Knowledge (XXG)

XENON

Source 📝

120:. The prompt scintillation light produces 178 nm ultraviolet photons. This signal is detected by the PMTs, and is referred to as the S1 signal. The applied electric field prevents recombination of all the electrons produced from a charged particle interaction in the TPC. These electrons are drifted to the top of the liquid phase by the electric field. The ionization is then extracted into the gas phase by the stronger electric field in the gaseous phase. The electric field accelerates the electrons to the point that it creates a proportional scintillation signal that is also collected by the PMTs, and is referred to as the S2 signal. This technique has proved sensitive enough to detect S2 signals generated from single electrons. 142: 2855: 207: 195: 2263: 2867: 274: 133:
used as a discrimination parameter to distinguish electronic and nuclear recoil events. This ratio is expected to be greater for electronic recoils than for nuclear recoils. In this way backgrounds from electronic recoils can be suppressed by more than 99%, while simultaneously retaining 50% of the nuclear recoil events.
376:
XENONnT is an upgrade of the XENON1T experiment underground at LNGS. Its systems will contain a total xenon mass of more than 8 tonnes. Apart from a larger xenon target in its time projection chamber the upgraded experiment will feature new components to further reduce or tag radiation that otherwise
132:
Charged particles moving through the detector are expected to either interact with the electrons of the xenon atoms producing electronic recoils, or with the nucleus, producing nuclear recoils. For a given amount of energy deposited by a particle interaction in the detector, the ratio of S2/S1 can be
128:
of the detector, in which a low-background region is defined in the inner volume of the TPC. This fiducial volume has a greatly reduced rate of background events as compared to regions of the detector at the edge of the TPC, due to the self-shielding properties of liquid xenon. This allows for a much
380:
The XENONnT detector was under construction in March 2020. Even with the problems posed by COVID-19, the project was able to finish construction and move forwards into commissioning phase by mid 2020. Full detector operations commenced in late 2020. In September 2021, XENONnT was taking science data
246:
WIMP mass. These results constrain interpretations of signals in other experiments as dark matter interactions, and rule out exotic models such as inelastic dark matter, which would resolve this discrepancy. XENON100 has also provided improved limits on the spin dependent WIMP-nucleon cross section.
214:
The second phase detector, XENON100, contains 165 kg of liquid xenon, with 62 kg in the target region and the remaining xenon in an active veto. The TPC of the detector has a diameter of 30 cm and a height of 30 cm. As WIMP interactions are expected to be extremely rare events, a
158:
during March 2006. The underground location of the laboratory provides 3100 m of water-equivalent shielding. The detector was placed within a shield to further reduce the background rate in the TPC. XENON10 was intended as a prototype detector, to prove the efficacy of the XENON design, as well
162:
An analysis of 59 live days of data, taken between October 2006 and February 2007, produced no WIMP signatures. The number of events observed in the WIMP search region is statistically consistent with the expected number of events from electronic recoil backgrounds. This result excluded some of the
123:
The detector allows for a full 3-D position determination of the particle interaction. Electrons in liquid xenon have a uniform drift velocity. This allows the interaction depth of the event to be determined by measuring the time delay between the S1 and S2 signal. The position of the event in the
334:
in xenon-124 nuclei. The measured half-life of this process, which is several orders of magnitude larger than the age of the Universe, demonstrates the capabilities of xenon-based detectors to search for rare events and showcases the broad physics reach of even larger next-generation experiments.
281:
The first results from XENON1T were released by the XENON collaboration on May 18, 2017, based on 34 days of data-taking between November 2016 and January 2017. While no WIMPs or dark matter candidate signals were officially detected, the team did announce a record low reduction in the background
185:
Due to nearly half of natural xenon having odd spin states (Xe has an abundance of 26% and spin-1/2; Xe has an abundance of 21% and spin-3/2), the XENON detectors can also be used to provide limits on spin dependent WIMP-nucleon cross sections for coupling of the dark matter candidate particle to
67:
signals produced when external particles interact in the liquid xenon volume, to search for an excess of nuclear recoil events against known backgrounds. The detection of such a signal would provide the first direct experimental evidence for dark matter candidate particles. The collaboration is
230:
in 2008 in the same shield as the XENON10 detector, and has conducted several science runs. In each science run, no dark matter signal was observed above the expected background, leading to the most stringent limit on the spin independent WIMP-nucleon cross section in 2012, with a minimum at
108:
light produced when charged particles interact in the detector. Electric fields are applied across both the liquid and gaseous phase of the detector. The electric field in the gaseous phase has to be sufficiently large to extract electrons from the liquid phase.
377:
would constitute background to its measurements. It is designed to reach a sensitivity (in a small part of the mass-range probed) where neutrinos become a significant background. As of 2019, the upgrade was on-going and first light was expected in 2020.
1962:
LUX-ZEPLIN Collaboration; Aalbers, J.; Akerib, D. S.; Akerlof, C. W.; Al Musalhi, A. K.; Alder, F.; Alqahtani, A.; Alsum, S. K.; Amarasinghe, C. S.; Ames, A.; Anderson, T. J.; Angelides, N.; Araújo, H. M.; Armstrong, J. E.; Arthurs, M. (2023-07-28).
266:
in 2014. The detector contains 3.2 tons of ultra radio-pure liquid xenon, and has a fiducial volume of about 2 tons. The detector is housed in a 10 m water tank that serves as a muon veto. The TPC is 1 m in diameter and 1 m in height.
1722:
Aprile, E.; Abe, K.; Agostini, F.; Maouloud, S. Ahmed; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J. R.; Antochi, V. C.; Martin, D. Antón; Arneodo, F. (2022-07-22). "Search for New Physics in Electronic Recoil Data from XENONnT".
