Knowledge (XXG)

Work function

Source 📝

163: 1242: 1100: 2007: 745: 457: 382:
instead flow internally through the junction between the conductors). Since two conductors in equilibrium can have a built-in potential difference due to work function differences, this means that bringing dissimilar conductors into contact, or pulling them apart, will drive electric currents. These contact currents can damage sensitive microelectronic circuitry and occur even when the conductors would be grounded in the absence of motion.
349:, are based on the thought experiment of two materials coming together in vacuum, such that the surfaces charge up and adjust their work functions to become equal just before contact. In reality these work function heuristics are inaccurate due to their neglect of numerous microscopic effects. However, they provide a convenient estimate until the true value can be determined by experiment. 1367:, then finding the flat vacuum condition gives directly the work function difference between the two materials. The only question is, how to detect the flat vacuum condition? Typically, the electric field is detected by varying the distance between the sample and probe. When the distance is changed but Δ 1381:
Although the Kelvin probe technique only measures a work function difference, it is possible to obtain an absolute work function by first calibrating the probe against a reference material (with known work function) and then using the same probe to measure a desired sample. The Kelvin probe technique
764:
the emitter instead, then most of the electrons coming from the emitter will simply be reflected back to the emitter. Only the highest energy electrons will have enough energy to reach the collector, and the height of the potential barrier in this case depends on the collector's work function, rather
1993:
A variety of factors are responsible for the surface electric dipole. Even with a completely clean surface, the electrons can spread slightly into the vacuum, leaving behind a slightly positively charged layer of material. This primarily occurs in metals, where the bound electrons do not encounter a
1973:
Due to the complications described in the modelling section below, it is difficult to theoretically predict the work function with accuracy. Various trends have, however, been identified. The work function tends to be smaller for metals with an open lattice, and larger for metals in which the atoms
285:
in the surface can be neglected. The electron must also be close to the surface compared to the nearest edge of a crystal facet, or to any other change in the surface structure, such as a change in the material composition, surface coating or reconstruction. The built-in electric field that results
43:
immediately outside the solid surface. Here "immediately" means that the final electron position is far from the surface on the atomic scale, but still too close to the solid to be influenced by ambient electric fields in the vacuum. The work function is not a characteristic of a bulk material, but
391:
Certain physical phenomena are highly sensitive to the value of the work function. The observed data from these effects can be fitted to simplified theoretical models, allowing one to extract a value of the work function. These phenomenologically extracted work functions may be slightly different
381:
on a conductor depends on the magnitude of the electric field, which in turn depends on the distance between the surfaces. The externally observed electrical effects are largest when the conductors are separated by the smallest distance without touching (once brought into contact, the charge will
2251:
The electron behavior in metals varies with temperature and is largely reflected by the electron work function. A theoretical model for predicting the temperature dependence of the electron work function, developed by Rahemi et al. explains the underlying mechanism and predicts this temperature
1211:
Photoelectric measurements require a great deal of care, as an incorrectly designed experimental geometry can result in an erroneous measurement of work function. This may be responsible for the large variation in work function values in scientific literature. Moreover, the minimum energy can be
1130:
occurs and the electron is liberated from the surface. Similar to the thermionic case described above, the liberated electrons can be extracted into a collector and produce a detectable current, if an electric field is applied into the surface of the emitter. Excess photon energy results in a
540:
determined simply by the thermionic work function of the emitter. If an electric field is applied towards the surface of the emitter, then all of the escaping electrons will be accelerated away from the emitter and absorbed into whichever material is applying the electric field. According to
392:
from the thermodynamic definition given above. For inhomogeneous surfaces, the work function varies from place to place, and different methods will yield different values of the typical "work function" as they average or select differently among the microscopic work functions.
312:, the common choice for vacuum tube filaments, can survive to high temperatures but its emission is somewhat limited due to its relatively high work function (approximately 4.5 eV). By coating the tungsten with a substance of lower work function (e.g., 415:
between the sample and a reference electrode. Experimentally, either an anode current of a diode is used or the displacement current between the sample and reference, created by an artificial change in the capacitance between the two, is measured (the
1355: 395:
Many techniques have been developed based on different physical effects to measure the electronic work function of a sample. One may distinguish between two groups of experimental methods for work function measurements: absolute and relative.
691: 2340: 2194:
From this one might expect that by doping the bulk of the semiconductor, the work function can be tuned. In reality, however, the energies of the bands near the surface are often pinned to the Fermi level, due to the influence of
886: 1394:
The work function depends on the configurations of atoms at the surface of the material. For example, on polycrystalline silver the work function is 4.26 eV, but on silver crystals it varies for different crystal faces as
1047: 1212:
misleading in materials where there are no actual electron states at the Fermi level that are available for excitation. For example, in a semiconductor the minimum photon energy would actually correspond to the
437:, where thermal fluctuations provide enough energy to "evaporate" electrons out of a hot material (called the 'emitter') into the vacuum. If these electrons are absorbed by another, cooler material (called the 1219:
Of course, the photoelectric effect may be used in the retarding mode, as with the thermionic apparatus described above. In the retarding case, the dark collector's work function is measured instead.
2179: 2239:
The jellium model is only a partial explanation, as its predictions still show significant deviation from real work functions. More recent models have focused on including more accurate forms of
1998:
attraction. The amount of surface dipole depends on the detailed layout of the atoms at the surface of the material, leading to the variation in work function for different crystal faces.
535: 341:
in the junctions of differing materials, such as metals, semiconductors, and insulators. Some commonly used heuristic approaches to predict the band alignment between materials, such as
2243:
and correlation effects, as well as including the crystal face dependence (this requires the inclusion of the actual atomic lattice, something that is neglected in the jellium model).
1196: 377:
If two conducting surfaces are moved relative to each other, and there is potential difference in the space between them, then an electric current will be driven. This is because the
198:
produced in the vacuum will be somewhat lower than the applied voltage, the difference depending on the work function of the material surface. Rearranging the above equation, one has
1986:
The work function is not simply dependent on the "internal vacuum level" inside the material (i.e., its average electrostatic potential), because of the formation of an atomic-scale
361:
known as patch potentials are always present due to microscopic inhomogeneities. Patch potentials have disrupted sensitive apparatus that rely on a perfectly uniform vacuum, such as
238: 109: 188:
by the voltage applied to the material through electrodes, and the work function is generally a fixed characteristic of the surface material. Consequently, this means that when a
1091:
is one of the simplest and oldest methods of measuring work functions, and is advantageous since the measured material (collector) is not required to survive high temperatures.
166:
Plot of electron energy levels against position, in a gold-vacuum-aluminium system. The two metals depicted here are in complete thermodynamic equilibrium. However, the vacuum
1266: 400:
Absolute methods employ electron emission from the sample induced by photon absorption (photoemission), by high temperature (thermionic emission), due to an electric field (
1155: 445:
will be observed. Thermionic emission can be used to measure the work function of both the hot emitter and cold collector. Generally, these measurements involve fitting to
2414: 2387: 1056:
is a Richardson-type constant that depends on the collector material but may also depend on the emitter material, and the diode geometry. In this case, the dependence of
2671:
Thomas Iii, S. W.; Vella, S. J.; Dickey, M. D.; Kaufman, G. K.; Whitesides, G. M. (2009). "Controlling the Kinetics of Contact Electrification with Patterned Surfaces".
