Knowledge (XXG)

Yasuharu Suematsu

Source đź“ť

522:
research and development of optical fiber, optical devices, modulation schemes, and the like. Phase shift distributed feedback lasers developed by this research have been commercially applied for long distances—for overland trunk systems (1987) and for intercontinental submarine cables (1992) (Fig. 8) —and continue to support the progress of the Internet to this day. Later, since around 2004, wavelength tunable lasers are being used as the light source to advance dense wavelength division multiplexing (D-WDM) systems and optical coherent fiber systems for multi-level modulation schemes. Optical fiber communications make up a highly dense communications network circling the globe tens of thousands of times and are also used in applications such as middle-distance Ethernets. Additionally, DSM lasers in the band of 1.5 micrometers are used for optical lines from the exchange centre to the home in FTTH. The transmission performance of fiber represented a by-product of the transmission capacity, and the distance has been increased yearly exponentially, as shown in Fig. 9. In such ways, the information transmission capability of optical fiber has reached several hundred thousand times as much as the coaxial cables preceding them and has significantly lowered the cost of transmitting the information. Reflecting this, the mid-1990s saw the network industry such as Yahoo, Google, and Rakuten appear one after the other. Optical fiber communications have progressed and the Internet has developed, and instantaneous transmission of a large volume of knowledge is now a daily occurrence. In 2018, the Internet population reached 39 billion, 52% of the world population. In the electrical communication era of the 1960s, large volumes of data, such as documents on which civilization depend, were circulated slowly in forms such as books. In contrast, the proliferation of high-capacity and long-distance optical fiber communications has allowed for large-volume information such as books to become used interactively in an instant. The research of optical fiber communications contributed to the rapid transition to a civilization based on the information and communications technology.
455:
meantime, Suematsu pioneered materials for a mixed crystal of GaInAsP/InP for a semiconductor laser that would operate at a wavelength band of 1.5 micrometres—which causes minimal loss inside the optical fiber as Donald A. Keck et al. suggested in 1973— and continuously operates at room temperature, in July 1979. Following these preliminary achievements, Suematsu and his co-workers succeeded in creating an integrated laser with built-in distributed reflectors using a material in the band of 1.5 micrometres. In October 1980, Suematsu and his students built a dynamic single-mode laser that stably operates at a single mode even under rapid direct modulation (Fig.3 and Fig.4), and continuously operates at room temperature. This laser remained in stable operation mode even when the temperature was changed so that the wavelength could be tuned thermally within the 1.5 micrometres band. Thus, the thermo-tunable dynamic single-mode laser was born and triggered to develop a 1.5-micrometer high-speed fiber system, as cited by such as the 1983 Valdemar Poulsen Gold Medal, the Danish history of optical communication, and the 1986 David Sarnoff Award. Its spectral behaviour was investigated profoundly to attain full single-mode operation. Meanwhile, research and development progressed in industries in areas such as optical fibers, optical circuits, optical devices, modulation schemes, and system structures. The actualization of the dynamic single-mode laser became an impetus to develop high-capacity and long-distance optical fiber communications, and it began to be applied commercially at the end of the 1980s.
501: 497:
increased by the introduction of distributed reflectors with multi-grating pitches by Yuichi Tohmori and Yuhzou Yoshikuni, and Larry Coldren. The electro-tunable dynamic single-mode laser is especially important because it could be finely tuneable and also monolithically integrable together with other photonic devices which need the specific thermal tuning separately in the form of PICs (Photonic Integrated Circuits). It was around 2004, through the efforts of those involved, that this wavelength tuneable laser was developed and used commercially in dense wavelength division multiplexing (D-WDM) systems and optical coherent systems. It became utilized in earnest around 2010.
421: 459: 467: 429: 475: 413: 393: 201: 116: 66: 25: 509: 487:
Among these, the phase-shift distributed feedback (DFB) laser that Suematsu and his students proposed in 1974 and demonstrated with Kazuhito Furuya in November 1983 (Fig.5) is a thermo-tunable dynamic single-mode laser which had a high rate of production yield, as cited by the 1985 Electronics Letter
454:
First, in 1972–1974, Suematsu and his student proposed a single mode resonator that would consist of a refractive index waveguide for the transverse mode, and two distributed reflectors joined together with a phase shift by odd numbers of a half π for the axial single mode operation (Fig.2) . In the
408:
The light source was a helium-neon gas laser, the modulator was hand made modulator by use of ADP crystal, applied signal voice voltage of 1.200 volts, for polarization rotation in response to the voice signal, the optical bundle glass fiber for the transmission medium, and the photomultiplier tube
441:
Light is the highest frequency of electromagnetic waves that humans can control. It outperforms radio waves by a wide margin in transmitting a large capacity of information. Research into optical communications was undertaken such as in the U.S.A., Japan, and England. The nature of optical fiber
521:
High-capacity and long-distance optical fiber communications in the lowest loss wavelength band of 1.5 micrometres use dynamic single mode lasers (DSM lasers), such as phase shift distributed feedback lasers and wavelength tunable lasers, as their light sources, and have progressed along with
