 964: 2541: 58:
duration, because it settles to zero in finite time. This is in contrast to
4717: 4683:{\displaystyle {\text{MSE}}=\int _{-1/2}^{1/2}W(F)|R(F)-H_{d}(F)|^{2}\,dF} 1971:). Conversely, if one wants to design a filter for ordinary frequencies 2547:
The ideal response is often rectangular, and the corresponding IIR is a
1754:, which is favored by many filter design applications.  The value 126: 3261:{\displaystyle {\text{MSE}}=\int _{-1/2}^{1/2}|R(F)-H_{d}(F)|^{2}\,dF} 2564:
The window design method is also advantageous for creating efficient
2521: 2513: 1957:{\displaystyle f=f'\cdot f_{s}={\tfrac {\omega }{2\pi }}\cdot f_{s}} 3138:{\displaystyle R(F)=e^{j2\pi Fk}H(F)=\sum _{n=0}^{k}s\cos(2\pi nF)} 619:-order FIR filter. If the filter is a direct form FIR filter then 2525: 153: 125: 4877:
To provide a more specific example, we select the filter order:
2440:(also known as the equiripple, optimal, or minimax method). The 4765:
filter is a very simple FIR filter. It is sometimes called a
2988:
even symmetric. Then, the discrete time Fourier transform of
4517:{\displaystyle h=0{\text{ for }}n<0{\text{ and }}n\geq N} 1887:), ordinary frequency is related to normalized frequency by 1341: 1316: 1236: 1136: 1092: 1042: 73:
input) of an N-order discrete-time FIR filter lasts exactly
2308: 1968: 850: 5310:{\textstyle z_{2}=-{\frac {1}{2}}-j{\frac {\sqrt {3}}{2}}} 5249:{\textstyle z_{1}=-{\frac {1}{2}}+j{\frac {\sqrt {3}}{2}}} 2528:
provide convenient ways to apply these different methods.
5658:
An exception is MATLAB, which prefers a periodicity of
893:, with the defining formula appropriately generalized. 5542: 5262: 5201: 4783: 2480: 2454: 1925: 1803: 922: 663: 625: 598: 566: 535: 507: 487: 467: 436: 405: 5691: 5664: 5339: 5046: 4921: 4886: 4832: 4567: 4535: 4467: 4251: 4221: 4192: 4052: 3959: 3676: 3646: 3278: 3157: 3025: 2994: 2965: 2879: 2850: 2797: 2767: 2739: 2590: 2280: 2178: 2132: 2085: 2040: 2006: 1977: 1893: 1862: 1833: 1790: 1760: 1731: 1711: 1661: 1633: 1610: 1417: 1375: 1337: 1313: 1187: 1035: 997: 873: 724: 197: 79: 5700: 5673: 5569: 5525: 5309: 5248: 5180: 5023: 4898: 4866: 4815: 4682: 4550: 4516: 4453: 4236: 4207: 4174: 4037: 3941: 3661: 3628: 3260: 3137: 3009: 2980: 2948: 2865: 2820: 2783: 2753: 2725: 2492: 2466: 2399: 2263: 2157: 2116: 2071: 2022: 1993: 1956: 1875: 1848: 1819: 1772: 1742: 1717: 1697: 1639: 1619: 1593: 1390: 1357: 1323: 1296: 1173: 1012: 948: 885: 856: 684: 638: 611: 584: 548: 519: 493: 473: 451: 420: 382: 91: 158:A lattice-form discrete-time FIR filter of order 4726:of the example second-order FIR smoothing filter 4038:{\displaystyle s=\int _{-1/2}^{1/2}H_{d}(F)\,dF} 2791:is the spectrum of the filter we obtained, and 130:A direct form discrete-time FIR filter of order 5639:Linear constant-coefficient difference equation 4909:The impulse response of the resulting filter is 956:times the largest value appearing in the input. 54:(or response to any finite length input) is of 1286: 1252: 8: 1147: 1141: 1103: 1097: 1059: 1047: 1020:is described in the frequency domain by the 556:is the value of the impulse response at the 692:in these terms are commonly referred to as 5681:because the Nyquist frequency in units of 4380: 4370: 5690: 5663: 5554: 5541: 5470: 5456: 5431: 5417: 5402: 5388: 5375: 5355: 5340: 5338: 5295: 5279: 5267: 5261: 5234: 5218: 5206: 5200: 5167: 5144: 5137: 5127: 5115: 5101: 5089: 5075: 5062: 5045: 4993: 4962: 4937: 4920: 4885: 4846: 4837: 4831: 4807: 4788: 4782: 4673: 4667: 4662: 4646: 4622: 4600: 4596: 4587: 4580: 4568: 4566: 4534: 4500: 4486: 4466: 4443: 4417: 4359: 4315: 4250: 4220: 4191: 4158: 4145: 4130: 4092: 4088: 4079: 4072: 4051: 4028: 4013: 3999: 3995: 3986: 3979: 3958: 3926: 3896: 3880: 3866: 3862: 3853: 3846: 3829: 3771: 3767: 3758: 3751: 3729: 3718: 3683: 3677: 3675: 3645: 3619: 3613: 3597: 3583: 3579: 3570: 3563: 3549: 3543: 3497: 3486: 3472: 3468: 3459: 3452: 3435: 3393: 3382: 3336: 3325: 3311: 3307: 3298: 3291: 3279: 3277: 3251: 3245: 3240: 3224: 3200: 3190: 3186: 3177: 3170: 3158: 3156: 3093: 3082: 3045: 3024: 2993: 2964: 2922: 2878: 2849: 2817: 2802: 2796: 2780: 2766: 2750: 2744: 2738: 2716: 2710: 2705: 2689: 2665: 2655: 2649: 2644: 2635: 2629: 2621: 2608: 2603: 2591: 2589: 2479: 2453: 2426: 2382: 2364: 2363: 2349: 2338: 2332: 2312: 2311: 2285: 2279: 2249: 2224: 2210: 2180: 2179: 2177: 2137: 2131: 2105: 2096: 2090: 2084: 2060: 2051: 2045: 2039: 2011: 2005: 1982: 1976: 1948: 1924: 1915: 1892: 1867: 1861: 1832: 1802: 1789: 1759: 1730: 1710: 1666: 1660: 1632: 1609: 1579: 1565: 1560: 1546: 1536: 1525: 1509: 1495: 1490: 1464: 1450: 1422: 1416: 1374: 1346: 1340: 1339: 1336: 1315: 1314: 1312: 1285: 1284: 1251: 1250: 1241: 1235: 1234: 1186: 1156: 1135: 1134: 1131: 1112: 1091: 1090: 1087: 1068: 1041: 1040: 1037: 1034: 996: 941: 935: 926: 921: 872: 839: 807: 795: 765: 755: 744: 723: 662: 630: 624: 603: 597: 565: 540: 534: 506: 486: 466: 435: 404: 346: 336: 325: 287: 250: 225: 198: 196: 78: 5191:The next figure shows the corresponding 4823:, are found via the following equation: 2949:{\displaystyle r=h,k={\frac {(N-1)}{2}}} 2030:etc., using an application that expects 5733: 5651: 5570:{\textstyle H\left(e^{j\omega }\right)} 2504:, and returns the optimum coefficients. 