Knowledge (XXG)

X-ray absorption near edge structure

Source πŸ“

36: 151:
separated into one electron in the core levels of the selected atomic species of the system and N-1 passive electrons. In this approximation the final state is described by a core hole in the atomic core level and an excited photoelectron. The final state has a very short life time because of the short life-time of the core hole and the short mean free path of the excited photoelectron with kinetic energy in the range around 20-50 eV. The core hole is filled either via an
142: 232:. Because soft x-rays are absorbed by air, the synchrotron radiation travels from the ring in an evacuated beam-line to the end-station where the specimen to be studied is mounted. Specialized beam-lines intended for NEXAFS studies often have additional capabilities such as heating a sample or exposing it to a dose of reactive gas. 212: 168:
since the photoelectron itself need not be detected. The effect of measuring fluorescent photons, Auger electrons, and directly emitted electrons is to sum over all possible final states of the photoelectrons, meaning that what NEXAFS measures is the total joint density of states of the initial core
145:
The fundamental processes which contribute to XANES spectra: 1) photoabsorption of an x-ray into a core level followed by photoelectron emission, followed by either 2) (left) filling of the core hole by an electron in another level, accompanied by fluorescence; or (right) filling of the core hole by
132:
Both XANES and NEXAFS are acceptable terms for the same technique. XANES name was invented in 1980 by Antonio Bianconi to indicate strong absorption peaks in X-ray absorption spectra in condensed matter due to multiple scattering resonances above the ionization energy. The name NEXAFS was introduced
620:
The near-edge structure is characteristic of an environment and valence state hence one of its more common uses is in fingerprinting: if you have a mixture of sites/compounds in a sample you can fit the measured spectra with a linear combinations of NEXAFS spectra of known species and determine the
293:
processes in the single-scattering regime, EXAFS (this assumes the single scattering approximation... multiple scattering can be considered with EXAFS), and in the multiple scattering regime, XANES. In EXAFS the photoelectron is scattered only by a single neighbour atom, in XANES all the scattering
163:
experiments is that in photoemission, the initial photoelectron itself is measured, while in NEXAFS the fluorescent photon or Auger electron or an inelastically scattered photoelectron may also be measured. The distinction sounds trivial but is actually significant: in photoemission the final state
586:
The great power of NEXAFS derives from its elemental specificity. Because the various elements have different core level energies, NEXAFS permits extraction of the signal from a surface monolayer or even a single buried layer in the presence of a huge background signal. Buried layers are very
302:
The fine structure in the x-ray absorption spectra in the high energy range extending from about 150 eV beyond the ionization potential is a powerful tool to determine the atomic pair distribution (i.e. interatomic distances) with a time scale of about 10 s. In fact the final state of the excited
150:
The fundamental phenomenon underlying XANES is the absorption of an x-ray photon by condensed matter with the formation of many body excited states characterized by a core hole in a selected atomic core level (refer to the first Figure). In the single-particle theory approximation, the system is
177:
are helpful in the interpretation of NEXAFS spectra. When the x-ray photon energy resonantly connects a core level with a narrow final state in a solid, such as an exciton, readily identifiable characteristic peaks will appear in the spectrum. These narrow characteristic spectral peaks give the
286: 521: 603:. The ability of NEXAFS to study buried atoms is due to its integration over all final states including inelastically scattered electrons, as opposed to photoemission and Auger spectroscopy, which study atoms only with a layer or two of the surface. 123:
level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms.