2085:
The reason for the dependence is that, typically, the vacuum level and the conduction band edge retain a fixed spacing independent of doping. This spacing is called the
355:
Variation in work function between different surfaces causes a non-uniform electrostatic potential in the vacuum. Even on an ostensibly uniform surface, variations in
2360: 2089:(note that this has a different meaning than the electron affinity of chemistry); in silicon for example the electron affinity is 4.05 eV. If the electron affinity 2894:
Nikolic, M. V.; Radic, S. M.; Minic, V.; Ristic, M. M. (February 1996). "The dependence of the work function of rare earth metals on their electron structure".
572: 2255: 781: 320:), the emission can be greatly increased. This prolongs the lifetime of the filament by allowing operation at lower temperatures (for more information, see 3247: 2530:
Behunin, R. O.; Intravaia, F.; Dalvit, D. A. R.; Neto, P. A. M.; Reynaud, S. (2012). "Modeling electrostatic patch effects in Casimir force measurements".
2199:. If there is a large density of surface states, then the work function of the semiconductor will show a very weak dependence on doping or electric field. 1260:
that is applied to the probe relative to the sample. If the voltage is chosen such that the electric field is eliminated (the flat vacuum condition), then
760:
The same setup can be used to instead measure the work function in the collector, simply by adjusting the applied voltage. If an electric field is applied
281:
The work function refers to removal of an electron to a position that is far enough from the surface (many nm) that the force between the electron and its
2226:) as well as the tail of electron density extending outside the surface. This model showed why the density of conduction electrons (as represented by the 369:
experiment. Critical apparatus may have surfaces covered with molybdenum, which shows low variations in work function between different crystal faces.
2252:
dependence for various crystal structures via calculable and measurable parameters. In general, as the temperature increases, the EWF decreases via
940: 3078:
Rahemi, Reza; Li, Dongyang (April 2015). "Variation in electron work function with temperature and its effect on Young's modulus of metals".
2465: 3530: 2719:
Helander, M. G.; Greiner, M. T.; Wang, Z. B.; Lu, Z. H. (2010). "Pitfalls in measuring work function using photoelectron spectroscopy".
2441: 468:
configuration, used to extract all hot electrons coming out from the emitter's surface. The barrier is the vacuum near emitter surface.
1382:
can be used to obtain work function maps of a surface with extremely high spatial resolution, by using a sharp tip for the probe (see
3582: 3193: 3062: 2809: 278:, when those conductors are in total equilibrium with each other (electrically shorted to each other, and with equal temperatures). 1378:. This current is proportional to the vacuum electric field, and so when the electric field is neutralized no current will flow. 3240: 3201: 1245:
Kelvin probe energy diagram at flat vacuum configuration, used for measuring work function difference between sample and probe.
1990:
at the surface. This surface electric dipole gives a jump in the electrostatic potential between the material and the vacuum.
286:
from these structures, and any other ambient electric field present in the vacuum are excluded in defining the work function.
3525: 2207:
Theoretical modeling of the work function is difficult, as an accurate model requires a careful treatment of both electronic
2641: 2116: 472:
In order to move from the hot emitter to the vacuum, an electron's energy must exceed the emitter Fermi level by an amount
1383: 1232: 421: 417: 3587: 2079: 412: 2492: 775:. The barrier height now depends on the work function of the collector, as well as any additional applied voltages: 424:). However, absolute work function values can be obtained if the tip is first calibrated against a reference sample. 3233: 1987: 478: 3540: 2758: 149: 3389: 1163: 768:
The current is still governed by Richardson's law. However, in this case the barrier height does not depend on
2227: 712: 2222:
model, which allowed for oscillations in electronic density nearby the abrupt surface (these are similar to
1974:
are closely packed. It is somewhat higher on dense crystal faces than open crystal faces, also depending on
401: 372: 282: 274:
depends on the material surface means that the space between two dissimilar conductors will have a built-in
204: 167: 132: 64: 2850:
Dweydari, A. W.; Mee, C. H. B. (1975). "Work function measurements on (100) and (110) surfaces of silver".
346: 3520: 2680: 2505: 2075: 1975: 162: 3597: 3419: 1350:{\displaystyle e\Delta V_{\rm {sp}}=W_{\rm {s}}-W_{\rm {p}},\quad {\text{when}}~\phi ~{\text{is flat}}.} 1236: 2362:
is a calculable material property which is dependent on the crystal structure (for example, BCC, FCC).
3220: 2954: 1241: 3556: 3535: 3515: 3454: 3394: 3320: 3159: 3023: 2988: 2859: 2773: 2728: 2602: 2549: 1127: 1123: 2685: 1099: 3479: 3368: 3270: 3215: 2223: 1137: 931: 542: 446: 434: 295: 20: 2392: 2365: 3175: 3105: 3087: 2618: 2592: 2565: 2539: 1253:) between a sample material and probe material. The electric field can be varied by the voltage Δ 701: 32: 2006: 744: 456: 342: 44:
rather a property of the surface of the material (depending on crystal face and contamination).
2930: 923:
is often omitted, as it is a small contribution of order 10 mV). The resulting current density
3489: 3474: 3058: 2911: 2789: 2698: 2471: 2461: 2240: 2212: 2208: 2086: 2082:, the work function of a semiconductor is also sensitive to the electric field in the vacuum. 2014: 1603: 405: 265: 2345: 3439: 3379: 3167: 3097: 3031: 2996: 2903: 2867: 2781: 2736: 2690: 2610: 2557: 749: 461: 442: 334: 3592: 3300: 3295: 3205: 2979:
Bardeen, J. (1947). "Surface States and Rectification at a Metal Semi-Conductor Contact".
2813: 2488: 2031: 1228: 686:{\displaystyle J_{\rm {e}}=-A_{\rm {e}}T_{\rm {e}}^{2}e^{-E_{\rm {barrier}}/kT_{\rm {e}}}} 546: 366: 2807: 3163: 3150:
Michaelson, Herbert B. (1977). "The work function of the elements and its periodicity".
3027: 2992: 2863: 2777: 2732: 2606: 2553: 2335:{\textstyle \varphi (T)=\varphi _{0}-\gamma {\frac {(k_{\text{B}}T)^{2}}{\varphi _{0}}}} 3459: 3434: 2436: 913: 881:{\displaystyle E_{\rm {barrier}}=W_{\rm {c}}-e(\Delta V_{\rm {ce}}-\Delta V_{\rm {S}})} 378: 338: 275: 3576: 3499: 3494: 3384: 3305: 3179: 3109: 3101: 2907: 2825: 2622: 2569: 2196: 2071: 1249:
The Kelvin probe technique relies on the detection of an electric field (gradient in
1132: 362: 3210: 3198: 449:, and so they must be carried out in a low temperature and low current regime where 3464: 3358: 3290: 3285: 2078:
at the surface of the semiconductor. Since the doping near the surface can also be
2052: 2010: 1995: 1412: 1404: 1400: 1396: 1213: 450: 327: 317: 301: 333:
The behavior of a solid-state device is strongly dependent on the size of various
308:
are critical parameters in determining the amount of current that can be emitted.