2448:. The algorithm then finds the set of 5630:Infinite impulse response (IIR) filter 5536:The magnitude and phase components of 4867:{\displaystyle b_{i}={\frac {1}{N+1}}} 2828:is the spectrum of the desired filter. 2165:can also be expressed in terms of the 69:(that is, the output in response to a 3149:Step 2: Calculate mean square error. 7: 5320:The frequency response, in terms of 4769:filter, especially when followed by 2572:Least mean square error (MSE) method 2434:Least MSE (mean square error) method 991:The filter's effect on the sequence 646:is also a coefficient of the filter. 1820:{\displaystyle f'={\tfrac {1}{2}}.} 1358:{\displaystyle {\mathcal {F}}^{-1}} 27:Type of filter in signal processing 3690: 3680: 2225: 2220: 2158:{\displaystyle H_{2\pi }(\omega )} 1698:{\displaystyle H_{2\pi }(2\pi f')} 1604:where the added subscript denotes 1465: 1460: 650:This computation is also known as 25: 4816:{\textstyle b_{0},\ldots ,b_{N}} 4747: 4733: 4716: 4702: 2169:of the filter impulse response: 1181:    and     142:+ 1 taps. Each unit delay is a 5595:Cascaded integrator–comb filter 1367:discrete-time Fourier transform 5508: 5502: 5056: 5050: 5018: 5006: 4987: 4975: 4956: 4950: 4931: 4925: 4663: 4658: 4652: 4636: 4630: 4623: 4619: 4613: 4545: 4539: 4477: 4471: 4440: 4428: 4356: 4350: 4341: 4329: 4312: 4306: 4297: 4285: 4276: 4270: 4261: 4255: 4231: 4225: 4202: 4196: 4142: 4136: 4123: 4108: 4062: 4056: 4025: 4019: 3969: 3963: 3923: 3908: 3893: 3886: 3826: 3811: 3802: 3787: 3744: 3738: 3702: 3696: 3656: 3650: 3610: 3603: 3536: 3521: 3512: 3506: 3432: 3417: 3408: 3402: 3375: 3360: 3351: 3345: 3241: 3236: 3230: 3214: 3208: 3201: 3132: 3117: 3108: 3102: 3072: 3066: 3035: 3029: 3004: 2998: 2975: 2969: 2937: 2925: 2910: 2898: 2889: 2883: 2860: 2854: 2814: 2808: 2777: 2771: 2706: 2701: 2695: 2679: 2673: 2666: 2391: 2375: 2329: 2323: 2300: 2294: 2239: 2233: 2197: 2191: 2152: 2146: 1843: 1837: 1692: 1675: 1479: 1473: 1437: 1431: 1385: 1379: 1324:{\displaystyle {\mathcal {F}}} 1281: 1275: 1266: 1260: 1227: 1221: 1212: 1206: 1197: 1191: 1166: 1160: 1122: 1116: 1078: 1072: 1007: 1001: 942: 927: 789: 777: 734: 728: 701:, based on the structure of a 679: 667: 446: 440: 415: 409: 370: 358: 308: 296: 271: 259: 240: 234: 211: 205: 1: 959:Can easily be designed to be 4558:Then, the MSE error becomes 4215:back to the presentation of 2117:{\displaystyle f_{2}/f_{s},} 2072:{\displaystyle f_{1}/f_{s},} 1773:{\displaystyle \omega =\pi } 527:terms on the right-hand side 4777:. The filter coefficients, 3951:After organization, we have 1827:  When the sequence 905:(IIR) filter. FIR filters: 5809: 5615:Filter (signal processing) 5579:discrete Fourier transform 2821:{\displaystyle H_{d}(f)\,} 2512:Software packages such as 1856:has a known sampling-rate 1391:{\displaystyle H(\omega )} 612:{\textstyle N^{\text{th}}} 585:{\textstyle 0\leq i\leq N} 5788:Digital signal processing 2431:Frequency sampling method 949:{\textstyle \sum |b_{i}|} 903:infinite impulse response 60:infinite impulse response 5719:§ Sampling the DTFT 2442:Remez exchange algorithm 1647:represents frequency in 1365:respectively denote the 481:is the filter order; an 162:. Each unit delay is a 2761:is sampling frequency, 2754:{\displaystyle f_{s}\,} 1640:{\displaystyle \omega } 138:-stage delay line with 36:finite impulse response 5702: 5675: 5571: 5527: 5311: 5250: 5182: 5025: 4900: 4868: 4817: 4694:Moving average example 4684: 4552: 4518: 4455: 4238: 4209: 4176: 4039: 3943: 3734: 3663: 3630: 3502: 3398: 3341: 3262: 3139: 3098: 3011: 2982: 2950: 2867: 2822: 2785: 2784:{\displaystyle H(f)\,} 2755: 2727: 2494: 2468: 2438:Parks–McClellan method 2401: 2265: 2229: 2159: 2118: 2073: 2024: 2023:{\displaystyle f_{2},} 1995: 1994:{\displaystyle f_{1},} 1958: 1877: 1850: 1821: 1774: 1744: 1719: 1699: 1641: 1621: 1595: 1541: 1469: 1402:. It is defined by a 1392: 1359: 1325: 1298: 1175: 1014: 950: 887: 858: 760: 707:5th order/6-tap filter 686: 640: 613: 586: 550: 521: 495: 475: 453: 422: 384: 341: 171: 151: 134:. The top part is an 93: 5703: 5676: 5625:FIR transfer function 5572: 5528: 5312: 5251: 5183: 5026: 4901: 4869: 4818: 4685: 4553: 4519: 4456: 4239: 4210: 4177: 4040: 3944: 3714: 3664: 3631: 3482: 3378: 3321: 3263: 3140: 3078: 3012: 2983: 2951: 2868: 2823: 2786: 2756: 2728: 2495: 2469: 2402: 2266: 2206: 2160: 2119: 2074: 2025: 1996: 1959: 1878: 1876:{\displaystyle f_{s}} 1851: 1822: 1775: 1745: 1720: 1705:has a periodicity of 1700: 1642: 1622: 1620:{\displaystyle 2\pi } 1596: 1521: 1446: 1393: 1360: 1326: 1299: 1176: 1015: 951: 888: 859: 740: 687: 641: 614: 587: 551: 522: 496: 476: 459:is the output signal, 454: 423: 385: 321: 157: 129: 94: 5689: 5662: 5540: 5337: 5322:normalized frequency 5260: 5199: 5044: 4919: 4884: 4830: 4781: 4565: 4551:{\displaystyle