Knowledge (XXG)

Wittig reagents

Source 📝

193: 42: 160: 167:
The identification of a suitable base is often an important step when optimizing a Wittig reaction. Because phosphonium ylides are seldom isolated, the byproduct(s) generated upon deprotonation essentially plays the role of an additive in a Wittig reaction. As a result, the choice of base has a
156:), or sodium hydride (NaH) are also commonly used. For stabilized Wittig reagents bearing conjugated electron-withdrawing groups, even relatively weak bases like aqueous sodium hydroxide or potassium carbonate can be employed. 176:
Electron-withdrawing groups (EWGs) enhance the ease of deprotonation of phosphonium salts. This behavior is illustrated by the finding that deprotonation of triphenylcarbethoxymethylphosphonium requires only
226:
Wittig reagents are prepared by deprotonation of alkyl phosphonium salts, and this reaction can be reversed. The methodology can be useful in the preparation of unusual Wittig reagents.
85:. Quaternization of triphenylphosphine with secondary halides is typically inefficient. For this reason, Wittig reagents are rarely used to prepare tetrasubstituted alkenes. 185:
is somewhat air-stable. It is however less reactive than ylides lacking EWGs. For example they usually fail to react with ketones, necessitating the use of the
521:; Basil, J. D. (1982). "Oxidative Addition of Methyl Iodide to a Dinuclear gold(I) Complex. The X-Ray Crystal Structure of Bis-iodomethyldigold(II)(Au-Au), Au 186: 362: 182: 347: 352: 189:
as an alternative. Such stabilized ylides usually give rise to an E-alkene product when they react, rather than the more usual Z-alkene.
614: 57:. They are typically generated and used in situ. THF is a typical solvent. Some are sufficiently stable to be sold commercially. 357: 416:
Crystallographic characterization of methylenetriphenylphosphorane shows that the phosphorus atom is tetrahedral. The PCH
367: 298:
Although ylides are "electron-rich", they are susceptible to deprotonation of alkyl substituents. Treatment of Me
25: 168:
strong influence on the efficiency and, when applicable, the stereochemical outcome of the Wittig reaction.
555:
Schmidbaur, H. (1983). "Phosphorus Ylides in the Coordination Sphere of Transition Metals: An Inventory".
211: 582:
Bart, J. C. J. (1969). "Structure of the Non-Stabilized Phosphonium Ylid Methylenetriphenylphosphorane".
41: 469: 448:
Wittig reaction in Organic Syntheses, Coll. Vol. 5, p. 361 (1973); Vol. 45, p. 33 (1965). (
145: 518: 379: 74: 54: 438: 17: 591: 564: 537: 500: 335: 178: 66: 215: 53:
Because they typically hydrolyze and oxidize readily, Wittig reagents are prepared using
449: 442: 192: 94: 70: 608: 279: 428:
distance is 1.661 Å, which is much shorter than the other P-C distances (1.823 Å).
82: 78: 491:
Appel, Rolf; Morbach, Wolfgang (1977). "(Chloromethylene)triphenylphosphorane".
568: 504: 159: 595: 541: 319: 93:
The alkylphosphonium salt is deprotonated with a strong base such as
33: 441:, Coll. Vol. 10, p. 703 (2004); Vol. 75, p. 153 (1998). ( 318:
Li. Having carbanion-like properties, lithiated ylides function as
191: 378:
Wittig reagents are usually described as a combination of two
36:. They are used to convert ketones and aldehydes to alkenes: 81:. Wittig reagents are usually derived from a primary 134:
BuLi), other strong bases like sodium and potassium
557:Angewandte Chemie International Edition in English 493:Angewandte Chemie International Edition in English 413:form, which is the more familiar representation. 8: 246:−X, produces substituted phosphonium salts: 89:Bases for deprotonation of phosphonium salts 65:Wittig reagents are usually prepared from a 470:"(Carbethoxymethylene)triphenylphosphorane" 148:(LiHMDS, NaHMDS, KHDMS, where HDMS = N(SiMe 158: 461: 363:Triphenylcarbethoxymethylenephosphorane 183:triphenylcarbethoxymethylenephosphorane 348:(Chloromethylene)triphenylphosphorane 144:BuOK), lithium, sodium and potassium 7: 353:Methoxymethylenetriphenylphosphorane 69:, which is in turn prepared by the 409:form and the latter is called the 14: 584:Journal of the Chemical Society B 242:with a primary alkyl halide R−CH 187:Horner–Wadsworth–Emmons reaction 40: 196:A "stabilized" Wittig reagent. 