2740: 2649: 1994:
hard wall potential at the surface but rather a gradual ramping potential due to
1131:
liberated electron with non-zero kinetic energy. It is expected that the minimum
3561: 3469: 3328: 3280: 3256: 2042: 1375: 557: 321: 305: 145: 2561: 1042:{\displaystyle J_{\rm {c}}=AT_{\rm {e}}^{2}e^{-E_{\rm {barrier}}/kT_{\rm {e}}}} 3484: 3414: 3404: 3399: 3343: 1681: 1585: 2915: 2218:
One of the earliest successful models for metal work function trends was the
3449: 3444: 3424: 3035: 2871: 2475: 1957: 1941: 1871: 1845: 1785: 1741: 1707: 1671: 1663: 1637: 1629: 1472: 1428: 261: 3000: 2793: 2702: 2757:
Fernåndez Garrillo, P. A.; Grévin, B.; Chevalier, N.; Borowik, Ɓ. (2018).
3429: 3409: 3348: 3054: 2614: 1923: 1915: 1897: 1889: 1853: 1827: 1811: 1801: 1793: 1759: 1749: 1655: 1558: 1532: 309: 122: 36: 1126:. If the photon's energy is greater than the substance's work function, 3363: 3353: 2219: 1931: 1905: 1879: 1863: 1819: 1775: 1767: 1697: 1645: 1619: 1593: 1577: 1540: 1506: 1498: 1480: 1436: 313: 189: 159:
is the energy of an electron at rest in the vacuum nearby the surface.
3014:
Lang, N.; Kohn, W. (1971). "Theory of Metal Surfaces: Work Function".
2785: 2694: 3374: 3338: 3333: 3310: 3171: 2493:
Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks
1723: 1715: 1689: 1611: 1550: 1524: 1514: 1488: 1462: 1420: 1407:: 4.74 eV. Ranges for typical surfaces are shown in the table below. 1119: 930:
through the collector (per unit of collector area) is again given by
40: 3225: 3092: 2884:
CRC Handbook of Chemistry and Physics version 2008, p. 12–124.
2759:"Calibrated work function mapping by Kelvin probe force microscopy" 3145:
For a quick reference to values of work function of the elements:
2597: 2544: 2005: 1454: 1122:
energy required to liberate an electron from a substance, in the
1949: 1733: 1566: 1446: 756:
configuration. The barrier is the vacuum near collector surface.
3229: 2215:; both of these topics are already complex in their own right. 2023:, defined as the difference between near-surface vacuum energy 1837: 1157:
required to liberate an electron (and generate a current) is
3216:
Work functions of various metals for the photoelectric effect
2583:
Will, C. M. (2011). "Finally, results from Gravity Probe B".
1374:
is held constant, a current will flow due to the change in
2236:) is an important parameter in determining work function. 268:
that is defined as having zero Fermi level. The fact that
2931:"The General Properties of Si, Ge, SiGe, SiO2 and Si3N4" 2258: 2174:{\displaystyle W=E_{\rm {EA}}+E_{\rm {C}}-E_{\rm {F}}} 192:
is applied to a material, the electrostatic potential
2395: 2368: 2348: 2119: 1269: 1166: 1140: 943: 784: 575: 481: 207: 67: 3138:
Scanning Electron Microscopy and X-Ray Microanalysis
2247:
Temperature dependence of the electron work function
1107:
configuration, used for measuring the work function
3549: 3508: 3319: 3263: 2408: 2381: 2354: 2334: 2173: 1349: 1190: 1149: 1041: 880: 685: 529: 232: 103: 3194:Work function of polymeric insulators (Table 2.1) 2002:Doping and electric field effect (semiconductors) 1969:Physical factors that determine the work function 264:, through an attached electrode), relative to an 260:is the voltage of the material (as measured by a 175:is not flat due to a difference in work function. 58:for a given surface is defined by the difference 715:of the emitter. In this case, the dependence of 433:The work function is important in the theory of 2806:G.L. Kulcinski, "Thermionic Energy Conversion" 1118:The photoelectric work function is the minimum 905:is the applied collector–emitter voltage, and Δ 2110:are known, then the work function is given by 2096:and the surface's band-referenced Fermi level 898:is the collector's thermionic work function, Δ 352:Equilibrium electric fields in vacuum chambers 3241: 2506:"Barrier Height Correlations and Systematics" 530:{\displaystyle E_{\rm {barrier}}=W_{\rm {e}}} 8: 152:of electrons) inside the material. The term 1360:Since the experimenter controls and knows Δ 304:, the work function and temperature of the 3248: 3234: 3226: 3221:Physics of free surfaces of semiconductors 2714: 2712: 2636: 2634: 2632: 2203:Theoretical models of metal work functions 2013:of semiconductor-vacuum interface showing 3199:Work function of diamond and doped carbon 3091: 2684: 2596: 2543: 2400: 2394: 2389:is the electron work function at T=0 and 2373: 2367: 2347: 2324: 2313: 2300: 2290: 2278: 2257: 2164: 2163: 2149: 2148: 2131: 2130: 2118: 1339: 1325: 1314: 1313: 1299: 1298: 1281: 1280: 1268: 1191:{\displaystyle \hbar \omega =W_{\rm {e}}} 1181: 1180: 1165: 1139: 1030: 1029: 1017: 992: 991: 983: 973: 967: 966: 949: 948: 942: 868: 867: 847: 846: 823: 822: 790: 789: 783: 674: 673: 661: 636: 635: 627: 617: 611: 610: 599: 598: 581: 580: 574: 520: 519: 487: 486: 480: 220: 206: 91: 90: 66: 3136:Goldstein, Newbury; et al. (2003). 