W(f)} 4533: 4465: 4249: 4219: 4190: 4050: 3957: 3674: 3644: 3276: 3155: 3023: 2992: 2963: 2877: 2848: 2795: 2765: 2737: 2588: 2532:Window design method 2478: 2452: 2427:Window design method 2278: 2176: 2130: 2083: 2038: 2004: 1975: 1891: 1860: 1831: 1788: 1758: 1729: 1709: 1659: 1631: 1608: 1415: 1373: 1335: 1311: 1185: 1033: 995: 920: 871: 722: 661: 652:discrete convolution 623: 596: 564: 533: 505: 485: 465: 434: 428:is the input signal, 403: 195: 181:FIR filter of order 77: 18:Window design method 4899:{\displaystyle N=2} 4609: 4101: 4008: 3875: 3780: 3592: 3481: 3320: 3199: 2664: 2616: 1627:-periodicity. Here 1022:convolution theorem 886:{\displaystyle n=0} 102:FIR filters can be 92:{\displaystyle N+1} 5701:{\displaystyle 1,} 5698: 5683:half-cycles/sample 5674:{\displaystyle 2,} 5671: 5605:Digital delay line 5567: 5523: 5521: 5307: 5246: 5178: 5021: 4896: 4864: 4813: 4680: 4576: 4548: 4514: 4451: 4234: 4205: 4172: 4068: 4035: 3975: 3939: 3842: 3747: 3659: 3626: 3559: 3448: 3287: 3258: 3166: 3135: 3007: 2978: 2946: 2863: 2844:-point FIR filter 2818: 2781: 2751: 2723: 2617: 2599: 2490: 2464: 2397: 2261: 2155: 2114: 2069: 2034:, one would enter 2020: 1991: 1954: 1939: 1885:samples per second 1873: 1846: 1817: 1812: 1770: 1743:{\displaystyle f'} 1740: 1715: 1695: 1653:radians per sample 1637: 1617: 1591: 1400:frequency response 1388: 1355: 1321: 1294: 1171: 1170: 1154: 1126: 1110: 1082: 1066: 1010: 987:Frequency response 946: 883: 854: 849: 682: 639:{\textstyle b_{i}} 636: 609: 582: 549:{\textstyle b_{i}} 546: 517: 501:-order filter has 491: 471: 449: 418: 380: 378: 172: 152: 89: 5610:Electronic filter 5464: 5425: 5396: 5383: 5305: 5301: 5287: 5244: 5240: 5226: 5193:pole–zero diagram 5173: 5135: 5109: 5083: 5070: 5001: 4970: 4945: 4862: 4775:sinc-in-frequency 4724:Pole–zero diagram 4571: 4503: 4489: 4420: 4419: where  4237:{\displaystyle h} 4208:{\displaystyle s} 4161: 4157: 3706: 3686: 3662:{\displaystyle s} 3282: 3161: 3010:{\displaystyle r} 2981:{\displaystyle h} 2944: 2866:{\displaystyle h} 2594: 2566:half-band filters 2372: 2320: 2202: 2188: 2032:cycles per sample 1965:cycles per second 1938: 1849:{\displaystyle x} 1811: 1784:, corresponds to 1782:Nyquist frequency 1752:cycles per sample 1718:{\displaystyle 1} 1442: 1132: 1130: 1088: 1086: 1038: 1036: 1013:{\displaystyle x} 969:crossover filters 842: 703:tapped delay line 606: 32:signal processing 16:(Redirected from 5800: 5773: 5770: 5764: 5754: 5748: 5738: 5722: 5715: 5709: 5707: 5705: 5704: 5699: 5680: 5678: 5677: 5672: 5656: 5576: 5574: 5573: 5568: 5566: 5562: 5561: 5532: 5530: 5529: 5524: 5522: 5515: 5511: 5481: 5480: 5465: 5457: 5449: 5445: 5444: 5426: 5418: 5413: 5412: 5397: 5389: 5384: 5376: 5367: 5363: 5362: 5316: 5314: 5313: 5308: 5306: 5297: 5296: 5288: 5280: 5272: 5271: 5255: 5253: 5252: 5247: 5245: 5236: 5235: 5227: 5219: 5211: 5210: 5187: 5185: 5184: 5179: 5174: 5172: 5171: 5162: 5149: 5148: 5138: 5136: 5128: 5123: 5122: 5110: 5102: 5097: 5096: 5084: 5076: 5071: 5063: 5030: 5028: 5027: 5022: 5002: 4994: 4971: 4963: 4946: 4938: 4905: 4903: 4902: 4897: 4873: 4871: 4870: 4865: 4863: 4861: 4847: 4842: 4841: 4822: 4820: 4819: 4814: 4812: 4811: 4793: 4792: 4751: 4737: 4720: 4706: 4689: 4687: 4686: 4681: 4672: 4671: 4666: 4651: 4650: 4626: 4608: 4604: 4595: 4591: 4572: 4569: 4557: 4555: 4554: 4549: 4523: 4521: 4520: 4515: 4504: 4501: 4490: 4487: 4460: 4458: 4457: 4452: 4447: 4421: 4418: 4363: 4319: 4243: 4241: 4240: 4235: 4214: 4212: 4211: 4206: 4181: 4179: 4178: 4173: 4162: 4159: 4155: 4135: 4134: 4100: 4096: 4087: 4083: 4044: 4042: 4041: 4036: 4018: 4017: 4007: 4003: 3994: 3990: 3948: 3946: 3945: 3940: 3901: 3900: 3885: 3884: 3874: 3870: 3861: 3857: 3779: 3775: 3766: 3762: 3733: 3728: 3707: 3705: 3688: 3687: 3684: 3678: 3668: 3666: 3665: 3660: 3635: 3633: 3632: 3627: 3618: 3617: 3602: 3601: 3591: 3587: 3578: 3574: 3548: 3547: 3501: 3496: 3480: 3476: 3467: 3463: 3397: 3392: 3340: 3335: 3319: 3315: 3306: 3302: 3283: 3280: 3267: 3265: 3264: 3259: 3250: 3249: 3244: 3229: 3228: 3204: 3198: 3194: 3185: 3181: 3162: 3159: 3144: 3142: 3141: 3136: 3097: 3092: 3062: 3061: 3016: 3014: 3013: 3008: 2987: 2985: 2984: 2979: 2959:Step 1: Suppose 2955: 2953: 2952: 2947: 2945: 2940: 2923: 2872: 2870: 2869: 2864: 2827: 2825: 2824: 2819: 2807: 2806: 2790: 2788: 2787: 2782: 2760: 2758: 2757: 2752: 2749: 2748: 2732: 2730: 2729: 2724: 2715: 2714: 2709: 2694: 2693: 2669: 2663: 2659: 2654: 2653: 2643: 2639: 2634: 2633: 2615: 2607: 2595: 2592: 2499: 2497: 2496: 2493:{\textstyle N+1} 2491: 2473: 2471: 2470: 2467:{\textstyle N+1} 2465: 2406: 2404: 2403: 2398: 2390: 2389: 2374: 2373: 2365: 2359: 2358: 2357: 2356: 2337: 2333: 2322: 2321: 2313: 2293: 2292: 2270: 2268: 2267: 2262: 2257: 2256: 2228: 2223: 2200: 2190: 2189: 2181: 2164: 2162: 2161: 2156: 2145: 2144: 2123: 2121: 2120: 2115: 2110: 2109: 2100: 2095: 2094: 2078: 2076: 2075: 2070: 2065: 2064: 2055: 2050: 2049: 2029: 2027: 2026: 2021: 2016: 2015: 2000: 1998: 1997: 1992: 1987: 1986: 1963: 1961: 1960: 1955: 1953: 1952: 1940: 