350:
In June 2020, the XENON1T collaboration reported an excess of electron recoils: 285 events, 53 more than the expected 232 with a statistical significance of 3.5σ. Three explanations were considered: existence of to-date-hypothetical solar
85: 1904:
XENON Collaboration; Aprile, E.; Abe, K.; Agostini, F.; Ahmed Maouloud, S.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J. R.; Antochi, V. C.; Antón Martin, D.; Arneodo, F.; Baudis, L.; Baxter, A. L.; Bazyk, M. (2023-07-28).
159:
as verify the achievable threshold, background rejection power and sensitivity. The XENON10 detector contained 15 kg of liquid xenon. The sensitive volume of the TPC measures 20 cm in diameter and 15 cm in height.
346:
As of 2019, the XENON1T experiment has stopped data-taking to allow for construction of the next phase, XENONnT. The XENON1T detector operated 2016–2018, with the detector operations ending at the end of 2018.
359:
for neutrinos, and tritium contamination in the detector. Multiple other explanations were given later by others groups and in 2021 an interpretation of the results not as dark matter particles but of as
145:
The cryostat and shield of XENON100. The shield consists of an outer layer of 20 cm of water, a 20 cm layer of lead, a 20 cm layer of polyethylene, and on the interior a 5 cm copper
308:
In September 2018 the XENON1T experiment published its results from 278.8 days of collected data. A new record limit for WIMP-nucleon spin-independent elastic interactions was set, with a minimum of
2477: 202:
array of XENON100 contains 98 Hamamatsu R8520-06-A1 PMTs. The PMTs on the top array are placed in concentric circles to improve the reconstruction of the radial position of observed events.
431: 484: 223:
was performed on low mass plastic samples. In doing so the design goal of <10 events/kg/day/keV was reached, realising the world's lowest background rate dark matter detector.
215:
thorough campaign was launched during the construction and commissioning phase of XENON100 to screen all parts of the detector for radioactivity. The screening was performed using
2562: 2542: 1630:
Sunny Vagnozzi; Luca Visinelli; Philippe Brax; Anne-Christine Davis; Jeremy Sakstein (2021). "Direct detection of dark energy: The XENON1T excess and future prospects".
270:
The detector project team, called the XENON Collaboration, is composed of 135 investigators across 22 institutions from Europe, the Middle East, and the United States.
2532: 1819: 2136: 2893: 2457: 1451:"Direct Dark Matter Search with XENONnT. International symposium on "Revealing the history of the Universe with underground particle and nuclear research"" 2715: 732:
Angle, J.; et al. (XENON10 Collaboration) (2008). "First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory".
502:
Aprile, E.; et al. (XENON100 Collaboration) (2014). "Observation and applications of single-electron charge signals in the XENON100 experiment".
1031:
Aprile, E.; et al. (XENON100 Collaboration) (2012). "Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data".
2720: 2695: 1311: 254:
XENON100 operated the then-lowest background experiment, for dark matter searches, with a background of 50 mDRU (1 mDRU=10 events/kg/day/keV).
1684: 2312: 2187: 164: 2670: 2400: 795:
Angle, J.; et al. (XENON10 Collaboration) (2008). "Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment".
302: 210:
The bottom PMT array of XENON100 contains 80 PMTs which are spaced as closely as possible in order to maximize light collection efficiency.
45: 124:
x-y plane can be determined by looking at the number of photons seen by each of the individual PMTs. The full 3-D position allows for the
2527: 2317: 263: 227: 151: 37: 2552: 976:
Aprile, E.; et al. (XENON100 Collaboration) (2011). "Implications on inelastic dark matter from 100 live days of XENON100 data".
283: 2507: 301:. Because some signals that the detector receives might be due to neutrons, reducing the radioactivity increases the sensitivity to 2292: 100:
tubes (PMTs), one at the top of the detector in the gaseous phase (GXe), and one at the bottom of the liquid layer (LXe), detect
2700: 2690: 2675: 2612: 1480: 1149:
Aprile, E.; et al. (XENON100 Collaboration) (2011). "Study of the electromagnetic background in the XENON100 experiment".
1605: 2820: 2023:
Angle, J; et al. (2008). "First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory".
1540: 2685: 2705: 2622: 2572: 2452: 2447: 2432: 2242: 2660: 2547: 2487: 2467: 2390: 40:, is a deep underground detector facility featuring increasingly ambitious experiments aiming to detect hypothetical 913:
Aprile, E.; et al. (XENON100 Collaboration) (2012). "Dark Matter Results from 225 Live Days of XENON100 Data".
2680: 282:
radioactivity levels being picked up by XENON1T. The exclusion limits exceeded the previous best limits set by the
1450: 2385: 2180: 277:
Upper limit for spin-independent WIMP-nucleon cross section according to recent data (published in November 2017)
384:
On 28 July 2023 the XENONnT published the first results of its search for WIMPs, excluding cross sections above
2405: 2247: 387: 1094:
Aprile, E.; et al. (XENON1000 Collaboration) (2014). "First Axion Results from the XENON100 Experiment".
440: 326:
In April 2019, based on measurements performed with the XENON1T detector, the XENON Collaboration reported in
1289: 2370: 2322: 2025: 1697: 1342: 1234: 1033: 915: 797: 734: 677:
Aprile, E.; et al. (XENON10 Collaboration) (2011). "Design and Performance of The XENON10 Experiment".
336: 331: 113: 101: 93: 60: 53: 2871: 1768: 858:
Aprile, E.; et al. (XENON100 Collaboration) (2011). "Material screening and selection for XENON100".
586: 216: 20: 2116: 186:
both neutrons and protons. XENON10 set the world's most stringent restrictions on pure neutron coupling.