3049:Kiejna, A.; Wojciechowski, K.F. (1996). 2752: 2750: 2673:Journal of the American Chemical Society 2431: 2429: 2074:, the work function is sensitive to the 1409: 1240: 1098: 743: 740:Work function of cold electron collector 455: 161: 2425: 1167: 1141: 2458:The physics and chemistry of materials 916:in the hot emitter (the influence of Δ 233:{\displaystyle \phi =V-{\frac {W}{e}}} 135:in the vacuum nearby the surface, and 104:{\displaystyle W=-e\phi -E_{\rm {F}},} 1208:is the work function of the emitter. 7: 2929:Virginia Semiconductor (June 2002). 429:Methods based on thermionic emission 2442:Introduction to Solid State Physics 2416:is constant throughout the change. 179:In practice, one directly controls 35:(i.e., energy) needed to remove an 2165: 2150: 2135: 2132: 1315: 1300: 1285: 1282: 1273: 1182: 1031: 1011: 1008: 1005: 1002: 999: 996: 993: 968: 950: 869: 860: 851: 848: 839: 824: 809: 806: 803: 800: 797: 794: 791: 675: 655: 652: 649: 646: 643: 640: 637: 612: 600: 582: 556:(A/m), is related to the absolute 521: 506: 503: 500: 497: 494: 491: 488: 92: 14: 704:and the proportionality constant 411:Relative methods make use of the 330:models in solid-state electronics 3102:10.1016/j.scriptamat.2014.11.022 2766:Review of Scientific Instruments 1216:edge rather than work function. 566:of the emitter by the equation: 3211:Work functions of common metals 1324: 39:from a solid to a point in the 3051:Metal Surface Electron Physics 2310: 2293: 2268: 2262: 1095:Methods based on photoemission 875: 836: 1: 2955:"Semiconductor Free Surfaces" 2080:controlled by electric fields 1384:Kelvin probe force microscope 1233:Kelvin probe force microscope 1150:{\displaystyle \hbar \omega } 422:Kelvin probe force microscope 2908:10.1016/0026-2692(95)00097-6 2741:10.1016/j.apsusc.2009.11.002 2409:{\displaystyle k_{\text{B}}} 2382:{\displaystyle \varphi _{0}} 1978:for the given crystal face. 549:(per unit area of emitter), 413:contact potential difference 1956: 1948: 1940: 1930: 1922: 1914: 1904: 1896: 1888: 1878: 1870: 1862: 1852: 1844: 1836: 1826: 1818: 1810: 1800: 1792: 1784: 1774: 1766: 1758: 1748: 1740: 1732: 1722: 1714: 1706: 1696: 1688: 1680: 1670: 1662: 1654: 1644: 1636: 1628: 1618: 1610: 1602: 1592: 1584: 1576: 1565: 1557: 1549: 1539: 1531: 1523: 1513: 1505: 1497: 1487: 1479: 1471: 1461: 1453: 1445: 1435: 1427: 1419: 1411:Work function of elements ( 1114:of the illuminated emitter. 3616: 2959:academic.brooklyn.cuny.edu 2562:10.1103/PhysRevA.85.012504 2510:academic.brooklyn.cuny.edu 1390:Work functions of elements 1226: 1089:retarding potential method 748:Energy level diagrams for 460:Energy level diagrams for 3371:(Hexode, Heptode, Octode) 3127:Ashcroft; Mermin (1976). 2191:is taken at the surface. 1077:, can be fitted to yield 150:electrochemical potential 3583:Condensed matter physics 3390:Backward-wave oscillator 3131:. Thomson Learning, Inc. 2896:Microelectronics Journal 2826:"Photoelectron Emission" 3036:10.1103/PhysRevB.3.1215 2872:10.1002/pssa.2210270126 2852:Physica Status Solidi A 2721:Applied Surface Science 2355:{\displaystyle \gamma } 1976:surface reconstructions 1103:Photoelectric diode in 729:can be fitted to yield 402:field electron emission 373:Contact electrification 168:electrostatic potential 133:electrostatic potential 3264:Theoretical principles 3001:10.1103/PhysRev.71.717 2456:Gersten, Joel (2001). 2445:(7th ed.). Wiley. 2410: 2383: 2356: 2336: 2175: 2067: 1351: 1246: 1192: 1151: 1128:photoelectric emission 1115: 1043: 882: 757: 687: 531: 469: 234: 176: 105: 3420:Inductive output tube 3140:. New York: Springer. 2411: 2384: 2357: 2337: 2176: 2009: 1988:electric double layer 1352: 1244: 1237:Scanning Kelvin probe 1193: 1152: 1102: 1044: 883: 747: 713:Richardson's constant 688: 532: 459: 235: 165: 106: 3562:List of tube sockets 3557:List of vacuum tubes 3395:Beam deflection tube 2615:10.1103/Physics.4.43 2393: 2366: 2346: 2256: 2224:Friedel oscillations 2117: 1267: 1164: 1138: 1124:photoelectric effect 941: 782: 765:than the emitter's. 573: 479: 453:effects are absent. 441:) then a measurable 365:experiments and the 205: 121:is the charge of an 65: 3588:Physical quantities 3480:Traveling-wave tube 3271:Thermionic emission 3164:1977JAP....48.4729M 3129:Solid State Physics 3028:1971PhRvB...3.1215L 2993:1947PhRv...71..717B 2864:1975PSSAR..27..223D 2778:2018RScI...89d3702F 2733:2010ApSS..256.2602H 2652:on 29 December 2016 2642:"Metal surfaces 1a" 2607:2011PhyOJ...4...43W 2554:2012PhRvA..85a2504B 2460:. New York: Wiley. 