910:"X-ray Absorption Near-Edge Structure (XANES) Spectroscopy", G. S. Henderson, F. M. F. de Groot, B. J. A. Moulton in Spectroscopic Methods in Mineralogy and Materials Sciences, (G.S. Henderson, D. R. Neuville, R. T. Downs, Eds) 641: 669:(SSRL) by A. Bianconi. In 1982 the first paper on the application of XANES for determination of local structural geometrical distortions using multiple scattering theory was published by A. Bianconi, P. J. Durham and 257:
in a pure single crystal at zero temperature is as large as infinite, and it remains very large, increasing the energy of the final state up to about 5 eV above the Fermi level. Beyond the role of the unoccupied
227:
in which the sample is connected to ground through an ammeter and the neutralization current is monitored. Because NEXAFS measurements require an intense tunable source of soft x-rays, they are performed at
921:"X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES", D. C. Koningsberger, R. Prins; A. Bianconi, P.J. Durham Chapters, Chemical Analysis 92, John Wiley & Sons, 1988. 375: 673:. In 1983 the first NEXAFS paper examining molecules adsorbed on surfaces appeared. The first XAFS paper, describing the intermediate region between EXAFS and XANES, appeared in 1987. 164:
of the emitted electron captured in the detector must be an extended, free-electron state. By contrast, in NEXAFS the final state of the photoelectron may be a bound state such as an
610:(very difficult to experimentally determine in a nondestructive way); coordination environment (e.g., octahedral, tetrahedral coordination) and subtle geometrical distortions of it. 526:
which means that for high energy the wavelength is shorter than interatomic distances and hence the EXAFS region corresponds to a single scattering regime; while for lower E,
562:
of the photoelectron excited at the atomic absorption site and scattered by neighbor atoms. The local character of the final states is determined by the short photoelectron
215:
Normal-incidence boron 1s x-ray absorption spectra for two types of BN powder. The cubic phase shows only Οƒ-bonding while the hexagonal phase shows both Ο€ and Οƒ bonding.
924:"Principles and Applications of EXAFS" Chapter 10 in Handbook of Synchrotron Radiation, pp 995–1014. E. A. Stern and S. M. Heald, E. E. Koch, ed., North-Holland, 1983. 896: 841: 544: 367: 347: 173:
effects than initial states, meaning that NEXAFS spectra are more easily calculable than photoemission spectra. Due to the summation over final states, various
169:
level with all final states, consistent with conservation rules. The distinction is critical because in spectroscopy final states are more susceptible to
1312: 666: 595:. Because NEXAFS can also determine the chemical state of elements which are present in bulk in minute quantities, it has found widespread use in 1375: 1322: 994: 196:
that may have a particular orientation on a surface. The angle dependence of the x-ray absorption tracks the orientation of resonant bonds due to
315:
In the NEXAFS region, starting about 5 eV beyond the absorption threshold, because of the low kinetic energy range (5-150 eV) the photoelectron
1458: 1234: 326:
The different energy range between NEXAFS and EXAFS can be also explained in a very simple manner by the comparison between the photoelectron
1249: 1332: 804:"Multiple-scattering resonances and structural effects in the x-ray-absorption near-edge spectra of Fe II and Fe III hexacyanide complexes" 57: 1405: 1390: 1259: 349:
and the interatomic distance of the photoabsorber-backscatterer pair. The photoelectron kinetic energy is connected with the wavelength
935: 79: 803: 1307: 1286: 1217: 1337: 1302: 174: 112: 665:
The acronym XANES was first used in 1980 during interpretation of multiple scattering resonances spectra measured at the
1400: 1370: 1229: 1202: 682: 516:{\displaystyle E_{\text{kinetic}}=h\nu -E_{\text{binding}}=\hbar ^{2}k^{2}/(2m)=(2\pi )^{2}\hbar ^{2}/(2m\lambda ^{2}),} 133:
in 1983 by Jo Stohr and is synonymous with XANES, but is generally used when applied to surface and molecular science.
1380: 1347: 1317: 1281: 987: 152: 1254: 50: 44: 1426: 1266: 1154: 269:
In the absorption edge region of insulators the photoelectron is excited to the first unoccupied level above the
178:
NEXAFS technique a lot of its analytical power as illustrated by the B 1s Ο€* exciton shown in the second Figure.
61: 1093: 596: 116: 108: 1395: 1244: 980: 851:"Multiple scattering regime and higher order correlations in X-ray absorption spectra of liquid solutions" 188:
that can be utilized to great advantage in NEXAFS studies. The commonly studied molecular adsorbates have
1355: 1224: 1032: 890: 835: 617:
can be seen. Thus NEXAFS spectra can be used as a probe of the unoccupied band structure of a material.