1937: 1926: 1920: 1919: 1907: 1882: 1880: 1879: 1874: 1872: 1871: 1855: 1853: 1852: 1847: 1826: 1824: 1823: 1818: 1813: 1804: 1798: 1779: 1777: 1776: 1771: 1749: 1747: 1746: 1741: 1739: 1724: 1722: 1721: 1716: 1704: 1702: 1701: 1696: 1691: 1674: 1673: 1655:). The function 1649:normalized units 1646: 1644: 1643: 1638: 1626: 1624: 1623: 1618: 1600: 1598: 1597: 1592: 1587: 1586: 1578: 1574: 1573: 1572: 1551: 1550: 1540: 1535: 1517: 1516: 1508: 1504: 1503: 1502: 1468: 1463: 1440: 1430: 1429: 1398:is the filter's 1397: 1395: 1394: 1389: 1364: 1362: 1361: 1356: 1354: 1353: 1345: 1344: 1330: 1328: 1327: 1322: 1320: 1319: 1307:where operators 1303: 1301: 1300: 1295: 1290: 1289: 1256: 1255: 1249: 1248: 1240: 1239: 1180: 1178: 1177: 1172: 1169: 1155: 1150: 1140: 1139: 1125: 1111: 1106: 1096: 1095: 1081: 1067: 1062: 1046: 1045: 1019: 1017: 1016: 1011: 955: 953: 952: 947: 945: 940: 939: 930: 892: 890: 889: 884: 863: 861: 860: 855: 853: 852: 843: 840: 812: 811: 770: 769: 759: 754: 709:, for instance. 698: 697: 691: 689: 688: 683: 645: 643: 642: 637: 635: 634: 618: 616: 615: 610: 608: 607: 604: 591: 589: 588: 583: 555: 553: 552: 547: 545: 544: 526: 524: 523: 520:{\textstyle N+1} 518: 500: 498: 497: 492: 480: 478: 477: 472: 458: 456: 455: 450: 427: 425: 424: 419: 389: 387: 386: 381: 379: 351: 350: 340: 335: 314: 292: 291: 255: 254: 230: 229: 98: 96: 95: 90: 67:impulse response 52:impulse response 21: 5808: 5807: 5803: 5802: 5801: 5799: 5798: 5797: 5778: 5777: 5776: 5771: 5767: 5755: 5751: 5739: 5735: 5731: 5726: 5725: 5716: 5712: 5687: 5686: 5660: 5659: 5657: 5653: 5648: 5600:Compact support 5591: 5583:low-pass filter 5550: 5546: 5538: 5537: 5520: 5519: 5486: 5482: 5466: 5447: 5446: 5427: 5398: 5368: 5351: 5347: 5335: 5334: 5263: 5258: 5257: 5202: 5197: 5196: 5163: 5140: 5139: 5111: 5085: 5042: 5041: 4917: 4916: 4882: 4881: 4851: 4833: 4828: 4827: 4803: 4784: 4779: 4778: 4759: 4758: 4757: 4756: 4755: 4752: 4743: 4742: 4741: 4738: 4729: 4728: 4727: 4721: 4712: 4711: 4710: 4707: 4696: 4661: 4642: 4563: 4562: 4531: 4530: 4502: and  4488: for  4463: 4462: 4247: 4246: 4217: 4216: 4188: 4187: 4186:Step 4: Change 4160: for  4126: 4048: 4047: 4009: 3955: 3954: 3892: 3876: 3689: 3679: 3672: 3671: 3642: 3641: 3609: 3593: 3539: 3274: 3273: 3239: 3220: 3153: 3152: 3041: 3021: 3020: 2990: 2989: 2961: 2960: 2924: 2875: 2874: 2846: 2845: 2798: 2793: 2792: 2763: 2762: 2740: 2735: 2734: 2704: 2685: 2645: 2625: 2586: 2585: 2574: 2554:transition band 2538:window function 2534: 2476: 2475: 2450: 2449: 2413: 2378: 2345: 2310: 2307: 2306: 2281: 2276: 2275: 2245: 2174: 2173: 2133: 2128: 2127: 2101: 2086: 2081: 2080: 2056: 2041: 2036: 2035: 2007: 2002: 2001: 1978: 1973: 1972: 1944: 1930: 1911: 1900: 1889: 1888: 1863: 1858: 1857: 1829: 1828: 1791: 1786: 1785: 1756: 1755: 1732: 1727: 1726: 1707: 1706: 1684: 1662: 1657: 1656: 1629: 1628: 1606: 1605: 1561: 1556: 1555: 1542: 1491: 1486: 1485: 1418: 1413: 1412: 1371: 1370: 1338: 1333: 1332: 1309: 1308: 1233: 1183: 1182: 1133: 1089: 1039: 1031: 1030: 993: 992: 989: 931: 918: 917: 912:Are inherently 899: 869: 868: 848: 847: 837: 831: 830: 813: 803: 796: 761: 720: 719: 695: 694: 659: 658: 626: 621: 620: 599: 594: 593: 562: 561: 560:th instant for 536: 531: 530: 503: 502: 483: 482: 463: 462: 432: 431: 401: 400: 377: 376: 342: 312: 311: 283: 246: 221: 214: 193: 192: 124: 108:continuous-time 75: 74: 71:Kronecker delta 28: 23: 22: 15: 12: 11: 5: 5806: 5804: 5796: 5795: 5790: 5780: 5779: 5775: 5774: 5765: 5749: 5732: 5730: 5727: 5724: 5723: 5710: 5697: 5694: 5670: 5667: 5650: 5649: 5647: 5644: 5643: 5642: 5637:(specifically 5632: 5627: 5622: 5617: 5612: 5607: 5602: 5597: 5590: 5587: 5565: 5560: 5557: 5553: 5549: 5545: 5534: 5533: 5518: 5514: 5510: 5507: 5504: 5501: 5498: 5495: 5492: 5489: 5485: 5479: 5476: 5473: 5469: 5463: 5460: 5455: 5452: 5450: 5448: 5443: 5440: 5437: 5434: 5430: 5424: 5421: 5416: 5411: 5408: 5405: 5401: 5395: 5392: 5387: 5382: 5379: 5374: 5371: 5369: 5366: 5361: 5358: 5354: 5350: 5346: 5343: 5342: 5304: 5300: 5294: 5291: 5286: 5283: 5278: 5275: 5270: 5266: 5243: 5239: 5233: 5230: 5225: 5222: 5217: 5214: 5209: 5205: 5189: 5188: 5177: 5170: 5166: 5161: 5158: 5155: 5152: 5147: 5143: 5134: 5131: 5126: 5121: 5118: 5114: 5108: 5105: 5100: 5095: 5092: 5088: 5082: 5079: 5074: 5069: 5066: 5061: 5058: 5055: 5052: 5049: 5032: 5031: 5020: 5017: 5014: 5011: 5008: 5005: 5000: 4997: 4992: 4989: 4986: 4983: 4980: 4977: 4974: 4969: 4966: 4961: 4958: 4955: 4952: 4949: 4944: 4941: 4936: 4933: 4930: 4927: 4924: 4907: 4906: 4895: 4892: 4889: 4875: 4874: 4860: 4857: 4854: 4850: 4845: 4840: 4836: 4810: 4806: 4802: 4799: 4796: 4791: 4787: 4763:moving average 4753: 4746: 4745: 4744: 4739: 4732: 4731: 4730: 4722: 4715: 4714: 4713: 4708: 4701: 4700: 4699: 4698: 4697: 4695: 4692: 4691: 4690: 4679: 4676: 4670: 4665: 4660: 4657: 4654: 4649: 4645: 4641: 4638: 4635: 4632: 4629: 4625: 4621: 4618: 4615: 4612: 4607: 4603: 4599: 4594: 4590: 4586: 4583: 4579: 4575: 4547: 4544: 4541: 4538: 4527: 4526: 4525: 4524: 4513: 4510: 