2355: 2252: 860: 679: 624: 559: 1794: 2859: 2627: 2375: 2297: 2212: 2173: 2044: 1986: 1928: 1870: 1742: 1651: 1577: 1410: 1361: 1253: 1170: 1115: 1052: 997: 934: 879: 816: 753: 698: 643: 578: 523: 504: 199: 591: 2665: 1494:
Aprile, E.; et al. (2020-06-17). "Observation of Excess Electronic Recoil Events in XENON1T".
105: 73: 2380: 2340: 2101: 2068: 2034: 1976: 1918: 1860: 1732: 1667: 1641: 1521: 1503: 1351: 1243: 1186: 1160: 1131: 1105: 1076: 1042: 1013: 987: 958: 924: 895: 869: 840: 806: 777: 743: 714: 688: 659: 633: 604: 568: 539: 513: 365: 557:
Aprile, E.; et al. (XENON100 Collaboration) (2012). "The XENON100 dark matter experiment".
2825: 2710: 2232: 2227: 2060: 2002: 1944: 1886: 1632: 1428: 1379: 1271: 1151: 1096: 1068: 978: 950: 832: 769: 220: 2617: 2784: 2582: 2577: 2522: 2512: 2360: 2307: 2237: 2217: 2052: 1994: 1936: 1878: 1750: 1659: 1585: 1513: 1418: 1369: 1261: 1178: 1123: 1060: 1005: 942: 887: 824: 761: 706: 651: 596: 531: 327: 2567: 2502: 141: 2840: 2725: 2222: 1964: 1906: 356: 125: 97: 2048: 1990: 1932: 1874: 1746: 1655: 1581: 1414: 1365: 1257: 1174: 1119: 1056: 1001: 938: 891: 883: 820: 757: 710: 702: 655: 647: 600: 582: 535: 527: 2779: 2365: 96:(TPC), which utilizes a liquid xenon target with a gaseous phase on top. Two arrays of 368:
has also been discussed. In July 2022 a new analysis by XENONnT discarded the excess.
2887: 2835: 2815: 2557: 2395: 1671: 1525: 1017: 899: 718: 434: 1190: 1135: 1080: 844: 663: 622:
Aprile, E.; et al. (2014). "Analysis of the XENON100 dark matter search data".
608: 543: 2072: 2056: 1998: 1940: 1882: 1754: 1374: 1337: 1064: 946: 828: 781: 765: 69: 962: 167:, by placing limits on spin independent WIMP-nucleon cross sections down to below 2810: 2774: 2766: 2350: 2287: 2196: 2128: 1663: 1517: 1481:"Assembling the XENONnT Dark Matter Detector during Covid-19 Times » APPEC" 361: 41: 30: 1423: 1398: 1182: 1127: 1009: 2805: 2642: 2607: 2492: 2345: 2302: 117: 64: 2151: 2138: 339:
process, the detection of which would provide insight into the nature of the
2789: 2746: 2537: 1848: 206: 2064: 2006: 1948: 1907:"First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment" 1890: 1590: 1565: 1432: 1383: 1275: 1072: 954: 836: 773: 2122: 2497: 1685:
Have we detected dark energy? Cambridge scientists say it's a possibility
340: 194: 84: 2830: 2730: 2602: 1290:"The World's Most Sensitive Dark Matter Detector Is Now Up and Running" 2106: 1965:"First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment" 2587: 2462: 1698:"A new dark matter experiment quashed earlier hints of new particles" 1338:"Dark Matter Search Results from a One Ton-Year Exposure of XENON1T" 1312:"World's most sensitive dark matter detector releases first results" 1266: 1229: 48:(WIMPs) by looking for rare nuclear recoil interactions in a liquid 2096: 1981: 1923: 1865: 1737: 1646: 1508: 1356: 1248: 273: 2751: 2637: 2482: 2437: 2282: 2277: 2091: 2039: 1165: 1110: 1047: 992: 929: 874: 811: 748: 693: 638: 573: 518: 433:
at 28 GeV with 90% confidence level, jointly on the same date the
352: 272: 262:
Construction of the next phase, XENON1T, started in Hall B of the
248: 155: 83: 49: 44:
particles. The experiments aim to detect particles in the form of
34: 1606:"Excitement grows over mysterious signal in dark-matter detector" 2597: 2592: 2517: 2472: 2442: 2169: 437:
published its first results too excluding cross sections above
335:
This measurement represents a first step in the search for the
2165: 1230:"First Dark Matter Search Results from the XENON1T Experiment" 251:
result was published in 2014, setting a new best axion limit.
52:
target chamber. The current detector consists of a dual phase
2111: 2086: 1204: 381:
for its first science run, which was ongoing at the time.
88:
Sketch of the working principle of a xenon dual-phase TPC
2125:
with the latest results from XENON and other experiments
150:
The XENON10 experiment was installed at the underground
129:
higher sensitivity when searching for very rare events.
1820:"The XENONnT Experiment – Detector and Science Program" 1336:
Aprile, E.; et al. (XENON collaboration) (2018).
1228:
Aprile, E.; et al. (XENON collaboration) (2017).