181: 1271: 621:
proportion of each site/compound in the sample. One example of such a use is the determination of the
1192: 1124: 1057: 862: 815: 782: 748: 567: 185: 739:
Bianconi, Antonio (1980). "Surface X-ray absorption spectroscopy: Surface EXAFS and surface XANES".
1144: 1119: 1098: 958: 607: 950: 849:
M. Benfatto, C. R. Natoli, A. Bianconi, J. Garcia, A. Marcelli, M. Fanfoni, and I. Davoli (1986).
1385: 1164: 1129: 1062: 592: 270: 566:, that is strongly reduced (down to about 0.3 nm at 50 eV) in this energy range because of 1433: 1365: 1360: 1187: 1159: 1052: 966: 931: 878: 773:
A. Bianconi (1980). "Surface X-ray Absorption Spectroscopy: Surface EXAFS and Surface XANES".
634: 529: 352: 332: 259: 721:
NEXAFS calculation on the basis of full-potential (linearized) augmented plane-wave approach.
1149: 1027: 870: 823: 790: 756: 285: 170: 303:
photoelectron in the high kinetic energy range (150-2000 eV ) is determined only by single
1421: 1276: 1139: 1103: 1022: 700: 653: 622: 691:
Calculation of NEXAFS using finite difference method and full multiple scattering theory.
866: 819: 786: 752: 546:
is larger than interatomic distances and the XANES region is associated with a multiple
563: 316: 304: 254: 200: 1452: 1197: 794: 760: 246: 160: 141: 1239: 1134: 1047: 1037: 850: 600: 266:
effects appear as an "infrared singularity" at the absorption threshold in metals.
156: 155:
process or by capture of an electron from another shell followed by emission of a
1088: 670: 614: 250: 229: 120: 27:
Type of X-ray absorption spectrometry requiring a synchrotron radiation facility
1212: 1078: 685:
Calculation of NEXAFS using spin-orbit coupling TDDFT or the Slater-TS method.
547: 327: 320: 295: 290: 189: 874: 827: 558:
The absorption peaks of NEXAFS spectra are determined by multiple scattering
626: 588: 559: 263: 882: 606:
Much chemical information can be extracted from the NEXAFS region: formal
1083: 649: 575: 574:) and collective electronic oscillations of the valence electrons called 571: 915: 1207: 712: 591:
buried beneath a surface lubricant or dopants below an electrode in an
274: 273:
but the unscreened core hole forms a localized bound state called core
193: 165: 146:
an electron in another level followed by emission of an Auger electron.
219:
Soft x-ray absorption spectra are usually measured either through the
1042: 718: 688: 197: 17: 802:
A. Bianconi, M. Dell'Ariccia, P. J. Durham and J. B. Pendry (1982).
298:
event (3), (4), (5) etc. contribute to the absorption cross section.
640: 1017: 1003: 709:
NEXAFS fitting using multidimensional interpolation approximation.
706: 694: 639: 284: 210: 972: 645: 630: 976: 211: 29: 111:
that indicates the features in the X-ray absorption spectra (
715:
NEXAFS calculation using plane-wave pseudopotential approach
697:
Calculation of NEXAFS using full multiple scattering theory.
319:
amplitude by neighbor atoms is very large so that multiple
307:
events due to the low amplitude photoelectron scattering.
159:
photon. The difference between NEXAFS and traditional
703:
NEXAFS fitting using full multiple scattering theory.