1: 358:Methylenetriphenylphosphorane 306:with butyl lithium affords Me 210:Wittig reagents are used for 163:Br, typical phosphonium salt. 61:Formation of phosphonium salt 368:Hexaphenylcarbodiphosphorane 282:in the usual way to give Ph 32:P=CHR', where R is usually 631: 615:Organophosphorus compounds 26:organophosphorus compounds 420:centre is planar and the 405:The former is called the 569:10.1002/anie.198309071 505:10.1002/anie.197701801 197: 164: 212:olefination reactions 195: 162: 596:10.1039/J29690000350 380:resonance structures 146:hexamethyldisilazide 542:10.1021/om00066a021 437:Wittig reaction in 278:These salts can be 172:Substituent effects 55:air-free techniques 334:Li is a potential 198: 165: 75:triphenylphosphine 439:Organic Syntheses 18:organic chemistry 622: 600: 599: 579: 573: 572: 552: 546: 545: 515: 509: 508: 488: 482: 481: 479: 477: 466: 336:bidentate ligand 234:Alkylation of Ph 181:. The resulting 179:sodium hydroxide 67:phosphonium salt 44: 28:of the formula R 630: 629: 625: 624: 623: 621: 620: 619: 605: 604: 603: 581: 580: 576: 563:(12): 907–927. 554: 553: 549: 530:Organometallics 527: 524: 517: 516: 512: 490: 489: 485: 475: 473: 472:. Sigma-Aldrich 468: 467: 463: 459: 434: 427: 419: 401: 397: 393: 389: 376: 344: 333: 329: 325: 317: 313: 309: 305: 301: 296: 289: 285: 273: 269: 265: 261: 257: 253: 245: 241: 237: 232: 224: 216:Wittig reaction 208: 203: 174: 155: 151: 131:-butyllithium ( 123: 119: 116:P=CHR + LiX + C 115: 111: 107: 91: 63: 51: 31: 22:Wittig reagents 12: 11: 5: 628: 626: 618: 617: 607: 606: 602: 601: 574: 547: 536:(6): 871–873. 525: 522: 519:Fackler, J. P. 510: 499:(3): 180–181. 483: 460: 458: 455: 454: 453: 446: 433: 432:External links 430: 425: 417: 403: 402: 399: 395: 391: 387: 375: 372: 371: 370: 365: 360: 355: 350: 343: 340: 331: 327: 323: 315: 311: 307: 303: 299: 295: 292: 287: 283: 276: 275: 271: 267: 263: 259: 255: 251: 243: 239: 235: 231: 228: 223: 220: 207: 204: 202: 199: 173: 170: 153: 149: 125: 124: 121: 117: 113: 109: 105: 90: 87: 71:quaternization 62: 59: 50: 47: 46: 45: 29: 13: 10: 9: 6: 4: 3: 2: 627: 616: 613: 612: 610: 597: 593: 589: 585: 578: 575: 570: 566: 562: 558: 551: 548: 543: 539: 535: 531: 520: 514: 511: 506: 502: 498: 494: 487: 484: 471: 465: 462: 456: 451: 447: 444: 440: 436: 435: 431: 429: 423: 414: 412: 408: 385: 384: 383: 381: 373: 369: 366: 364: 361: 359: 356: 354: 351: 349: 346: 345: 341: 339: 337: 321: 294:Deprotonation 293: 291: 281: 249: 248: 247: 229: 227: 221: 219: 217: 213: 205: 200: 194: 190: 188: 184: 180: 171: 169: 161: 157: 147: 143: 140: 137: 133: 130: 103: 102: 101: 99: 98:-butyllithium 97: 88: 86: 84: 80: 76: 72: 68: 60: 58: 56: 48: 43: 39: 38: 37: 35: 27: 23: 19: 587: 583: 577: 560: 556: 550: 533: 529: 513: 496: 492: 486: 474:. Retrieved 464: 421: 415: 410: 406: 404: 377: 297: 280:deprotonated 277: 233: 225: 209: 175: 166: 142: 139: 135: 132: 128: 126: 95: 92: 83:alkyl halide 79:alkyl halide 64: 52: 21: 15: 590:: 350–365. 411:phosphorane 222:Protonation 214:, i.e. the 206:Olefination 138:-butoxide ( 49:Preparation 457:References 230:Alkylation 528:(CH3)I". 374:Structure 322:. Thus Me 201:Reactions 609:Category 342:Examples 127:Besides 77:with an 476:27 June 450:Article 443:Article 320:ligands 286:P=CH−CH 141:BuONa, 112:Li → Ph 262:X → Ph 34:phenyl 407:ylide 258:+ RCH 104:X + C 588:1969 478:2019 398:P=CR 394:↔ Ph 326:P(CH 310:P(CH 290:R. 254:P=CH 238:P=CH 24:are 592:doi 565:doi 538:doi 501:doi 422:P=C 390:PCR 302:PCH 274:R X 266:PCH 73:of 16:In 611:: 586:. 561:22 559:. 532:. 497:16 495:. 386:Ph 382:: 338:. 270:CH 250:Ph 218:. 122:10 100:: 20:, 598:. 594:: 571:. 567:: 544:. 540:: 534:1 526:2 523:2 507:. 503:: 480:. 452:) 445:) 426:2 424:H 418:2 400:2 396:3 392:2 388:3 332:2 330:) 328:2 324:2 316:2 314:) 312:2 308:2 304:2 300:3 288:2 284:3 272:2 268:2 264:3 260:2 256:2 252:3 244:2 240:2 236:3 154:2 152:) 150:3 136:t 129:n 120:H 118:4 114:3 110:9 108:H 106:4 96:n 30:3

Index

organic chemistry
organophosphorus compounds
phenyl
Wittig Reaction
air-free techniques
phosphonium salt
quaternization
triphenylphosphine
alkyl halide
alkyl halide
n-butyllithium
hexamethyldisilazide

sodium hydroxide
triphenylcarbethoxymethylenephosphorane
Horner–Wadsworth–Emmons reaction

olefination reactions
Wittig reaction
deprotonated
ligands
bidentate ligand
(Chloromethylene)triphenylphosphorane
Methoxymethylenetriphenylphosphorane
Methylenetriphenylphosphorane
Triphenylcarbethoxymethylenephosphorane
Hexaphenylcarbodiphosphorane
resonance structures
Organic Syntheses
Article

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.