443: 390: 1399:"Dark-matter detector observes exotic nuclear decay" 2798: 2764: 2739: 2651: 2423: 2414: 2331: 2270: 2203: 1769:"scanR | Moteur de la Recherche et de l'Innovation" 112:Particle interactions in the liquid target produce 478: 425: 286:, with an exclusion of cross sections larger than 2129:Enlightening the dark, CERN Courier, Sep 27, 2013 1541:"Dark Matter Experiment Finds Unexplained Signal" 1566:"Dark Matter Detector Delivers Enigmatic Signal" 68:currently led by Italian professor of physics 2181: 1475: 1473: 330:the first direct observation of two-neutrino 8: 2092:XENON home page at the University of Chicago 1687:, University of Cambridge, 15 September 2021 1205:"Homepage of the XENON1T Dark Matter Search" 2102:XENON home page at the University of Zurich 92:The XENON experiment operates a dual phase 2420: 2188: 2174: 2166: 343:and allow to determine its absolute mass. 2038: 1980: 1922: 1864: 1736: 1645: 1589: 1507: 1422: 1373: 1355: 1265: 1247: 1164: 1109: 1046: 991: 928: 873: 810: 747: 692: 637: 590: 572: 517: 470: 454: 442: 426:{\displaystyle 2.58\times 10^{-47}cm^{2}} 417: 401: 389: 2119:at University of California, Los Angeles 479:{\displaystyle 9.2\times 10^{-48}cm^{2}} 205: 193: 140: 1773:scanr.enseignementsup-recherche.gouv.fr 494: 2097:XENON home page at Columbia University 1444: 1442: 486:at 36 GeV with 90% confidence level. 7: 2866: 337:neutrinoless double electron capture 46:weakly interacting massive particles 2112:XENON home page at Brown University 892:10.1016/j.astropartphys.2011.06.001 711:10.1016/j.astropartphys.2011.01.006 656:10.1016/j.astropartphys.2013.10.002 601:10.1016/j.astropartphys.2012.01.003 2894:Experiments for dark matter search 2107:XENON home page at Rice University 226:The detector was installed at the 33:research project, operated at the 14: 1539:Wolchover, Natalie (2020-06-17). 2865: 2854: 2853: 2261: 1849:"The Search for WIMPs Continues" 1793:Moskowitz, Clara (April 2021). 217:high-purity Germanium detectors 2821:Galaxy formation and evolution 2057:10.1103/PhysRevLett.100.021303 1999:10.1103/PhysRevLett.131.041002 1941:10.1103/PhysRevLett.131.041003 1883:10.1103/PhysRevLett.131.041002 1755:10.1103/PhysRevLett.129.161805 1375:10.1103/PhysRevLett.121.111302 1065:10.1103/PhysRevLett.111.021301 947:10.1103/physrevlett.109.181301 829:10.1103/PhysRevLett.101.091301 766:10.1103/PhysRevLett.100.021303 264:Gran Sasso National Laboratory 228:Gran Sasso National Laboratory 38:Gran Sasso National Laboratory 1: 536:10.1088/0954-3899/41/3/035201 165:minimal Supersymmetric models 163:available parameter space in 2243:Self-interacting dark matter 364:particles candidates called 16:Dark matter research project 2401:Navarro–Frenk–White profile 2391:Massive compact halo object 2386:Mass dimension one fermions 1847:Day, Charles (2023-07-28). 1664:10.1103/PhysRevD.104.063023 1564:Lin, Tongyan (2020-10-12). 1518:10.1103/PhysRevD.102.072004 1449:Moriyama, S. (2019-03-08). 2910: 1795:"Dark Matter's Last Stand" 1424:10.1038/d41586-019-01212-8 1183:10.1103/physrevd.83.082001 1128:10.1103/PhysRevD.90.062009 1010:10.1103/PhysRevD.84.061101 18: 2849: 2259: 2123:Dark matter limit plotter 2406:Scalar field dark matter 2248:Scalar field dark matter 2026:Physical Review Letters 1969:Physical Review Letters 1911:Physical Review Letters 1725:Physical Review Letters 1397:Suhonen, Jouni (2019). 1343:Physical Review Letters 1235:Physical Review Letters 1034:Physical Review Letters 916:Physical Review Letters 798:Physical Review Letters 735:Physical Review Letters 355:, a surprisingly large 332:double electron capture 94:time projection chamber 59:The experiment detects 54:time projection chamber 2271:Hypothetical particles 2253:Primordial black holes 2117:Katsuhi Arisaka, XENON 1591:10.1103/Physics.13.135 480: 427: 278: 211: 203: 147: 89: 21:Xenon (disambiguation) 2356:Dark globular cluster 2152:42.42056°N 13.51639°E 861:Astroparticle Physics 680:Astroparticle Physics 625:Astroparticle Physics 560:Astroparticle Physics 481: 428: 276: 209: 197: 152:Gran Sasso laboratory 144: 87: 2376:Dwarf galaxy problem 2298:Minicharged