2228:Wigner–Seitz radius 2030:, and near-surface 1416: 1223:Kelvin probe method 978: 754:retarding potential 622: 435:thermionic emission 406:electron tunnelling 296:Thermionic emission 27:(sometimes spelled 21:solid-state physics 3204:2012-06-29 at the 3080:Scripta Materialia 2812:2017-11-17 at the 2406: 2379: 2352: 2332: 2171: 2068: 1410: 1347: 1247: 1188: 1147: 1116: 1039: 962: 878: 758: 702:Boltzmann constant 683: 606: 527: 470: 347:Schottky–Mott rule 230: 177: 101: 52:The work function 33:thermodynamic work 3570: 3569: 3509:Numbering systems 3490:Video camera tube 3475:Talaria projector 3257:Thermionic valves 3016:Physical Review B 2786:10.1063/1.5007619 2695:10.1021/ja902862b 2679:(25): 8746–8747. 2532:Physical Review A 2467:978-0-471-05794-9 2403: 2330: 2303: 2241:electron exchange 2213:surface chemistry 2209:many body effects 2087:electron affinity 2015:electron affinity 1966: 1965: 1342: 1338: 1332: 1328: 335:Schottky barriers 266:electrical ground 228: 31:) is the minimum 3605: 3380:Cathode-ray tube 3250: 3243: 3236: 3227: 3183: 3172:10.1063/1.323539 3141: 3132: 3114: 3113: 3095: 3075: 3069: 3068: 3046: 3040: 3039: 3011: 3005: 3004: 2976: 2970: 2969: 2967: 2965: 2951: 2945: 2944: 2942: 2940: 2935: 2926: 2920: 2919: 2891: 2885: 2882: 2876: 2875: 2847: 2841: 2840: 2838: 2836: 2830:www.virginia.edu 2822: 2816: 2804: 2798: 2797: 2763: 2754: 2745: 2744: 2716: 2707: 2706: 2688: 2668: 2662: 2661: 2659: 2657: 2648:. Archived from 2646:venables.asu.edu 2638: 2627: 2626: 2600: 2580: 2574: 2573: 2547: 2527: 2521: 2520: 2518: 2516: 2502: 2496: 2486: 2480: 2479: 2453: 2447: 2446: 2433: 2415: 2413: 2412: 2407: 2405: 2404: 2401: 2388: 2386: 2385: 2380: 2378: 2377: 2361: 2359: 2358: 2353: 2341: 2339: 2338: 2333: 2331: 2329: 2328: 2319: 2318: 2317: 2305: 2304: 2301: 2291: 2283: 2282: 2180: 2178: 2177: 2172: 2170: 2169: 2168: 2155: 2154: 2153: 2140: 2139: 2138: 2062:, work function 1417: 1356: 1354: 1353: 1348: 1343: 1340: 1336: 1330: 1329: 1326: 1320: 1319: 1318: 1305: 1304: 1303: 1290: 1289: 1288: 1197: 1195: 1194: 1189: 1187: 1186: 1185: 1156: 1154: 1153: 1148: 1048: 1046: 1045: 1040: 1038: 1037: 1036: 1035: 1034: 1021: 1016: 1015: 1014: 977: 972: 971: 955: 954: 953: 932:Richardson's Law 887: 885: 884: 879: 874: 873: 872: 856: 855: 854: 829: 828: 827: 814: 813: 812: 750:thermionic diode 692: 690: 689: 684: 682: 681: 680: 679: 678: 665: 660: 659: 658: 621: 616: 615: 605: 604: 603: 587: 586: 585: 543:Richardson's law 536: 534: 533: 528: 526: 525: 524: 511: 510: 509: 462:thermionic diode 447:Richardson's law 443:electric current 360: 273: 259: 239: 237: 236: 231: 229: 221: 197: 187: 174: 158: 143: 130: 120: 110: 108: 107: 102: 97: 96: 95: 57: 3615: 3614: 3608: 3607: 3606: 3604: 3603: 3602: 3573: 3572: 3571: 3566: 3545: 3531:Mullard–Philips 3504: 3455:Photomultiplier 3315: 3296:Suppressor grid 3259: 3254: 3206:Wayback Machine 3190: 3149: 3135: 3126: 3123: 3121:Further reading 3118: 3117: 3086:(2015): 41–44. 3077: 3076: 3072: 3065: 3048: 3047: 3043: 3013: 3012: 3008: 2987:(10): 717–727. 2981:Physical Review 2978: 2977: 2973: 2963: 2961: 2953: 2952: 2948: 2938: 2936: 2933: 2928: 2927: 2923: 2893: 2892: 2888: 2883: 2879: 2849: 2848: 2844: 2834: 2832: 2824: 2823: 2819: 2814:Wayback Machine 2805: 2801: 2761: 2756: 2755: 2748: 2718: 2717: 2710: 2686:10.1.1.670.4392 2670: 2669: 2665: 2655: 2653: 2640: 2639: 2630: 2582: 2581: 2577: 2529: 2528: 2524: 2514: 2512: 2504: 2503: 2499: 2495:" Nobel lecture 2489:Herbert Kroemer 2487: 2483: 2468: 2455: 2454: 2450: 2437:Kittel, Charles 2435: 2434: 2427: 2422: 2396: 2391: 2390: 2369: 2364: 2363: 2344: 2343: 2320: 2309: 2296: 2292: 2274: 2254: 2253: 2249: 2234: 2205: 2190: 2159: 2144: 2126: 2115: 2114: 2109: 2102: 2095: 2061: 2050: 2040: 2032:conduction band 2029: 2022: 2004: 1984: 1971: 1392: 1373: 1366: 1309: 1294: 1276: 1265: 1264: 1259: 1239: 1229:Volta potential 1225: 1207: 1176: 1162: 1161: 1136: 1135: 1113: 1097: 1083: 1076: 1069: 1062: 1025: 987: 979: 944: 939: 938: 929: 922: 914:Seebeck voltage 911: 904: 897: 863: 842: 818: 785: 780: 779: 774: 742: 735: 728: 721: 710: 669: 631: 623: 594: 576: 571: 570: 565: 555: 547:current density 515: 482: 477: 476: 431: 389: 367:Gravity Probe B 356: 343:Anderson's rule 292: 269: 254: 244: 203: 202: 193: 186: 180: 170: 153: 142: 136: 126: 115: 86: 63: 62: 53: 50: 17: 12: 11: 5: 3613: 3612: 3609: 3601: 3600: 3595: 3590: 3585: 3575: 3574: 3568: 3567: 3565: 3564: 3559: 3553: 3551: 3547: 3546: 3544: 3543: 3538: 3533: 3528: 3523: 3518: 3512: 3510: 3506: 3505: 3503: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3460:Selectron tube 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3422: 3417: 3412: 3407: 3402: 3397: 3392: 3387: 3382: 3377: 3372: 3366: 3361: 3356: 3351: 3346: 3341: 3336: 3331: 3325: 3323: 3317: 3316: 3314: 3313: 3308: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3267: 3265: 3261: 3260: 3255: 3253: 3252: 3245: 3238: 3230: 3224: 3223: 3218: 3213: 3208: 3196: 3189: 3188:External links 3186: 3185: 3184: 3143: 3142: 3133: 3122: 3119: 