4507: 4499: 4496: 4493: 4485: 4482: 4479: 4476: 4473: 4470: 4450: 4446: 4442: 4439: 4436: 4433: 4430: 4427: 4424: 4416: 4413: 4410: 4407: 4404: 4401: 4398: 4395: 4392: 4389: 4386: 4383: 4379: 4376: 4373: 4369: 4366: 4362: 4358: 4355: 4352: 4349: 4346: 4343: 4340: 4337: 4334: 4331: 4328: 4325: 4322: 4318: 4314: 4311: 4308: 4305: 4302: 4299: 4296: 4293: 4290: 4287: 4284: 4281: 4278: 4275: 4272: 4269: 4266: 4263: 4260: 4257: 4254: 4233: 4230: 4227: 4224: 4204: 4201: 4198: 4195: 4184: 4183: 4182: 4171: 4168: 4165: 4154: 4151: 4148: 4144: 4141: 4138: 4133: 4129: 4125: 4122: 4119: 4116: 4113: 4110: 4107: 4104: 4099: 4095: 4091: 4086: 4082: 4078: 4075: 4071: 4067: 4064: 4061: 4058: 4055: 4045: 4034: 4031: 4027: 4024: 4021: 4016: 4012: 4006: 4002: 3998: 3993: 3989: 3985: 3982: 3978: 3974: 3971: 3968: 3965: 3962: 3952: 3949: 3938: 3935: 3932: 3929: 3925: 3922: 3919: 3916: 3913: 3910: 3907: 3904: 3899: 3895: 3891: 3888: 3883: 3879: 3873: 3869: 3865: 3860: 3856: 3852: 3849: 3845: 3841: 3838: 3835: 3832: 3828: 3825: 3822: 3819: 3816: 3813: 3810: 3807: 3804: 3801: 3798: 3795: 3792: 3789: 3786: 3783: 3778: 3774: 3770: 3765: 3761: 3757: 3754: 3750: 3746: 3743: 3740: 3737: 3732: 3727: 3724: 3721: 3717: 3713: 3710: 3704: 3701: 3698: 3695: 3692: 3682: 3658: 3655: 3652: 3649: 3638: 3637: 3636: 3625: 3622: 3616: 3612: 3608: 3605: 3600: 3596: 3590: 3586: 3582: 3577: 3573: 3569: 3566: 3562: 3558: 3555: 3552: 3546: 3542: 3538: 3535: 3532: 3529: 3526: 3523: 3520: 3517: 3514: 3511: 3508: 3505: 3500: 3495: 3492: 3489: 3485: 3479: 3475: 3471: 3466: 3462: 3458: 3455: 3451: 3447: 3444: 3441: 3438: 3434: 3431: 3428: 3425: 3422: 3419: 3416: 3413: 3410: 3407: 3404: 3401: 3396: 3391: 3388: 3385: 3381: 3377: 3374: 3371: 3368: 3365: 3362: 3359: 3356: 3353: 3350: 3347: 3344: 3339: 3334: 3331: 3328: 3324: 3318: 3314: 3310: 3305: 3301: 3297: 3294: 3290: 3286: 3271: 3268: 3257: 3254: 3248: 3243: 3238: 3235: 3232: 3227: 3223: 3219: 3216: 3213: 3210: 3207: 3203: 3197: 3193: 3189: 3184: 3180: 3176: 3173: 3169: 3165: 3147: 3146: 3145: 3134: 3131: 3128: 3125: 3122: 3119: 3116: 3113: 3110: 3107: 3104: 3101: 3096: 3091: 3088: 3085: 3081: 3077: 3074: 3071: 3068: 3065: 3060: 3057: 3054: 3051: 3048: 3044: 3040: 3037: 3034: 3031: 3028: 3017:is defined as 3006: 3003: 3000: 2997: 2977: 2974: 2971: 2968: 2957: 2943: 2939: 2936: 2933: 2930: 2927: 2921: 2918: 2915: 2912: 2909: 2906: 2903: 2900: 2897: 2894: 2891: 2888: 2885: 2882: 2862: 2859: 2856: 2853: 2832: 2831: 2830: 2829: 2816: 2813: 2810: 2805: 2801: 2779: 2776: 2773: 2770: 2747: 2743: 2722: 2719: 2713: 2708: 2703: 2700: 2697: 2692: 2688: 2684: 2681: 2678: 2675: 2672: 2668: 2662: 2658: 2652: 2648: 2642: 2638: 2632: 2628: 2624: 2620: 2614: 2611: 2606: 2602: 2598: 2573: 2570: 2559:Kaiser windows 2533: 2530: 2510: 2509: 2505: 2489: 2486: 2483: 2463: 2460: 2457: 2435: 2432: 2429: 2417:matched filter 2412: 2409: 2408: 2407: 2396: 2393: 2388: 2385: 2381: 2377: 2371: 2368: 2362: 2355: 2352: 2348: 2344: 2341: 2336: 2331: 2328: 2325: 2319: 2316: 2309: 2305: 2302: 2299: 2296: 2291: 2288: 2284: 2272: 2271: 2260: 2255: 2252: 2248: 2244: 2241: 2238: 2235: 2232: 2227: 2222: 2219: 2216: 2213: 2209: 2205: 2199: 2196: 2193: 2187: 2184: 2154: 2151: 2148: 2143: 2140: 2136: 2113: 2108: 2104: 2099: 2093: 2089: 2068: 2063: 2059: 2054: 2048: 2044: 2019: 2014: 2010: 1990: 1985: 1981: 1951: 1947: 1943: 1936: 1933: 1929: 1923: 1918: 1914: 1910: 1906: 1903: 1899: 1896: 1870: 1866: 1845: 1842: 1839: 1836: 1816: 1810: 1807: 1801: 1797: 1794: 1769: 1766: 1763: 1738: 1735: 1714: 1694: 1690: 1687: 1683: 1680: 1677: 1672: 1669: 1665: 1636: 1616: 1613: 1602: 1601: 1590: 1585: 1582: 1577: 1571: 1568: 1564: 1559: 1554: 1549: 1545: 1539: 1534: 1531: 1528: 1524: 1520: 1515: 1512: 1507: 1501: 1498: 1494: 1489: 1484: 1481: 1478: 1475: 1472: 1467: 1462: 1459: 1456: 1453: 1449: 1445: 1439: 1436: 1433: 1428: 1425: 1421: 1404:Fourier series 1387: 1384: 1381: 1378: 1352: 1349: 1343: 1318: 1305: 1304: 1293: 1288: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1254: 1247: 1244: 1238: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1190: 1168: 1165: 1162: 1159: 1153: 1149: 1146: 1143: 1138: 1129: 1124: 1121: 1118: 1115: 1109: 1105: 1102: 1099: 1094: 1085: 1080: 1077: 1074: 1071: 1065: 1061: 1058: 1055: 1052: 1049: 1044: 1009: 1006: 1003: 1000: 988: 985: 977: 976: 957: 944: 938: 934: 929: 925: 910: 898: 895: 882: 879: 876: 865: 864: 851: 846: 838: 836: 833: 832: 829: 826: 823: 820: 817: 814: 810: 806: 802: 801: 799: 794: 791: 788: 785: 782: 779: 776: 773: 768: 764: 758: 753: 750: 747: 743: 739: 736: 733: 730: 727: 685:{\textstyle x} 681: 678: 675: 672: 669: 666: 648: 647: 633: 629: 602: 581: 578: 575: 572: 569: 543: 539: 528: 516: 513: 510: 494:{\textstyle N} 490: 474:{\textstyle N} 470: 460: 452:{\textstyle y} 448: 445: 442: 439: 429: 421:{\textstyle x} 417: 414: 411: 408: 391: 390: 375: 372: 369: 366: 363: 360: 357: 354: 349: 345: 339: 334: 331: 328: 324: 320: 317: 315: 313: 310: 307: 304: 301: 298: 295: 290: 286: 282: 279: 276: 273: 270: 267: 