particle 2213:Baryonic dark matter 2087:The XENON Experiment 505:Journal of Physics G 441: 388: 19:For other uses, see 2148: /  2049:2008PhRvL.100b1303A 1991:2023PhRvL.131d1002A 1933:2023PhRvL.131d1003A 1875:2023PhRvL.131d1002A 1799:Scientific American 1747:2022PhRvL.129p1805A 1656:2021PhRvD.104f3023V 1582:2020PhyOJ..13..135L 1458:XENON collaboration 1415:2019Natur.568..462S 1366:2018PhRvL.121k1302A 1258:2017Natur.551..153G 1209:XENON collaboration 1175:2011PhRvD..83h2001A 1120:2014PhRvD..90f2009A 1057:2013PhRvL.111b1301A 1002:2011PhRvD..84f1101A 939:2012PhRvL.109r1301A 884:2011APh....35...43A 821:2008PhRvL.101i1301A 758:2008PhRvL.100b1303A 703:2011APh....34..679A 648:2014APh....54...11A 583:2012APh....35..573X 528:2014JPhG...41c5201A 294:for WIMP masses of 106:electroluminescence 74:Columbia University 2381:Halo mass function 2341:Cuspy halo problem 2157:42.42056; 13.51639 476: 423: 316:at a WIMP mass of 279: 212: 204: 148: 90: 80:Detector principle 2881: 2880: 2826:Illustris project 2760: 2759: 2233:Mixed dark matter 2228:Light dark matter 1633:Physical Review D 1409:(7753): 462–463. 1242:(7679): 153–154. 1152:Physical Review D 1097:Physical Review D 979:Physical Review D 221:mass spectrometry 219:. In a few cases 2901: 2869: 2868: 2857: 2856: 2421: 2361:Dark matter halo 2308:Sterile neutrino 2265: 2264: 2238:Warm dark matter 2218:Cold dark matter 2190: 2183: 2176: 2167: 2163: 2162: 2160: 2159: 2158: 2153: 2149: 2146: 2145: 2144: 2141: 2076: 2042: 2011: 2010: 1984: 1959: 1953: 1952: 1926: 1901: 1895: 1894: 1868: 1844: 1838: 1837: 1835: 1833: 1824: 1818:Peres, Ricardo. 1815: 1809: 1808: 1806: 1805: 1790: 1784: 1783: 1781: 1780: 1765: 1759: 1758: 1740: 1719: 1713: 1712: 1710: 1709: 1694: 1688: 1682: 1676: 1675: 1649: 1627: 1621: 1620: 1618: 1617: 1602: 1596: 1595: 1593: 1561: 1555: 1554: 1552: 1551: 1536: 1530: 1529: 1511: 1502:: 2006.09721v1. 1491: 1485: 1484: 1477: 1468: 1467: 1465: 1464: 1455: 1446: 1437: 1436: 1426: 1394: 1388: 1387: 1377: 1359: 1333: 1327: 1326: 1324: 1323: 1308: 1302: 1301: 1299: 1297: 1286: 1280: 1279: 1269: 1251: 1225: 1219: 1218: 1216: 1215: 1201: 1195: 1194: 1168: 1146: 1140: 1139: 1113: 1091: 1085: 1084: 1050: 1028: 1022: 1021: 995: 973: 967: 966: 932: 910: 904: 903: 877: 855: 849: 848: 814: 792: 786: 785: 751: 729: 723: 722: 696: 674: 668: 667: 641: 619: 613: 612: 594: 576: 554: 548: 547: 521: 499: 485: 483: 482: 477: 475: 474: 462: 461: 432: 430: 429: 424: 422: 421: 409: 408: 322: 315: 313: 300: 293: 291: 245: 238: 236: 181: 174: 172: 2909: 2908: 2904: 2903: 2902: 2900: 2899: 2898: 2884: 2883: 2882: 2877: 2845: 2841:UniverseMachine 2794: 2756: 2735: 2653: 2647: 2425: 2416: 2410: 2333: 2327: 2266: 2262: 2257: 2223:Hot dark matter 2205: 2199: 2194: 2156: 2154: 2150: 2147: 2142: 2139: 2137: 2135: 2134: 2083: 2022: 2019: 2017:Further reading 2014: 1961: 1960: 1956: 1903: 1902: 1898: 1846: 1845: 1841: 1831: 1829: 1822: 1817: 1816: 1812: 1803: 1801: 1792: 1791: 1787: 1778: 1776: 1767: 1766: 1762: 1721: 1720: 1716: 1707: 1705: 1696: 1695: 1691: 1683: 1679: 1629: 1628: 1624: 1615: 1613: 1604: 1603: 1599: 1563: 1562: 1558: 1549: 1547: 1545:Quanta Magazine 1538: 1537: 1533: 1493: 1492: 1488: 1483:. 28 July 2020. 1479: 1478: 1471: 1462: 1460: 1453: 1448: 1447: 1440: 1396: 1395: 1391: 1335: 1334: 1330: 1321: 1319: 1310: 1309: 1305: 1295: 1293: 1288: 1287: 1283: 1267:10.1038/551153a 1227: 1226: 1222: 1213: 1211: 1203: 1202: 1198: 1148: 1147: 1143: 1093: 1092: 1088: 1030: 1029: 1025: 975: 974: 970: 912: 911: 907: 857: 856: 852: 794: 793: 789: 731: 730: 726: 676: 675: 671: 621: 620: 616: 592:10.1.1.255.9957 556: 555: 551: 501: 500: 496: 492: 466: 450: 439: 438: 413: 397: 386: 385: 374: 357:magnetic moment 317: 311: 309: 295: 289: 287: 260: 240: 234: 232: 192: 176: 170: 168: 139: 126:fiducialization 98:photomultiplier 82: 24: 17: 12: 11: 5: 2907: 2905: 2897: 2896: 2886: 2885: 2879: 2878: 2876: 2875: 2863: 2850: 2847: 2846: 2844: 2843: 2838: 2833: 2831:Imaginary mass 2828: 2823: 2818: 2813: 2808: 2802: 2800: 2796: 2795: 2793: 2792: 2787: 2782: 2780:HVC 127-41-330 2777: 2771: 2769: 2762: 2761: 2758: 2757: 2755: 2754: 2749: 2743: 