3116: 3115: 3070: 3063: 3041: 3006: 2971: 2946: 2921: 2886: 2877: 2842: 2817: 2799: 2746: 2708: 2663: 2628: 2575: 2522: 2497: 2481: 2466: 2448: 2424: 2423: 2421: 2418: 2399: 2376: 2372: 2351: 2327: 2323: 2316: 2312: 2308: 2299: 2295: 2289: 2286: 2281: 2277: 2273: 2270: 2267: 2264: 2261: 2248: 2245: 2232: 2204: 2201: 2197:surface states 2188: 2182: 2181: 2167: 2162: 2158: 2152: 2147: 2143: 2137: 2134: 2129: 2125: 2122: 2107: 2100: 2093: 2059: 2048: 2041:. Also shown: 2038: 2027: 2020: 2003: 2000: 1983: 1982:Surface dipole 1980: 1970: 1967: 1964: 1963: 1960: 1955: 1952: 1947: 1944: 1938: 1937: 1934: 1929: 1926: 1921: 1918: 1912: 1911: 1908: 1903: 1900: 1895: 1892: 1886: 1885: 1882: 1877: 1874: 1869: 1866: 1860: 1859: 1856: 1851: 1848: 1843: 1840: 1834: 1833: 1830: 1825: 1822: 1817: 1814: 1808: 1807: 1804: 1799: 1796: 1791: 1788: 1782: 1781: 1778: 1773: 1770: 1765: 1762: 1756: 1755: 1752: 1747: 1744: 1739: 1736: 1730: 1729: 1726: 1721: 1718: 1713: 1710: 1704: 1703: 1700: 1695: 1692: 1687: 1684: 1678: 1677: 1674: 1669: 1666: 1661: 1658: 1652: 1651: 1648: 1643: 1640: 1635: 1632: 1626: 1625: 1622: 1617: 1614: 1609: 1606: 1600: 1599: 1596: 1591: 1588: 1583: 1580: 1574: 1573: 1570: 1564: 1561: 1556: 1553: 1547: 1546: 1543: 1538: 1535: 1530: 1527: 1521: 1520: 1517: 1512: 1509: 1504: 1501: 1495: 1494: 1491: 1486: 1483: 1478: 1475: 1469: 1468: 1465: 1460: 1457: 1452: 1449: 1443: 1442: 1439: 1434: 1431: 1426: 1423: 1391: 1388: 1371: 1364: 1358: 1357: 1346: 1335: 1323: 1317: 1312: 1308: 1302: 1297: 1293: 1287: 1284: 1279: 1275: 1272: 1257: 1224: 1221: 1205: 1199: 1198: 1184: 1179: 1175: 1172: 1169: 1146: 1143: 1111: 1096: 1093: 1081: 1074: 1067: 1060: 1050: 1049: 1033: 1028: 1024: 1020: 1013: 1010: 1007: 1004: 1001: 998: 995: 990: 986: 982: 976: 970: 965: 961: 958: 952: 947: 927: 920: 909: 902: 895: 889: 888: 877: 871: 866: 862: 859: 853: 850: 845: 841: 838: 835: 832: 826: 821: 817: 811: 808: 805: 802: 799: 796: 793: 788: 772: 741: 738: 733: 726: 719: 708: 694: 693: 677: 672: 668: 664: 657: 654: 651: 648: 645: 642: 639: 634: 630: 626: 620: 614: 609: 602: 597: 593: 590: 584: 579: 563: 553: 538: 537: 523: 518: 514: 508: 505: 502: 499: 496: 493: 490: 485: 430: 427: 426: 425: 409: 388: 385: 384: 383: 379:surface charge 375: 370: 353: 350: 331: 325: 300:In thermionic 298: 291: 288: 276:electric field 252: 241: 240: 227: 224: 219: 216: 213: 210: 184: 140: 112: 111: 100: 94: 89: 85: 82: 79: 76: 73: 70: 49: 46: 16:Type of energy 15: 13: 10: 9: 6: 4: 3: 2: 3611: 3610: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3580: 3578: 3563: 3560: 3558: 3555: 3554: 3552: 3548: 3542: 3539: 3537: 3534: 3532: 3529: 3527: 3526:Marconi-Osram 3524: 3522: 3519: 3517: 3514: 3513: 3511: 3507: 3501: 3500:Fleming valve 3498: 3496: 3495:Williams tube 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3401: 3398: 3396: 3393: 3391: 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3370: 3367: 3365: 3362: 3360: 3357: 3355: 3352: 3350: 3347: 3345: 3342: 3340: 3337: 3335: 3332: 3330: 3327: 3326: 3324: 3322: 3318: 3312: 3309: 3307: 3306:Glowing anode 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3276:Work function 3274: 3272: 3269: 3268: 3266: 3262: 3258: 3251: 3246: 3244: 3239: 3237: 3232: 3231: 3228: 3222: 3219: 3217: 3214: 3212: 3209: 3207: 3203: 3200: 3197: 3195: 3192: 3191: 3187: 3181: 3177: 3173: 3169: 3165: 3161: 3157: 3153: 3152:J. Appl. Phys 3148: 3147: 3146: 3139: 3134: 3130: 3125: 3124: 3120: 3111: 3107: 3103: 3099: 3094: 3089: 3085: 3081: 3074: 3071: 3066: 3064:9780080536347 3060: 3056: 3052: 3045: 3042: 3037: 3033: 3029: 3025: 3021: 3017: 3010: 3007: 3002: 2998: 2994: 2990: 2986: 2982: 2975: 2972: 2960: 2956: 2950: 2947: 2932: 2925: 2922: 2917: 2913: 2909: 2905: 2901: 2897: 2890: 2887: 2881: 2878: 2873: 2869: 2865: 2861: 2857: 2853: 2846: 2843: 2831: 2827: 2821: 2818: 2815: 2811: 2808: 2803: 2800: 2795: 2791: 2787: 2783: 2779: 2775: 2772:(4): 043702. 2771: 2767: 2760: 2753: 2751: 2747: 2742: 2738: 2734: 2730: 2726: 2722: 2715: 2713: 2709: 2704: 2700: 2696: 2692: 2687: 2682: 2678: 2674: 2667: 2664: 2651: 2647: 2643: 2637: 2635: 2633: 2629: 2624: 2620: 2616: 2612: 2608: 2604: 2599: 2594: 2590: 2586: 2579: 2576: 2571: 2567: 2563: 2559: 2555: 2551: 2546: 2541: 2538:(1): 012504. 