264: 261: 258: 253: 249: 245: 242: 239: 236: 233: 228: 224: 220: 217: 215: 213: 210: 207: 204: 201: 200: 123: 120: 88: 85: 82: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5805: 5794: 5793:Filter theory 5791: 5789: 5786: 5785: 5783: 5769: 5766: 5763: 5762:0-13-914101-4 5759: 5753: 5750: 5747: 5746:0-13-809731-3 5743: 5737: 5734: 5728: 5720: 5714: 5711: 5695: 5692: 5684: 5668: 5665: 5655: 5652: 5645: 5640: 5636: 5633: 5631: 5628: 5626: 5623: 5621: 5620:Filter design 5618: 5616: 5613: 5611: 5608: 5606: 5603: 5601: 5598: 5596: 5593: 5592: 5588: 5586: 5584: 5580: 5563: 5558: 5555: 5551: 5547: 5543: 5516: 5512: 5505: 5499: 5496: 5493: 5490: 5487: 5483: 5477: 5474: 5471: 5467: 5461: 5458: 5453: 5451: 5441: 5438: 5435: 5432: 5428: 5422: 5419: 5414: 5409: 5406: 5403: 5399: 5393: 5390: 5385: 5380: 5377: 5372: 5370: 5364: 5359: 5356: 5352: 5348: 5344: 5333: 5332: 5331: 5330: 5326: 5323: 5318: 5302: 5298: 5292: 5289: 5284: 5281: 5276: 5273: 5268: 5264: 5241: 5237: 5231: 5228: 5223: 5220: 5215: 5212: 5207: 5203: 5194: 5175: 5168: 5164: 5159: 5156: 5153: 5150: 5145: 5141: 5132: 5129: 5124: 5119: 5116: 5112: 5106: 5103: 5098: 5093: 5090: 5086: 5080: 5077: 5072: 5067: 5064: 5059: 5053: 5047: 5040: 5039: 5038: 5037: 5015: 5012: 5009: 5003: 4998: 4995: 4990: 4984: 4981: 4978: 4972: 4967: 4964: 4959: 4953: 4947: 4942: 4939: 4934: 4928: 4922: 4915: 4914: 4913: 4912: 4893: 4890: 4887: 4880: 4879: 4878: 4858: 4855: 4852: 4848: 4843: 4838: 4834: 4826: 4825: 4824: 4808: 4804: 4800: 4797: 4794: 4789: 4785: 4776: 4772: 4768: 4764: 4750: 4736: 4725: 4719: 4705: 4693: 4677: 4674: 4668: 4655: 4647: 4643: 4639: 4633: 4627: 4616: 4610: 4605: 4601: 4597: 4592: 4588: 4584: 4581: 4577: 4573: 4561: 4560: 4559: 4542: 4536: 4511: 4508: 4505: 4497: 4494: 4491: 4483: 4480: 4474: 4468: 4448: 4444: 4437: 4434: 4431: 4425: 4422: 4414: 4411: 4408: 4405: 4402: 4399: 4396: 4393: 4390: 4387: 4384: 4381: 4377: 4374: 4371: 4367: 4364: 4360: 4353: 4347: 4344: 4338: 4335: 4332: 4326: 4323: 4320: 4316: 4309: 4303: 4300: 4294: 4291: 4288: 4282: 4279: 4273: 4267: 4264: 4258: 4252: 4245: 4244: 4228: 4222: 4199: 4193: 4185: 4169: 4166: 4163: 4152: 4149: 4146: 4139: 4131: 4127: 4120: 4117: 4114: 4111: 4105: 4102: 4097: 4093: 4089: 4084: 4080: 4076: 4073: 4069: 4065: 4059: 4053: 4046: 4032: 4029: 4022: 4014: 4010: 4004: 4000: 3996: 3991: 3987: 3983: 3980: 3976: 3972: 3966: 3960: 3953: 3950: 3936: 3933: 3930: 3927: 3920: 3917: 3914: 3911: 3905: 3902: 3897: 3889: 3881: 3877: 3871: 3867: 3863: 3858: 3854: 3850: 3847: 3843: 3839: 3836: 3833: 3830: 3823: 3820: 3817: 3814: 3808: 3805: 3799: 3796: 3793: 3790: 3784: 3781: 3776: 3772: 3768: 3763: 3759: 3755: 3752: 3748: 3741: 3735: 3730: 3725: 3722: 3719: 3715: 3711: 3708: 3699: 3693: 3670: 3669: 3653: 3647: 3639: 3623: 3620: 3614: 3606: 3598: 3594: 3588: 3584: 3580: 3575: 3571: 3567: 3564: 3560: 3556: 3553: 3550: 3544: 3540: 3533: 3530: 3527: 3524: 3518: 3515: 3509: 3503: 3498: 3493: 3490: 3487: 3483: 3477: 3473: 3469: 3464: 3460: 3456: 3453: 3449: 3445: 3442: 3439: 3436: 3429: 3426: 3423: 3420: 3414: 3411: 3405: 3399: 3394: 3389: 3386: 3383: 3379: 3372: 3369: 3366: 3363: 3357: 3354: 3348: 3342: 3337: 3332: 3329: 3326: 3322: 3316: 3312: 3308: 3303: 3299: 3295: 3292: 3288: 3284: 3272: 3269: 3255: 3252: 3246: 3233: 3225: 3221: 3217: 3211: 3205: 3195: 3191: 3187: 3182: 3178: 3174: 3171: 3167: 3163: 3151: 3150: 3148: 3129: 3126: 3123: 3120: 3114: 3111: 3105: 3099: 3094: 3089: 3086: 3083: 3079: 3075: 3069: 3063: 3058: 3055: 3052: 3049: 3046: 3042: 3038: 3032: 3026: 3019: 3018: 3001: 2995: 2972: 2966: 2958: 2941: 2934: 2931: 2928: 2919: 2916: 2913: 2907: 2904: 2901: 2895: 2892: 2886: 2880: 2857: 2851: 2843: 2839: 2838: 2837: 2836: 2811: 2803: 2799: 2774: 2768: 2745: 2741: 2720: 2717: 2711: 2698: 2690: 2686: 2682: 2676: 2670: 2660: 2656: 2650: 2646: 2640: 2636: 2630: 2626: 2622: 2618: 2612: 2609: 2604: 2600: 2596: 2584: 2583: 2581: 2580: 2579: 2578: 2571: 2569: 2567: 2562: 2560: 2556: 2555: 2550: 2549:sinc function 2545: 2543: 2539: 2531: 2529: 2527: 2523: 2519: 2515: 2506: 2503: 2487: 2484: 2481: 2461: 2458: 2455: 2447: 2443: 2439: 2436: 2433: 2430: 2428: 2425: 2424: 2423: 2420: 2418: 2411:Filter design 2410: 2394: 2386: 2383: 2379: 2369: 2366: 2360: 2353: 2350: 2346: 2342: 2339: 2334: 2326: 2317: 2314: 2303: 2297: 2289: 2286: 2282: 2274: 2273: 2258: 2253: 2250: 2246: 2242: 2236: 2230: 2217: 2214: 2211: 2207: 2203: 2194: 2185: 2182: 2172: 2171: 2170: 2168: 2149: 2141: 2138: 2134: 2125: 2111: 2106: 2102: 2097: 2091: 2087: 2066: 2061: 2057: 2052: 2046: 2042: 2033: 2017: 2012: 2008: 1988: 1983: 1979: 1970: 1966: 1949: 1945: 1941: 1934: 1931: 1927: 1921: 1916: 1912: 1908: 1904: 1901: 1897: 1894: 1886: 1868: 1864: 1840: 1834: 1814: 1808: 1805: 1799: 1795: 1792: 1783: 1767: 1764: 1761: 1753: 1736: 1733: 1712: 1688: 1685: 1681: 1678: 1670: 1667: 1663: 1654: 1650: 1634: 1614: 1611: 1588: 1583: 1580: 1575: 1569: 1566: 1562: 1557: 1552: 1547: 1543: 1537: 1532: 1529: 1526: 1522: 1518: 1513: 1510: 1505: 1499: 1496: 1492: 1487: 