532: 378: 355: 335: 262:
and matrix elements in single electron excitations,
1414: 1346: 1295: 1180: 1173: 1112: 1071: 1010: 570:
of the photoelectron by electron-hole excitations (
249:is excited to the first unoccupied level above the 613:Transitions to bound vacant states just above the 538: 515: 361: 341: 115:) of condensed matter due to the photoabsorption 294:pathways, classified according to the number of 967:A practical introduction to multiple scattering 587:important in engineering applications, such as 323:events become dominant in the NEXAFS spectra. 988: 245:In the absorption edge region of metals, the 8: 895:: CS1 maint: multiple names: authors list ( 840:: CS1 maint: multiple names: authors list ( 644:The XANES experiments done on plutonium in 223:in which emitted photons are monitored, or 1177: 995: 981: 973: 667:Stanford Synchrotron Radiation Laboratory 531: 501: 483: 477: 467: 434: 428: 418: 405: 383: 377: 354: 334: 101:near edge X-ray absorption fine structure 80:Learn how and when to remove this message 912:Reviews in Mineralogy & Geochemistry 140: 43:This article includes a list of general 731: 474: 415: 888: 833: 959:XANES measurements and interpretation 7: 93:X-ray absorption near edge structure 119:for electronic transitions from an 49:it lacks sufficient corresponding 25: 289:Pictorial view of photoelectron 34: 775:Applications of Surface Science 741:Applications of Surface Science 652:and standards of the different 507: 488: 464: 454: 448: 439: 1: 1459:X-ray absorption spectroscopy 930:by J. StΓΆhr, Springer 1992, 795:10.1016/0378-5963(80)90024-0 761:10.1016/0378-5963(80)90024-0 677:Software for NEXAFS analysis 369:by the following relation: 207:Experimental considerations 1475: 1267:X-Ray Fluorescence Imaging 1155:Anomalous X-ray scattering 916:DOI:10.2138/rmg.2014.78.3 1094:Synchrotron light source 875:10.1103/PhysRevB.34.5774 828:10.1103/PhysRevB.26.6502 589:magnetic recording media 539:{\displaystyle \lambda } 362:{\displaystyle \lambda } 342:{\displaystyle \lambda } 1113:Interaction with matter 1072:Sources and instruments 597:environmental chemistry 109:absorption spectroscopy 64:more precise citations. 1245:Diffraction tomography 657: 540: 517: 363: 343: 299: 216: 147: 1356:X-ray crystallography 1225:Soft x-ray microscopy 1193:Panoramic radiography 1033:Synchrotron radiation 914:vol. 78, p 75, 2014. 643: 541: 518: 364: 344: 288: 225:total electron yield, 214: 182:Synchrotron radiation 144: 1125:Photoelectric effect 1058:Characteristic X-ray 951:Fundamentals of XAFS 568:inelastic scattering 530: 376: 353: 333: 1145:Photodisintegration 1120:Rayleigh scattering 1099:Free-electron laser 928:NEXAFS Spectroscopy 867:1986PhRvB..34.5774B 820:1982PhRvB..26.6502B 787:1980ApSS....6..392B 753:1980ApSS....6..392B 311:NEXAFS energy range 1386:X-ray reflectivity 1165:X-ray fluorescence 1130:Compton scattering 1063:High-energy X-rays 658: 593:integrated circuit 536: 513: 359: 339: 300: 281:EXAFS energy range 271:chemical potential 221:fluorescent yield, 217: 148: 1446: 1445: 1442: 1441: 1434:X-ray lithography 1366:Backscatter X-ray 1361:X-ray diffraction 1188:X-ray radiography 1160:X-ray diffraction 1053:Siegbahn notation 855:Physical Review B 814:(12): 6502–6508. 808:Physical Review B 408: 386: 260:density of states 253:. Therefore, its 241:Edge energy range 99:), also known as 90: 89: 82: 16:(Redirected from 1466: 1272:X-ray holography 1178: 1150:Radiation damage 997: 990: 983: 974: 900: 894: 886: 861:(8): 5774–5781. 