2741: 2740:Other projects 2737: 2736: 2734: 2733: 2728: 2723: 2718: 2713: 2708: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2668: 2663: 2657: 2655: 2649: 2648: 2646: 2645: 2640: 2635: 2630: 2625: 2620: 2615: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2540: 2535: 2530: 2525: 2520: 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2445: 2440: 2435: 2429: 2427: 2418: 2412: 2411: 2409: 2408: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2368: 2366:Dark radiation 2363: 2358: 2353: 2348: 2343: 2337: 2335: 2329: 2328: 2326: 2325: 2320: 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2274: 2272: 2268: 2267: 2260: 2258: 2256: 2255: 2250: 2245: 2240: 2235: 2230: 2225: 2220: 2215: 2209: 2207: 2201: 2200: 2195: 2193: 2192: 2185: 2178: 2170: 2132: 2131: 2126: 2120: 2114: 2109: 2104: 2099: 2094: 2089: 2082: 2081:External links 2079: 2078: 2077: 2018: 2015: 2013: 2012: 1954: 1896: 1839: 1810: 1785: 1760: 1731:(16): 161805. 1714: 1689: 1677: 1622: 1597: 1556: 1531: 1486: 1469: 1438: 1389: 1350:(11): 111302. 1328: 1303: 1292:. May 24, 2017 1281: 1220: 1196: 1141: 1086: 1023: 968: 923:(18): 181301. 905: 850: 787: 724: 687:(9): 679–698. 669: 614: 567:(9): 573–590. 549: 493: 491: 488: 473: 469: 465: 460: 457: 453: 449: 446: 420: 416: 412: 407: 404: 400: 396: 393: 373: 370: 284:LUX experiment 259: 256: 191: 188: 138: 135: 81: 78: 15: 13: 10: 9: 6: 4: 3: 2: 2906: 2895: 2892: 2891: 2889: 2874: 2873: 2864: 2862: 2861: 2852: 2851: 2848: 2842: 2839: 2837: 2836:Negative mass 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2816:Exotic matter 2814: 2812: 2809: 2807: 2804: 2803: 2801: 2797: 2791: 2788: 2786: 2785:Smith's Cloud 2783: 2781: 2778: 2776: 2773: 2772: 2770: 2768: 2767:dark galaxies 2763: 2753: 2750: 2748: 2745: 2744: 2742: 2738: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2658: 2656: 2650: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2539: 2536: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2434: 2431: 2430: 2428: 2422: 2419: 2413: 2407: 2404: 2402: 2399: 2397: 2396:Mirror matter 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2338: 2336: 2330: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2286: 2284: 2281: 2279: 2276: 2275: 2273: 2269: 2254: 2251: 2249: 2246: 2244: 2241: 2239: 2236: 2234: 2231: 2229: 2226: 2224: 2221: 2219: 2216: 2214: 2211: 2210: 2208: 2202: 2198: 2191: 2186: 2184: 2179: 2177: 2172: 2171: 2168: 2164: 2161: 2130: 2127: 2124: 2121: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2084: 2080: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2041: 2036: 2033:(2): 021303. 2032: 2028: 2027: 2021: 2020: 2016: 2008: 2004: 2000: 1996: 1992: 1988: 1983: 1978: 1975:(4): 041002. 1974: 1970: 1966: 1958: 1955: 1950: 1946: 1942: 1938: 1934: 1930: 1925: 1920: 1917:(4): 041003. 1916: 1912: 1908: 1900: 1897: 1892: 1888: 1884: 1880: 1876: 1872: 1867: 1862: 1858: 1854: 1850: 1843: 1840: 1828: 1821: 1814: 1811: 1800: 1796: 1789: 1786: 1774: 1770: 1764: 1761: 1756: 1752: 1748: 1744: 1739: 1734: 1730: 1726: 1718: 1715: 1703: 1699: 1693: 1690: 1686: 1681: 1678: 1673: 1669: 1665: 1661: 1657: 1653: 1648: 1643: 1640:(6): 063023. 1639: 1635: 1634: 1626: 1623: 1611: 1610:Physics World 1607: 1601: 1598: 1592: 1587: 1583: 1579: 1575: 1571: 1567: 1560: 1557: 1546: 1542: 1535: 1532: 1527: 1523: 1519: 1515: 1510: 1505: 1501: 1497: 1490: 1487: 1482: 1476: 1474: 1470: 1459: 1452: 1445: 1443: 1439: 1434: 1430: 1425: 1420: 1416: 1412: 1408: 1404: 1400: 1393: 1390: 1385: 1381: 1376: 1371: 1367: 1363: 1358: 1353: 1349: 1345: 1344: 1339: 1332: 1329: 1317: 1316:UChicago News 1313: 1307: 1304: 1291: 1285: 1282: 1277: 1273: 1268: 1263: 1259: 1255: 1250: 1245: 1241: 1237: 1236: 1231: 1224: 1221: 1210: 1206: 1200: 1197: 1192: 1188: 1184: 1180: 1176: 1172: 1167: 1162: 1159:(8): 082001. 1158: 1154: 1153: 1145: 1142: 1137: 1133: 1129: 1125: 1121: 1117: 1112: 1107: 1104:(6): 062009. 1103: 1099: 1098: 1090: 1087: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1049: 1044: 1041:(2): 021301. 1040: 1036: 1035: 1027: 1024: 1019: 1015: 1011: 1007: 1003: 999: 994: 989: 986:(6): 061101. 