1482: 1476: 1470: 1457: 1454: 1451: 1447: 1443: 1434: 1426: 1423: 1419: 1411: 1410: 1409: 1408: 1405: 1401: 1382: 1376: 1368: 1350: 1347: 1291: 1278: 1272: 1269: 1263: 1257: 1245: 1242: 1230: 1224: 1218: 1215: 1209: 1203: 1200: 1194: 1188: 1163: 1157: 1151: 1144: 1127: 1119: 1113: 1107: 1100: 1083: 1075: 1069: 1063: 1056: 1053: 1050: 1029: 1028: 1027: 1026: 1023: 1004: 998: 986: 984: 982: 974: 970: 966: 962: 958: 936: 932: 923: 915: 911: 908: 907: 906: 904: 896: 894: 880: 877: 874: 844: 834: 827: 824: 821: 818: 815: 808: 804: 797: 792: 786: 783: 780: 774: 771: 766: 762: 756: 751: 748: 745: 741: 737: 731: 725: 718: 717: 716: 715: 710: 708: 704: 700: 676: 673: 670: 664: 655: 653: 631: 627: 600: 579: 576: 573: 570: 567: 559: 541: 537: 529: 514: 511: 508: 488: 468: 461: 443: 437: 430: 412: 406: 399: 398: 397: 396: 373: 367: 364: 361: 355: 352: 347: 343: 337: 332: 329: 326: 322: 318: 316: 305: 302: 299: 293: 288: 284: 280: 277: 274: 268: 265: 262: 256: 251: 247: 243: 237: 231: 226: 222: 218: 216: 208: 202: 191: 190: 189: 188: 184: 180: 179:discrete-time 177: 169: 165: 161: 156: 149: 145: 141: 137: 133: 128: 121: 119: 117: 113: 109: 105: 104:discrete-time 100: 86: 83: 80: 72: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 5768: 5752: 5736: 5713: 5682: 5654: 5535: 5328: 5324: 5319: 5190: 5035: 5033: 4910: 4908: 4876: 4760: 4528: 2841: 2834: 2833: 2576: 2575: 2563: 2552: 2546: 2535: 2511: 2501: 2445: 2421: 2414: 2126: 2124:  etc. 2031: 1964: 1884: 1751: 1750:in units of 1652: 1603: 1406: 1306: 1024: 990: 978: 961:linear phase 900: 866: 713: 711: 706: 693: 656: 649: 557: 394: 392: 186: 182: 173: 166:operator in 163: 159: 146:operator in 143: 139: 135: 131: 101: 64: 55: 43: 39: 35: 29: 5635:Z-transform 2167:Z-transform 981:selectivity 168:Z-transform 148:Z-transform 5782:Categories 5729:References 4771:decimation 3270:Therefore, 2518:GNU Octave 965:seismology 897:Properties 122:Definition 5559:ω 5506:ω 5500:⁡ 5478:ω 5472:− 5442:ω 5433:− 5410:ω 5404:− 5360:ω 5290:− 5277:− 5216:− 5117:− 5091:− 5013:− 5004:δ 4982:− 4973:δ 4948:δ 4798:… 4640:− 4582:− 4578:∫ 4509:≥ 4435:− 4406:… 4336:− 4167:≠ 4115:π 4106:⁡ 4074:− 4070:∫ 3981:− 3977:∫ 3915:π 3906:⁡ 3848:− 3844:∫ 3837:− 3821:τ 3818:π 3809:⁡ 3794:π 3785:⁡ 3753:− 3749:∫ 3742:τ 3720:τ 3716:∑ 3691:∂ 3681:∂ 3565:− 3561:∫ 3528:π 3519:⁡ 3484:∑ 3454:− 3450:∫ 3443:− 3427:τ 3424:π 3415:⁡ 3406:τ 3384:τ 3380:∑ 3367:π 3358:⁡ 3323:∑ 3293:− 3289:∫ 3218:− 3172:− 3168:∫ 3124:π 3115:⁡ 3080:∑ 3053:π 2932:− 2840:Given an 2683:− 2623:− 2619:∫ 2610:− 2542:convolved 2387:ω 2370:^ 2354:ω 2318:^ 2298:ω 2290:π 2251:− 2243:⋅ 2226:∞ 2221:∞ 2218:− 2208:∑ 2204:≜ 2186:^ 2150:ω 2142:π 1942:⋅ 1935:π 1928:ω 1909:⋅ 1780:, called 1768:π 1762:ω 1682:π 1671:π 1635:ω 1615:π 1581:− 1570:ω 1553:⋅ 1523:∑ 1511:− 1500:ω 1483:⋅ 1466:∞ 1461:∞ 1458:− 1448:∑ 1444:≜ 1435:ω 1427:π 1383:ω 1348:− 1279:ω 1270:⋅ 1264:ω 1243:− 1216:∗ 1164:ω 1152:⏟ 1128:⋅ 1120:ω 1108:⏟ 1076:ω 1064:⏟ 1054:∗ 973:mastering 924:∑ 841:otherwise 825:≤ 819:≤ 784:− 775:δ 772:⋅ 742:∑ 674:− 577:≤ 571:≤ 365:− 353:⋅ 323:∑ 303:− 278:⋯ 266:− 170:notation. 150:notation. 5589:See also 2733:, where 1905:′ 1796:′ 1737:′ 1689:′ 4773:, or a 2835:Method: 2079:  112:digital 5760:  5744:  4767:boxcar 4156:  2873:, and 2524:, and 2522:Scilab 2514:MATLAB 2201:  1441:  971:, and 914:stable 592:of an 176:causal 174:For a 116:analog 110:, and 56:finite 50:whose 48:filter 44:filter 5646:Notes 2577:Goal: 2526:SciPy 1725:with 393:where 46:is a 5758:ISBN 5742:ISBN 5717:See 5327:, is 4495:< 4461:and 1883:(in 1331:and 657:The 65:The 34:, a 5685:is 5497:cos 4570:MSE 4103:cos 3903:cos 3806:cos 3782:cos 3685:MSE 3516:cos 3412:cos 3355:cos 3281:MSE 3160:MSE 3112:cos 2593:MSE 696:tap 114:or 106:or 40:FIR 30:In 5784:: 5317:. 5256:, 4761:A 2520:, 2516:, 1969:Hz 967:, 654:. 605:th 558:i' 118:. 42:) 5721:. 5696:, 5693:1 5669:, 5666:2 5641:) 5564:) 5556:j 5552:e 5548:( 5544:H 5517:. 5513:) 5509:) 5503:( 5494:2 5491:+ 5488:1 5484:( 5475:j 5468:e 5462:3 5459:1 5454:= 5439:2 5436:j 5429:e 5423:3 5420:1 5415:+ 5407:j 5400:e 5394:3 5391:1 5386:+ 5381:3 5378:1 5373:= 5365:) 5357:j 5353:e 5349:( 5345:H 5329:: 5325:ω 5303:2 5299:3 5293:j 5285:2 5282:1 5274:= 5269:2 5265:z 5242:2 5238:3 5232:j 5229:+ 5224:2 5221:1 5213:= 5208:1 5204:z 5176:. 5169:2 5165:z 5160:1 5157:+ 5154:z 5151:+ 5146:2 5142:z 5133:3 5130:1 5125:= 5120:2 5113:z 5107:3 5104:1 5099:+ 5094:1 5087:z 5081:3 5078:1 5073:+ 5068:3 5065:1 5060:= 5057:) 5054:z 5051:( 5048:H 5036:: 5019:] 5016:2 5010:n 5007:[ 4999:3 4996:1 4991:+ 4988:] 4985:1 4979:n 4976:[ 4968:3 4965:1 4960:+ 4957:] 4954:n 4951:[ 4943:3 4940:1 4935:= 4932:] 4929:n 4926:[ 4923:h 4911:: 4894:2 4891:= 4888:N 4859:1 4856:+ 4853:N 4849:1 4844:= 4839:i 4835:b 4809:N 4805:b 4801:, 4795:, 4790:0 4786:b 4678:F 4675:d 4669:2 4664:| 4659:) 4656:F 4653:( 4648:d 4644:H 4637:) 4634:F 4631:( 4628:R 4624:| 4620:) 4617:F 4614:( 4611:W 4606:2 4602:/ 4598:1 4593:2 4589:/ 4585:1 4574:= 4546:) 4543:f 4540:( 4537:W 4512:N 4506:n 4498:0 4492:n 4484:0 4481:= 4478:] 4475:n 4472:[ 4469:h 4449:2 