2537: 2533: 2526: 2523: 2511: 2507: 2501: 2498: 2494: 2490: 2485: 2482: 2477: 2473: 2469: 2463: 2459: 2452: 2449: 2444: 2443: 2438: 2432: 2430: 2426: 2419: 2417: 2397: 2374: 2370: 2349: 2325: 2321: 2314: 2306: 2297: 2287: 2284: 2279: 2275: 2271: 2265: 2259: 2246: 2244: 2242: 2237: 2235: 2229: 2225: 2221: 2216: 2214: 2210: 2202: 2200: 2198: 2192: 2187: 2160: 2156: 2145: 2141: 2127: 2123: 2120: 2113: 2112: 2111: 2106: 2099: 2092: 2088: 2083: 2081: 2077: 2073: 2072:semiconductor 2065: 2058: 2054: 2047: 2044: 2037: 2033: 2026: 2019: 2016: 2012: 2008: 2001: 1999: 1997: 1991: 1989: 1981: 1979: 1977: 1968: 1961: 1959: 1953: 1951: 1945: 1943: 1939: 1935: 1933: 1927: 1925: 1919: 1917: 1913: 1909: 1907: 1901: 1899: 1893: 1891: 1887: 1883: 1881: 1875: 1873: 1867: 1865: 1861: 1857: 1855: 1849: 1847: 1841: 1839: 1835: 1831: 1829: 1823: 1821: 1815: 1813: 1809: 1805: 1803: 1797: 1795: 1789: 1787: 1783: 1779: 1777: 1771: 1769: 1763: 1761: 1757: 1753: 1751: 1745: 1743: 1737: 1735: 1731: 1727: 1725: 1719: 1717: 1711: 1709: 1705: 1701: 1699: 1693: 1691: 1685: 1683: 1679: 1675: 1673: 1667: 1665: 1659: 1657: 1653: 1649: 1647: 1641: 1639: 1633: 1631: 1627: 1623: 1621: 1615: 1613: 1607: 1605: 1601: 1597: 1595: 1589: 1587: 1581: 1579: 1575: 1571: 1568: 1562: 1560: 1554: 1552: 1548: 1544: 1542: 1536: 1534: 1528: 1526: 1522: 1518: 1516: 1510: 1508: 1502: 1500: 1496: 1492: 1490: 1484: 1482: 1476: 1474: 1470: 1466: 1464: 1458: 1456: 1450: 1448: 1444: 1440: 1438: 1432: 1430: 1424: 1422: 1418: 1414: 1408: 1406: 1402: 1398: 1389: 1387: 1385: 1379: 1377: 1370: 1363: 1344: 1333: 1321: 1310: 1306: 1295: 1291: 1277: 1270: 1263: 1262: 1261: 1256: 1252: 1243: 1238: 1234: 1230: 1222: 1220: 1217: 1215: 1209: 1204: 1177: 1173: 1170: 1160: 1159: 1158: 1144: 1134: 1133:photon energy 1129: 1125: 1121: 1110: 1106: 1101: 1094: 1092: 1090: 1085: 1080: 1073: 1066: 1059: 1055: 1026: 1022: 1018: 988: 984: 980: 974: 963: 959: 956: 945: 937: 936: 935: 934:, except now 933: 926: 919: 915: 908: 901: 894: 864: 857: 843: 833: 830: 819: 815: 786: 778: 777: 776: 771: 766: 763: 755: 751: 746: 739: 737: 732: 725: 718: 714: 707: 703: 699: 670: 666: 662: 632: 628: 624: 618: 607: 595: 591: 588: 577: 569: 568: 567: 562: 559: 552: 548: 544: 516: 512: 483: 475: 474: 473: 467: 463: 458: 454: 452: 448: 444: 440: 436: 428: 423: 419: 414: 410: 407: 403: 399: 398: 397: 393: 386: 380: 376: 374: 371: 368: 364: 363:Casimir force 359: 354: 351: 348: 344: 340: 336: 332: 329: 326: 323: 319: 315: 311: 307: 303: 302:electron guns 299: 297: 294: 293: 289: 287: 284: 279: 277: 272: 267: 263: 258: 251: 247: 225: 222: 217: 214: 211: 208: 201: 200: 199: 196: 191: 183: 173: 169: 164: 160: 157: 151: 147: 139: 134: 129: 124: 119: 98: 87: 83: 80: 77: 74: 71: 68: 61: 60: 59: 56: 47: 45: 42: 38: 34: 30: 26: 25:work function 22: 3598:Vacuum tubes 3465:Storage tube 3359:Beam tetrode 3291:Control grid 3286:Space charge 3275: 3158:(11): 4729. 3155: 3151: 3144: 3137: 3128: 3083: 3079: 3073: 3050: 3044: 3019: 3015: 3009: 2984: 2980: 2974: 2962:. Retrieved 2958: 2949: 2937:. Retrieved 2924: 2902:(1): 93–96. 2899: 2895: 2889: 2880: 2855: 2851: 2845: 2833:. Retrieved 2829: 2820: 2802: 2769: 2765: 2724: 2720: 2676: 2672: 2666: 2654:. Retrieved 2650:the original 2645: 2588: 2584: 2578: 2535: 2531: 2525: 2513:. Retrieved 2509: 2500: 2484: 2457: 2451: 2440: 2250: 2238: 2230: 2217: 2206: 2193: 2185: 2183: 2104: 2097: 2090: 2084: 2076:doping level 2069: 2063: 2056: 2053:valence band 2045: 2035: 2024: 2017: 2011:Band diagram 1996:image charge 1992: 1985: 1972: 1928:4.32 – 4.55 1910:3.63 – 3.90 1858:4.00 – 4.80 1824:4.60 – 4.85 1798:4.55 – 4.70 1754:5.12 – 5.93 1746:5.22 – 5.60 1720:5.04 – 5.35 1702:3.95 – 4.87 1686:4.36 – 4.95 1624:5.00 – 5.67 1572:4.67 – 4.81 1555:4.53 – 5.10 1467:2.52 – 2.70 1451:5.10 – 5.47 1433:4.06 – 4.26 1425:4.26 – 4.74 1393: 1380: 1368: 1361: 1359: 1254: 1250: 1248: 1218: 1214:valence band 1210: 1202: 1200: 1117: 1108: 1105:forward bias 1104: 1088: 1086: 1078: 1071: 1064: 1057: 1053: 1051: 924: 917: 906: 899: 892: 890: 769: 767: 761: 759: 753: 730: 723: 716: 705: 697: 695: 560: 550: 545:the emitted 539: 471: 466:forward bias 465: 451:space charge 438: 432: 418:Kelvin Probe 404:), or using 394: 390: 357: 339:band offsets 328:Band bending 318:barium oxide 290:Applications 283:image charge 280: 270: 256: 249: 245: 242: 194: 181: 178: 171: 155: 137: 127: 117: 113: 54: 51: 29:workfunction 28: 24: 18: 3470:Sutton tube 3281:Hot cathode 3022:(4): 1215. 2727:(8): 2602. 2043:Fermi level 1954:3.63 – 4.9 1403:: 4.52 eV, 1399:: 4.64 eV, 1376:capacitance 558:temperature 387:Measurement 322:hot cathode 306:hot cathode 146:Fermi level 3577:Categories 3485:Trochotron 3415:Iconoscope 3405:Compactron 3400:Charactron 3344:Acorn tube 3093:1503.08250 2858:(1): 223. 2591:(43): 43. 2420:References 1405:(111) face 1401:(110) face 1397:(100) face 1227:See also: 48:Definition 3450:Phototube 3445:Monoscope 3440:Magnetron 3435:Magic eye 3425:Kinescope 3369:Pentagrid 3180:122357835 3110:118420968 2916:0026-2692 2681:CiteSeerX 2623:119237335 2598:1106.1198 2570:119248753 2545:1108.1761 2371:φ 2350:γ 2322:φ 2288:γ 2285:− 2276:φ 2260:φ 2157:− 1334:ϕ 1307:− 1274:Δ 1171:ω 1168:ℏ 1145:ω 1142:ℏ 1070:, or on Δ 985:− 861:Δ 858:− 840:Δ 831:− 762:away from 629:− 592:− 439:collector 262:voltmeter 218:− 209:ϕ 84:− 81:ϕ 75:− 3550:Examples 3430:Klystron 3410:Eidophor 3385:Additron 3349:Nuvistor 3202:Archived 3055:Elsevier 2964:11 April 2835:11 April 2810:Archived 2794:29716375 2703:19499916 2656:11 April 2515:11 April 2476:46538642 2439:(1996). 