985: 981: 980: 972: 969: 964: 960: 956: 952: 948: 944: 940: 936: 931: 926: 922: 918: 917: 909: 906: 901: 897: 893: 889: 885: 881: 876: 871: 867: 863: 862: 854: 851: 846: 842: 838: 834: 830: 826: 822: 818: 813: 808: 805:(9): 091301. 804: 800: 799: 791: 788: 783: 779: 775: 771: 767: 763: 759: 755: 750: 745: 742:(2): 021303. 741: 737: 736: 728: 725: 720: 716: 712: 708: 704: 700: 695: 690: 686: 682: 681: 673: 670: 665: 661: 657: 653: 649: 645: 640: 635: 631: 627: 626: 618: 615: 610: 606: 602: 598: 593: 588: 584: 580: 575: 570: 566: 562: 561: 553: 550: 545: 541: 537: 533: 529: 525: 520: 515: 512:(3): 035201. 511: 507: 506: 498: 495: 489: 487: 471: 467: 463: 458: 455: 451: 447: 444: 436: 435:LZ experiment 418: 414: 410: 405: 402: 398: 394: 391: 382: 378: 371: 369: 367: 363: 358: 354: 348: 344: 342: 338: 333: 329: 324: 321: 306: 304: 299: 285: 275: 271: 268: 265: 257: 255: 252: 250: 244: 229: 224: 222: 218: 208: 201: 196: 189: 187: 183: 180: 166: 160: 157: 153: 143: 136: 134: 130: 127: 121: 119: 115: 114:scintillation 110: 107: 103: 102:scintillation 99: 95: 86: 79: 77: 75: 71: 66: 62: 61:scintillation 57: 55: 51: 47: 43: 39: 36: 32: 29: 22: 2870: 2858: 2632: 2133: 2030: 2024: 1972: 1968: 1957: 1914: 1910: 1899: 1856: 1852: 1842: 1830:. Retrieved 1826: 1813: 1802:. Retrieved 1798: 1788: 1777:. Retrieved 1772: 1763: 1728: 1724: 1717: 1706:. Retrieved 1704:. 2022-07-22 1702:Science News 1701: 1692: 1680: 1637: 1631: 1625: 1614:. Retrieved 1612:. 2020-10-15 1609: 1600: 1573: 1569: 1559: 1548:. Retrieved 1544: 1534: 1499: 1496:Phys. Rev. D 1495: 1489: 1461:. Retrieved 1457: 1406: 1402: 1392: 1347: 1341: 1331: 1320:. Retrieved 1318:. 2017-05-18 1315: 1306: 1294:. Retrieved 1284: 1239: 1233: 1223: 1212:. Retrieved 1208: 1199: 1156: 1150: 1144: 1101: 1095: 1089: 1038: 1032: 1026: 983: 977: 971: 920: 914: 908: 868:(2): 43–49. 865: 859: 853: 802: 796: 790: 739: 733: 727: 684: 678: 672: 629: 623: 617: 564: 558: 552: 509: 503: 497: 383: 379: 375: 349: 345: 325: 319: 318:30 GeV/ 307: 297: 296:35 GeV/ 280: 269: 261: 253: 242: 241:65 GeV/ 225: 213: 184: 178: 177:30 GeV/ 161: 149: 131: 122: 111: 91: 70:Elena Aprile 58: 27: 25: 2811:Dark energy 2775:HE0450-2958 2417:experiments 2351:Dark galaxy 2334:and objects 2288:Dark photon 2206:dark matter 2197:Dark matter 2155: / 1859:(4): s106. 1775:(in French) 362:dark energy 182:WIMP mass. 42:dark matter 31:dark matter 2806:Antimatter 2765:Potential 2493:DAMA/LIBRA 2346:Dark fluid 2303:Neutralino 2143:13°30′59″E 2140:42°25′14″N 1982:2207.03764 1924:2303.14729 1866:2207.03764 1804:2021-04-13 1779:2020-06-30 1738:2207.11330 1708:2022-08-03 1647:2103.15834 1616:2020-10-23 1550:2020-06-18 1509:2006.09721 1463:2020-11-18 1357:1805.12562 1322:2017-05-29 1249:1705.06655 1214:2017-06-02 490:References 366:chameleons 314:10 cm 292:10 cm 237:10 cm 173:10 cm 118:ionization 65:ionization 2790:VIRGOHI21 2747:MultiDark 2654:detection 2538:EDELWEISS 2426:detection 2371:Dark star 2040:0706.0039 1672:232417159 1526:222338600 1166:1101.3866 1111:1404.1455 1048:1301.6620 1018:118604915 993:1104.3121 930:1207.5988 900:119223885 875:1103.5831 812:0805.2939 749:0706.0039 719:118661045 694:1001.2834 639:1207.3458 632:: 11–24. 587:CiteSeerX 574:1107.2155 519:1311.1088 456:− 448:× 403:− 395:× 2888:Category 2860:Category 2652:Indirect 2508:DarkSide 2498:DAMA/NaI 2332:Theories 2204:Forms of 2065:18232850 2007:37566836 1949:37566859 1891:37566836 1832:22 March 1433:31019322 1384:30265108 1276:29120431 1191:85451637 1136:55875111 1081:15433829 1073:23889382 955:23215267 845:38014288 837:18851599 774:18232850 664:32866170 609:53682520 544:28681085 341:neutrino 198:The top 190:XENON100 2872:Commons 2799:Related 2731:VERITAS 2706:IceCube 2666:ANTARES 2618:TREX-DM 2603:ROSEBUD 2593:PICASSO 2073:2249288 2045:Bibcode 1987:Bibcode 1929:Bibcode 1871:Bibcode 1853:Physics 1827:cern.ch 1743:Bibcode 1652:Bibcode 1578:Bibcode 1576:: 135. 1570:Physics 1411:Bibcode 1362:Bibcode 1296:May 25, 1254:Bibcode 1171:Bibcode 1116:Bibcode 1053:Bibcode 998:Bibcode 935:Bibcode 880:Bibcode 817:Bibcode 782:2249288 754:Bibcode 699:Bibcode 644:Bibcode 579:Bibcode 524:Bibcode 372:XENONnT 258:XENON1T 137:XENON10 56:(TPC). 