4445:/ 4441:) 4438:1 4432:N 4429:( 4426:= 4423:k 4415:, 4412:k 4409:, 4403:, 4400:3 4397:, 4394:2 4391:, 4388:1 4385:= 4382:n 4378:r 4375:o 4372:f 4368:, 4365:2 4361:/ 4357:] 4354:n 4351:[ 4348:s 4345:= 4342:] 4339:n 4333:k 4330:[ 4327:h 4324:, 4321:2 4317:/ 4313:] 4310:n 4307:[ 4304:s 4301:= 4298:] 4295:n 4292:+ 4289:k 4286:[ 4283:h 4280:, 4277:] 4274:0 4271:[ 4268:s 4265:= 4262:] 4259:k 4256:[ 4253:h 4232:] 4229:n 4226:[ 4223:h 4203:] 4200:n 4197:[ 4194:s 4170:0 4164:n 4153:, 4150:F 4147:d 4143:) 4140:F 4137:( 4132:d 4128:H 4124:) 4121:F 4118:n 4112:2 4109:( 4098:2 4094:/ 4090:1 4085:2 4081:/ 4077:1 4066:= 4063:] 4060:n 4057:[ 4054:s 4033:F 4030:d 4026:) 4023:F 4020:( 4015:d 4011:H 4005:2 4001:/ 3997:1 3992:2 3988:/ 3984:1 3973:= 3970:] 3967:0 3964:[ 3961:s 3937:0 3934:= 3931:F 3928:d 3924:) 3921:F 3918:n 3912:2 3909:( 3898:2 3894:) 3890:F 3887:( 3882:d 3878:H 3872:2 3868:/ 3864:1 3859:2 3855:/ 3851:1 3840:2 3834:F 3831:d 3827:) 3824:F 3815:2 3812:( 3803:) 3800:F 3797:n 3791:2 3788:( 3777:2 3773:/ 3769:1 3764:2 3760:/ 3756:1 3745:] 3739:[ 3736:s 3731:k 3726:0 3723:= 3712:2 3709:= 3703:] 3700:n 3697:[ 3694:s 3657:] 3654:n 3651:[ 3648:s 3624:F 3621:d 3615:2 3611:) 3607:F 3604:( 3599:d 3595:H 3589:2 3585:/ 3581:1 3576:2 3572:/ 3568:1 3557:+ 3554:F 3551:d 3545:d 3541:H 3537:) 3534:F 3531:n 3525:2 3522:( 3513:] 3510:n 3507:[ 3504:s 3499:k 3494:0 3491:= 3488:n 3478:2 3474:/ 3470:1 3465:2 3461:/ 3457:1 3446:2 3440:F 3437:d 3433:) 3430:F 3421:2 3418:( 3409:] 3403:[ 3400:s 3395:k 3390:0 3387:= 3376:) 3373:F 3370:n 3364:2 3361:( 3352:] 3349:n 3346:[ 3343:s 3338:k 3333:0 3330:= 3327:n 3317:2 3313:/ 3309:1 3304:2 3300:/ 3296:1 3285:= 3256:F 3253:d 3247:2 3242:| 3237:) 3234:F 3231:( 3226:d 3222:H 3215:) 3212:F 3209:( 3206:R 3202:| 3196:2 3192:/ 3188:1 3183:2 3179:/ 3175:1 3164:= 3133:) 3130:F 3127:n 3121:2 3118:( 3109:] 3106:n 3103:[ 3100:s 3095:k 3090:0 3087:= 3084:n 3076:= 3073:) 3070:F 3067:( 3064:H 3059:k 3056:F 3050:2 3047:j 3043:e 3039:= 3036:) 3033:F 3030:( 3027:R 3005:] 3002:n 2999:[ 2996:r 2976:] 2973:n 2970:[ 2967:h 2956:. 2942:2 2938:) 2935:1 2929:N 2926:( 2920:= 2917:k 2914:, 2911:] 2908:k 2905:+ 2902:n 2899:[ 2896:h 2893:= 2890:] 2887:n 2884:[ 2881:r 2861:] 2858:n 2855:[ 2852:h 2842:N 2815:) 2812:f 2809:( 2804:d 2800:H 2778:) 2775:f 2772:( 2769:H 2746:s 2742:f 2721:f 2718:d 2712:2 2707:| 2702:) 2699:f 2696:( 2691:d 2687:H 2680:) 2677:f 2674:( 2671:H 2667:| 2661:2 2657:/ 2651:s 2647:f 2641:2 2637:/ 2631:s 2627:f 2613:1 2605:s 2601:f 2597:= 2502:N 2488:1 2485:+ 2482:N 2462:1 2459:+ 2456:N 2446:N 2395:. 2392:) 2384:j 2380:e 2376:( 2367:H 2361:= 2351:j 2347:e 2343:= 2340:z 2335:| 2330:) 2327:z 2324:( 2315:H 2304:= 2301:) 2295:( 2287:2 2283:H 2259:. 2254:n 2247:z 2240:] 2237:n 2234:[ 2231:h 2215:= 2212:n 2198:) 2195:z 2192:( 2183:H 2153:) 2147:( 2139:2 2135:H 2112:, 2107:s 2103:f 2098:/ 2092:2 2088:f 2067:, 2062:s 2058:f 2053:/ 2047:1 2043:f 2018:, 2013:2 2009:f 1989:, 1984:1 1980:f 1967:( 1950:s 1946:f 1932:2 1922:= 1917:s 1913:f 1902:f 1898:= 1895:f 1869:s 1865:f 1844:] 1841:n 1838:[ 1835:x 1815:. 1809:2 1806:1 1800:= 1793:f 1765:= 1734:f 1713:1 1693:) 1686:f 1679:2 1676:( 1668:2 1664:H 1651:( 1612:2 1589:, 1584:n 1576:) 1567:i 1563:e 1558:( 1548:n 1544:b 1538:N 1533:0 1530:= 1527:n 1519:= 1514:n 1506:) 1497:i 1493:e 1488:( 1480:] 1477:n 1474:[ 1471:h 1455:= 1452:n 1438:) 1432:( 1424:2 1420:H 1407:: 1386:) 1380:( 1377:H 1351:1 1342:F 1317:F 1292:, 1287:} 1282:) 1276:( 1273:H 1267:) 1261:( 1258:X 1253:{ 1246:1 1237:F 1231:= 1228:] 1225:n 1222:[ 1219:h 1213:] 1210:n 1207:[ 1204:x 1201:= 1198:] 1195:n 1192:[ 1189:y 1167:) 1161:( 1158:H 1148:} 1145:h 1142:{ 1137:F 1123:) 1117:( 1114:X 1104:} 1101:x 1098:{ 1093:F 1084:= 1079:) 1073:( 1070:Y 1060:} 1057:h 1051:x 1048:{ 1043:F 1025:: 1008:] 1005:n 1002:[ 999:x 975:. 943:| 937:i 933:b 928:| 881:0 878:= 875:n 845:. 835:0 828:N 822:n 816:0 809:n 805:b 798:{ 793:= 790:] 787:i 781:n 778:[ 767:i 763:b 757:N 752:0 749:= 746:i 738:= 735:] 732:n 729:[ 726:h 714:: 699:s 680:] 677:i 671:n 668:[ 665:x 632:i 628:b 601:N 580:N 574:i 568:0 542:i 538:b 515:1 512:+ 509:N 489:N 469:N 447:] 444:n 441:[ 438:y 416:] 413:n 410:[ 407:x 395:: 374:, 371:] 368:i 362:n 359:[ 356:x 348:i 344:b 338:N 333:0 330:= 327:i 319:= 309:] 306:N 300:n 297:[ 294:x 289:N 285:b 281:+ 275:+ 272:] 269:1 263:n 260:[ 257:x 252:1 248:b 244:+ 241:] 238:n 235:[ 232:x 227:0 223:b 219:= 212:] 209:n 206:[ 203:y 187:: 183:N 164:z 160:N 144:z 140:N 136:N 132:N 87:1 84:+ 81:N 38:( 20:)

Index

Window design method
signal processing
filter
impulse response
infinite impulse response
impulse response
Kronecker delta
discrete-time
continuous-time
digital
analog

Z-transform
A depiction of a lattice type F I R filter
Z-transform
causal
discrete-time
discrete convolution
tapped delay line
infinite impulse response
stable
linear phase
seismology
crossover filters
mastering
selectivity
convolution theorem
discrete-time Fourier transform
frequency response
Fourier series

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.