845: 839: 831: 798: 781:(3–4): 392–418. 765: 764: 747:(3–4): 392–418. 736: 654:oxidation states 545: 543: 542: 537: 522: 520: 519: 514: 506: 505: 487: 482: 481: 472: 471: 438: 433: 432: 423: 422: 410: 409: 406: 388: 387: 384: 368: 366: 365: 360: 348: 346: 345: 340: 107:), is a type of 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 1474: 1473: 1469: 1468: 1467: 1465: 1464: 1463: 1449: 1448: 1447: 1438: 1422:X-ray astronomy 1410: 1342: 1291: 1277:X-ray telescope 1169: 1140:Photoionization 1108: 1104:X-ray nanoprobe 1067: 1023:Absorption edge 1011:Characteristics 1006: 1001: 945: 907: 887: 848: 832: 801: 772: 769: 768: 738: 737: 733: 728: 679: 663: 623:oxidation state 584: 556: 528: 527: 497: 473: 463: 424: 414: 401: 379: 374: 373: 351: 350: 331: 330: 313: 283: 243: 238: 209: 201:selection rules 139: 130: 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1472: 1470: 1462: 1461: 1451: 1450: 1444: 1443: 1440: 1439: 1437: 1436: 1431: 1430: 1429: 1418: 1416: 1412: 1411: 1409: 1408: 1403: 1398: 1393: 1388: 1383: 1378: 1373: 1368: 1363: 1358: 1352: 1350: 1344: 1343: 1341: 1340: 1335: 1330: 1325: 1320: 1315: 1310: 1305: 1299: 1297: 1293: 1292: 1290: 1289: 1284: 1279: 1274: 1269: 1264: 1263: 1262: 1257: 1252: 1242: 1237: 1232: 1227: 1222: 1221: 1220: 1215: 1205: 1200: 1195: 1190: 1184: 1182: 1175: 1171: 1170: 1168: 1167: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1127: 1122: 1116: 1114: 1110: 1109: 1107: 1106: 1101: 1096: 1091: 1086: 1081: 1075: 1073: 1069: 1068: 1066: 1065: 1060: 1055: 1050: 1045: 1040: 1035: 1030: 1025: 1020: 1014: 1012: 1008: 1007: 1002: 1000: 999: 992: 985: 977: 971: 970: 962: 954: 944: 943:External links 941: 940: 939: 925: 922: 919: 906: 903: 902: 901: 846: 799: 767: 766: 730: 729: 727: 724: 723: 722: 716: 710: 704: 698: 692: 686: 678: 675: 662: 659: 583: 580: 564:mean free path 555: 552: 535: 524: 523: 512: 509: 504: 500: 496: 493: 490: 486: 480: 476: 470: 466: 462: 459: 456: 453: 450: 447: 444: 441: 437: 431: 427: 421: 417: 413: 404: 400: 397: 394: 391: 382: 358: 338: 317:backscattering 312: 309: 305:backscattering 282: 279: 255:mean free path 242: 239: 237: 234: 208: 205: 184:has a natural 138: 135: 129: 126: 88: 87: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1471: 1460: 1457: 1456: 1454: 1435: 1432: 1428: 1425: 1424: 1423: 1420: 1419: 1417: 1413: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1353: 1351: 1349: 1345: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1300: 1298: 1294: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1261: 1258: 1256: 1253: 1251: 1248: 1247: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1219: 1216: 1214: 1211: 1210: 1209: 1206: 1204: 1201: 1199: 1198:Tomosynthesis 1196: 1194: 1191: 1189: 1186: 1185: 1183: 1179: 1176: 1172: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1117: 1115: 1111: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1076: 1074: 1070: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1028:Moseley's law 1026: 1024: 1021: 1019: 1016: 1015: 1013: 1009: 1005: 1004:X-ray science 998: 993: 991: 986: 984: 979: 978: 975: 969: 968: 963: 961: 960: 955: 953: 952: 948:M. Newville, 947: 946: 942: 937: 936:3-540-54422-4 933: 929: 926: 923: 920: 917: 913: 909: 908: 904: 898: 892: 884: 880: 876: 872: 868: 864: 860: 856: 852: 847: 843: 837: 829: 825: 821: 817: 813: 809: 805: 800: 796: 792: 788: 784: 780: 776: 771: 770: 762: 758: 754: 750: 746: 