35:Italian 2726:PAMELA 2661:AMS-02 2643:ZEPLIN 2613:SIMPLE 2588:PandaX 2583:NEWS-G 2578:NEWAGE 2543:EURECA 2523:DM-Ice 2513:DARWIN 2478:CRESST 2468:COSINE 2463:CoGeNT 2424:Direct 2415:Search 2071:  2063:  2005:  1947:  1889:  1670:  1524:  1431:  1403:Nature 1382:  1274:  1189:  1134:  1079:  1071:  1016:  963:428676 961:  953:  898:  843:  835:  780:  772:  717:  662:  607:  589:  542:  353:axions 328:Nature 239:for a 175:for a 2752:PVLAS 2711:MAGIC 2691:Fermi 2686:DAMPE 2676:CALET 2638:XMASS 2633:XENON 2623:UKDMC 2608:SABRE 2573:NAIAD 2568:MIMAC 2563:MACRO 2533:DRIFT 2528:DMTPC 2503:DAMIC 2483:CUORE 2473:COUPP 2458:CLEAN 2438:ANAIS 2283:Axion 2278:Axino 2069:S2CID 2035:arXiv 1977:arXiv 1919:arXiv 1861:arXiv 1823:(PDF) 1733:arXiv 1668:S2CID 1642:arXiv 1522:S2CID 1504:arXiv 1454:(PDF) 1352:arXiv 1244:arXiv 1187:S2CID 1161:arXiv 1132:S2CID 1106:arXiv 1077:S2CID 1043:arXiv 1014:S2CID 988:arXiv 959:S2CID 925:arXiv 896:S2CID 870:arXiv 841:S2CID 807:arXiv 778:S2CID 744:arXiv 715:S2CID 689:arXiv 660:S2CID 634:arXiv 605:S2CID 569:arXiv 540:S2CID 514:arXiv 303:WIMPs 249:axion 156:Italy 146:layer 72:from 50:xenon 28:XENON 2721:OGLE 2701:HESS 2696:HAWC 2681:CAST 2671:ATIC 2628:WARP 2598:PICO 2548:KIMS 2518:DEAP 2453:CDMS 2448:CDEX 2443:ArDM 2433:ADMX 2323:WISP 2318:WIMP 2313:SIMP 2061:PMID 2003:PMID 1945:PMID 1887:PMID 1834:2022 1429:PMID 1380:PMID 1298:2017 1272:PMID 1069:PMID 951:PMID 833:PMID 770:PMID 392:2.58 116:and 104:and 63:and 26:The 2716:MOA 2553:LUX 2293:LSP 2053:doi 2031:100 1995:doi 1973:131 1937:doi 1915:131 1879:doi 1751:doi 1729:129 1660:doi 1638:104 1586:doi 1514:doi 1500:102 1419:doi 1407:568 1370:doi 1348:121 1262:doi 1240:119 1179:doi 1124:doi 1061:doi 1039:111 1006:doi 943:doi 921:109 888:doi 825:doi 803:101 762:doi 740:100 707:doi 652:doi 597:doi 532:doi 445:9.2 310:4.1 288:7.7 247:An 233:2.0 200:PMT 154:in 2890:: 2558:LZ 2488:D3 2067:. 2059:. 2051:. 2043:. 2029:. 2001:. 1993:. 1985:. 1971:. 1967:. 1943:. 1935:. 1927:. 1913:. 1909:. 1885:. 1877:. 1869:. 1857:16 1855:. 1851:. 1825:. 1797:. 1771:. 1749:. 1741:. 1727:. 1700:. 1666:. 1658:. 1650:. 1636:. 1608:. 1584:. 1574:13 1572:. 1568:. 1543:. 1520:. 1512:. 1498:. 1472:^ 1456:. 1441:^ 1427:. 1417:. 1405:. 1401:. 1378:. 1368:. 1360:. 1346:. 1340:. 1314:. 1270:. 1260:. 1252:. 1238:. 1232:. 1207:. 1185:. 1177:. 1169:. 1157:83 1155:. 1130:. 1122:. 1114:. 1102:90 1100:. 1075:. 1067:. 1059:. 1051:. 1037:. 1012:. 1004:. 996:. 984:84 982:. 957:. 949:. 941:. 933:. 919:. 894:. 886:. 878:. 866:35 864:. 839:. 831:. 823:. 815:. 801:. 776:. 768:. 760:. 752:. 738:. 713:. 705:. 697:. 685:34 683:. 658:. 650:. 642:. 630:54 628:. 603:. 595:. 585:. 577:. 565:35 563:. 538:. 530:. 522:. 510:41 508:. 459:48 452:10 406:47 399:10 323:. 305:. 169:10 76:. 2189:e 2182:t 2175:v 2075:. 2055:: 2047:: 2037:: 2009:. 1997:: 1989:: 1979:: 1951:. 1939:: 1931:: 1921:: 1893:. 1881:: 1873:: 1863:: 1836:. 1807:. 1782:. 1757:. 1753:: 1745:: 1735:: 1711:. 1674:. 1662:: 1654:: 1644:: 1619:. 1594:. 1588:: 1580:: 1553:. 1528:. 1516:: 1506:: 1466:. 1435:. 1421:: 1413:: 1386:. 1372:: 1364:: 1354:: 1325:. 1300:. 1278:. 1264:: 1256:: 1246:: 1217:. 1193:. 1181:: 1173:: 1163:: 1138:. 1126:: 1118:: 1108:: 1083:. 1063:: 1055:: 1045:: 1020:. 1008:: 1000:: 990:: 965:. 945:: 937:: 927:: 902:. 890:: 882:: 872:: 847:. 827:: 819:: 809:: 784:. 764:: 756:: 746:: 721:. 709:: 701:: 691:: 666:. 654:: 646:: 636:: 611:. 599:: 581:: 571:: 546:. 534:: 526:: 516:: 472:2 468:m 464:c 419:2 415:m 411:c 320:c 312:× 298:c 290:× 243:c 235:× 179:c 171:× 23:.

Index

Xenon (disambiguation)
dark matter
Italian
Gran Sasso National Laboratory
dark matter
weakly interacting massive particles
xenon
time projection chamber
scintillation
ionization
Elena Aprile
Columbia University

time projection chamber
photomultiplier
scintillation
electroluminescence
scintillation
ionization
fiducialization

Gran Sasso laboratory
Italy
minimal Supersymmetric models
Borrom PMT Array of XENON100
PMT
Borrom PMT Array of XENON100
high-purity Germanium detectors
mass spectrometry
Gran Sasso National Laboratory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.