420:method, 345:and the 310:Tungsten 123:electron 37:electron 3541:Russian 3364:Pentode 3354:Tetrode 3160:Bibcode 3024:Bibcode 2989:Bibcode 2860:Bibcode 2774:Bibcode 2729:Bibcode 2603:Bibcode 2585:Physics 2550:Bibcode 2220:jellium 1341:is flat 912:is the 711:is the 700:is the 314:thorium 190:voltage 144:is the 131:is the 3593:Vacuum 3375:Nonode 3339:Triode 3334:Audion 3311:Getter 3178:  3108:  3061:  2914:  2792:  2701:  2683:  2621:  2568:  2474:  2464:  2184:where 1902:~3.84 1850:~2.59 1764:2.261 1608:4.475 1459:~4.45 1337:  1331:  1235:, and 1201:where 1120:photon 1052:where 891:where 696:where 243:where 114:where 41:vacuum 23:, the 3521:RETMA 3329:Diode 3321:Types 3301:Anode 3176:S2CID 3106:S2CID 3088:arXiv 2939:6 Jan 2934:(PDF) 2762:(PDF) 2619:S2CID 2593:arXiv 2566:S2CID 2540:arXiv 2070:In a 2055:edge 2034:edge 1962:4.05 1946:2.60 1894:4.33 1876:4.95 1868:3.00 1842:4.42 1790:4.71 1780:4.98 1772:4.72 1738:4.25 1728:5.93 1694:2.36 1668:3.66 1660:~3.3 1634:2.29 1616:4.09 1598:3.90 1590:2.90 1582:4.32 1545:1.95 1511:4.08 1503:2.87 1485:4.31 1477:4.98 1441:3.75 1087:This 3059:ISBN 2966:2018 2941:2019 2912:ISSN 2837:2018 2790:PMID 2699:PMID 2658:2018 2517:2018 2472:OCLC 2462:ISBN 2342:and 2211:and 1936:3.1 1920:4.3 1884:3.4 1832:2.7 1816:5.9 1806:3.5 1712:3.2 1676:4.1 1650:2.9 1642:3.5 1563:2.5 1537:4.5 1519:2.9 1327:when 337:and 3536:JIS 3516:RMA 3168:doi 3098:doi 3032:doi 2997:doi 2904:doi 2868:doi 2782:doi 2737:doi 2725:256 2691:doi 2677:131 2611:doi 2558:doi 2491:, " 2028:vac 1493:~5 1386:). 1063:on 752:in 722:on 464:in 316:or 248:= − 19:In 3579:: 3174:. 3166:. 3156:48 3154:. 3104:. 3096:. 3084:99 3082:. 3057:. 3053:. 3030:. 3018:. 2995:. 2985:71 2983:. 2957:. 2910:. 2900:27 2898:. 2866:. 2856:27 2854:. 2828:. 2788:. 2780:. 2770:89 2768:. 2764:. 2749:^ 2735:. 2723:. 2711:^ 2697:. 2689:. 2675:. 2644:. 2631:^ 2617:. 2609:. 2601:. 2587:. 2564:. 2556:. 2548:. 2536:85 2534:. 2508:. 2470:. 2428:^ 2094:EA 2051:, 2021:EA 1958:Zr 1950:Zn 1942:Yb 1898:Tl 1890:Ti 1880:Th 1872:Te 1864:Tb 1854:Ta 1846:Sr 1838:Sn 1828:Sm 1820:Si 1812:Se 1802:Sc 1794:Sb 1786:Ru 1776:Rh 1768:Re 1760:Rb 1750:Pt 1742:Pd 1734:Pb 1724:Os 1716:Ni 1708:Nd 1698:Nb 1690:Na 1682:Mo 1672:Mn 1664:Mg 1656:Lu 1646:Li 1638:La 1620:Ir 1612:In 1604:Hg 1594:Hf 1586:Gd 1578:Ga 1569:: 1567:Fe 1559:Eu 1551:Cu 1541:Cs 1533:Cr 1529:5 1525:Co 1515:Ce 1507:Cd 1499:Ca 1481:Bi 1473:Be 1463:Ba 1447:Au 1437:As 1429:Al 1421:Ag 1415:) 1413:eV 1372:sp 1365:sp 1258:sp 1231:, 1084:. 1075:ce 903:ce 736:. 324:). 255:/ 156:eϕ 125:, 3249:e 3242:t 3235:v 3182:. 3170:: 3162:: 3112:. 3100:: 3090:: 3067:. 3038:. 3034:: 3026:: 3020:3 3003:. 2999:: 2991:: 2968:. 2943:. 2918:. 2906:: 2874:. 2870:: 2862:: 2839:. 2796:. 2784:: 2776:: 2743:. 2739:: 2731:: 2705:. 2693:: 2660:. 2625:. 2613:: 2605:: 2595:: 2589:4 2572:. 2560:: 2552:: 2542:: 2519:. 2478:. 2402:B 2398:k 2375:0 2326:0 2315:2 2311:) 2307:T 2302:B 2298:k 2294:( 2280:0 2272:= 2269:) 2266:T 2263:( 2233:s 2231:r 2189:C 2186:E 2166:F 2161:E 2151:C 2146:E 2142:+ 2136:A 2133:E 2128:E 2124:= 2121:W 2108:C 2105:E 2103:- 2101:F 2098:E 2091:E 2066:. 2064:W 2060:V 2057:E 2049:F 2046:E 2039:C 2036:E 2025:E 2018:E 1932:Y 1924:W 1916:V 1906:U 1630:K 1489:C 1455:B 1369:V 1362:V 1345:. 1322:, 1316:p 1311:W 1301:s 1296:W 1292:= 1286:p 1283:s 1278:V 1271:e 1255:V 1251:ϕ 1206:e 1203:W 1183:e 1178:W 1174:= 1112:e 1109:W 1082:c 1079:W 1072:V 1068:e 1065:T 1061:c 1058:J 1054:A 1032:e 1027:T 1023:k 1019:/ 1012:r 1009:e 1006:i 1003:r 1000:r 997:a 994:b 989:E 981:e 975:2 969:e 964:T 960:A 957:= 951:c 946:J 928:c 925:J 921:S 918:V 910:S 907:V 900:V 896:c 893:W 876:) 870:S 865:V 852:e 849:c 844:V 837:( 834:e 825:c 820:W 816:= 810:r 807:e 804:i 801:r 798:r 795:a 792:b 787:E 773:e 770:W 734:e 731:W 727:e 724:T 720:e 717:J 709:e 706:A 698:k 676:e 671:T 667:k 663:/ 656:r 653:e 650:i 647:r 644:r 641:a 638:b 633:E 625:e 619:2 613:e 608:T 601:e 596:A 589:= 583:e 578:J 564:e 561:T 554:e 551:J 522:e 517:W 513:= 507:r 504:e 501:i 498:r 495:r 492:a 489:b 484:E 408:. 358:W 271:ϕ 257:e 253:F 250:E 246:V 226:e 223:W 215:V 212:= 195:ϕ 185:F 182:E 172:ϕ 154:− 148:( 141:F 138:E 128:ϕ 118:e 116:− 99:, 93:F 88:E 78:e 72:= 69:W 55:W

Index

solid-state physics
thermodynamic work
electron
vacuum
electron
electrostatic potential
Fermi level
electrochemical potential

electrostatic potential
voltage
voltmeter
electrical ground
electric field
image charge
Thermionic emission
electron guns
hot cathode
Tungsten
thorium
barium oxide
hot cathode
Band bending
Schottky barriers
band offsets
Anderson's rule
Schottky–Mott rule
Casimir force
Gravity Probe B
Contact electrification

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