742: 735: 732: 725: 720: 717: 714: 711: 708: 705: 702: 699: 696: 693: 690: 687: 684: 681: 680: 676: 674: 672: 668: 660: 655: 651: 647: 642: 638: 636: 632: 628: 624: 618: 616: 611: 609: 604: 602: 598: 594: 590: 581: 579: 577: 573: 569: 565: 561: 553: 551: 549: 533: 510: 502: 498: 494: 491: 484: 478: 468: 460: 457: 451: 445: 442: 435: 429: 425: 419: 411: 402: 398: 395: 392: 389: 380: 372: 371: 370: 356: 336: 329: 324: 322: 318: 310: 308: 306: 297: 292: 287: 280: 278: 276: 272: 267: 265: 261: 256: 252: 248: 247:photoelectron 240: 235: 233: 231: 226: 222: 213: 206: 204: 202: 199: 195: 191: 187: 183: 179: 176: 172: 167: 162: 161:photoemission 158: 154: 143: 136: 134: 127: 125: 122: 118: 117:cross section 114: 110: 106: 102: 98: 94: 84: 81: 73: 63: 59: 53: 52: 46: 41: 32: 31: 19: 1327: 1296:Spectroscopy 1240:Ptychography 1174:Applications 1135:Auger effect 1038:Water window 965: 957: 949: 927: 911: 905:Bibliography 891:cite journal 858: 854: 836:cite journal 811: 807: 778: 774: 744: 740: 734: 671:J. B. Pendry 664: 619: 612: 605: 601:geochemistry 585: 582:Applications 557: 554:Final states 525: 325: 314: 301: 268: 244: 236:Energy range 230:synchrotrons 224: 220: 218: 186:polarization 180: 149: 131: 104: 100: 96: 92: 91: 76: 70:October 2014 67: 48: 1089:Synchrotron 635:Rocky Flats 615:Fermi level 251:Fermi level 157:fluorescent 128:Terminology 121:atomic core 62:introducing 1348:Scattering 1213:Helical CT 1079:X-ray tube 964:B. Ravel, 726:References 560:resonances 548:scattering 328:wavelength 321:scattering 296:scattering 291:scattering 45:references 956:S. Bare, 627:plutonium 534:λ 499:λ 475:ℏ 461:π 416:ℏ 399:− 396:ν 357:λ 337:λ 264:many-body 175:sum rules 171:many-body 1453:Category 1084:Betatron 650:concrete 576:plasmons 572:excitons 550:regime. 194:pi bonds 1427:History 1181:Imaging 883:9940417 863:Bibcode 816:Bibcode 783:Bibcode 749:Bibcode 713:PARATEC 661:History 629:in the 625:of the 608:valence 407:binding 385:kinetic 275:exciton 166:exciton 58:improve 1415:Others 1376:GISAXS 1048:L-edge 1043:K-edge 934:  881:  719:WIEN2k 689:FDMNES 198:dipole 137:Theory 105:NEXAFS 47:, but 1406:EDXRD 1328:XANES 1323:EXAFS 1313:ARPES 1260:3DXRD 1018:X-ray 707:FitIt 695:FEFF8 190:sigma 153:Auger 97:XANES 18:XANES 1391:RIXS 1381:WAXS 1371:SAXS 1282:DFXM 1250:XDCT 1235:STXM 1230:XPCI 1218:XACT 932:ISBN 897:link 879:PMID 842:link 701:MXAN 646:soil 631:soil 599:and 192:and 1396:XRS 1338:XFH 1333:EDS 1318:AES 1308:XPS 1303:XAS 1287:DXA 1255:DCT 1203:CDI 871:doi 824:doi 791:doi 757:doi 683:ADF 633:at 113:XAS 1455:: 1401:XS 1208:CT 893:}} 889:{{ 877:. 869:. 859:34 857:. 853:. 838:}} 834:{{ 822:. 812:26 810:. 806:. 789:. 777:. 755:. 743:. 648:, 637:. 578:. 277:. 203:. 996:e 989:t 982:v 938:. 918:. 899:) 885:. 873:: 865:: 844:) 830:. 826:: 818:: 797:. 793:: 785:: 779:6 763:. 759:: 751:: 745:6 656:. 511:, 508:) 503:2 495:m 492:2 489:( 485:/ 479:2 469:2 465:) 458:2 455:( 452:= 449:) 446:m 443:2 440:( 436:/ 430:2 426:k 420:2 412:= 403:E 393:h 390:= 381:E 103:( 95:( 83:) 77:( 72:) 68:( 54:. 20:)

Index

XANES
references
inline citations
improve
introducing
Learn how and when to remove this message
absorption spectroscopy
XAS
cross section
atomic core

Auger
fluorescent
photoemission
exciton
many-body
sum rules
Synchrotron radiation
polarization
sigma
pi bonds
dipole
selection rules

synchrotrons
photoelectron
Fermi level
mean free path
density of states
many-body

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