496:
On the other hand, the electro-tunable dynamic single-mode laser, which would be a goal of the Dynamic Single Mode Laser, is, a so-called, wavelength tuneable laser that was proposed by Suematsu and his students in 1980 (Fig.7) and demonstrated in 1983. Later, the tuning wavelength range was
346:(born in 1932) is a researcher and educator in optical communication technology. His research has included the development of Dynamic Single Mode Semiconductor Lasers for actuation and the development of high-capacity, long-distance optical fiber communications technology. 442:
communication was thought possibly be able to transmit a large capacity of information over a long distance, all over the world. To make it a reality, the focus was on creating a Dynamic Single Mode laser (DSM laser) (Fig.2) which has the following three characteristics:
500: 488:
Premium Award, IEE, UK. Since the beginning of the 1990s, it had been consistently and widely used commercially as a standard laser for long-distance use, as awarded the 1994 C&C Prize. Often, a laser array is used to cover wide wavelength regions (Fig.6).
396:
Fig.1. Replica of the earliest demonstration of optical fiber communication experiment, on May 26, 1963, restored in 2008-7. (Registered as Future Technology Heritage, at the National Museum of Science, Japan). By courtesy of the Museum of Tokyo Institute of
409:
for the detector. The original ADP reserved in the desiccator as well as the replica of that experiment, restored in 2008-7 as shown in Fig.1, was registered as a Future Technology Heritage, at the National Museum of Science, Japan, in 2019.
445:(1) operates at a wavelength band that causes minimal loss within the optical fiber to allow for long-distance transmission (1.5 micrometres was discovered to be the ideal wavelength band during the course of the following research); 755: 406:
The earliest demonstration of optical fiber communication was performed by Suematsu and his students, on May 26, 1963, on the occasion of the open house of the Tokyo Institute of Technology (Fig.1).
424:
Fig.3. Laser tip on the mount of the first demonstration of dynamic single mode laser at a wavelength of 1.5 micrometers, in October 1980. By courtesy of the Museum of Tokyo Institute of Technology.
358:. Afterward, he joined the faculty of the Tokyo Institute of Technology as a professor and became its president in 1989. Later he also held the position as first President of the newly founded 1831: 748: 448:(2) operates stably at a single wavelength to surmount the problem of transmission capacity reduction due to dispersion on the propagation constant in single-mode optical fiber; and 416:
Fig.2. Principle of Single-mode resonator consisted of two distrusted reflectors connected with phase shift of integer multiple of Π/2, for Dynamic Single Mode (DSM) Lasers, in 1974.
606:
Nakata, Y.; Asada, M.; Suematsu, Y. (September 1986). "Analysis of novel resonant electron transfer triode device using metal-insulator superlattice for high speed response".
1841: 741: 389:
which even under high-speed modulation produce light at a stable wavelength that coincides with the wavelength region where the optical losses of fibers reach their minimum.
392: 420: 82:
Please remove or replace such wording and instead of making proclamations about a subject's importance, use facts and attribution to demonstrate that importance.
1836: 432:
Fig.4. Single-mode property and schematic structure of the first demonstration of dynamic single mode laser at wavelength of 1.5 micrometers, in October 1980.
1846: 75: 767: 270: 458: 370:
for contributions to the understanding and development of optical fibers, high-performance semiconductor lasers, and integrated optoelectronics.
466: 474: 1215: 583: 579: 1826: 1249: 1056: 677: 470:
Fig.6. A commercial phase shift distributed reflector laser array, with 100\ coin for size reference. By courtesy of Furukawa Electric Co.
565: 38: 125: 1368: 363: 176: 158: 97: 52: 508: 1559: 661: 640: 462:
Fig.5 Schematic structure of Phase-Shift Distribute Feedback laser, in October 1983 ~Thermo-tunable Dynamic Singlr Mode Laser ~.
367: 428: 359: 354:
Yasuharu Suematsu was born on September 22, 1932, in Gifu, Japan. He received both his B.S. (1955) and Ph.D. (1960) from the
316: 1352: 355: 1811: 478:
Fig.7. Schematic structure of Wavelength Tunable Laser ~ Electro, in 1980 ~Electro-tunable Dynamic Single Mode Laser ~.
1747: 1328: 382: 251: 1531: 1243: 1073: 412: 129: 1739: 1208: 291: 1535: 1511: 787: 275: 1821: 1680: 1299: 805: 44: 1044: 924: 841: 811: 674:
Pioneering research on semiconductor lasers for high-capacity, long-distance optical fiber communication
895: 1014: 972: 853: 835: 1816: 1785: 1201: 1151: 1103: 829: 704: 611: 1650: 1608: 1338: 1109: 960: 936: 793: 386: 1091: 1729: 1674: 1660: 1563: 1521: 1469: 1465: 1459: 1434: 1430: 1410: 1406: 1382: 1079: 877: 720: 512:
Fig.9. Transmission performance of communication fiber. Prime data by Courtesy of NTT & KDDI.
285: 1771: 1733: 673: 1767: 1761: 1753: 1590: 1549: 1545: 1489: 1483: 1303: 1008: 984: 978: 930: 847: 823: 733: 1636: 1424: 1398: 1332: 1277: 1273: 1175: 1157: 1121: 990: 966: 871: 781: 712: 691: 619: 561: 1789: 1775: 1743: 1698: 1684: 1656: 1525: 1507: 1475: 1438: 1324: 1267: 1253: 1181: 1169: 1139: 1115: 1050: 1038: 1020: 1002: 996: 954: 912: 859: 817: 799: 644: 1640: 451:(3) allows the wavelength to be tuned to adapt to communication in multiple wavelengths. 708: 615: 1708: 1702: 1626: 1604: 1594: 1569: 1493: 1388: 1372: 1362: 1289: 1259: 1239: 1145: 1026: 889: 883: 200: 1805: 1781: 1757: 1694: 1664: 1630: 1612: 1573: 1503: 1378: 1320: 942: 865: 657: 637: 724: 1670: 1622: 1618: 1600: 1517: 1479: 1420: 1348: 1342: 1293: 1285: 1263: 1163: 1097: 140: 280: 1541: 1497: 1358: 1224: 948: 918: 265: 658:
Congratulating Professor Emeritus Yasuharu Suematsu on winning the Japan Prize.
1712: 1688: 1455: 1402: 1281: 1133: 1127: 1032: 716: 623: 504:
Fig.8. International submarine cables around the world. By courtesy of KDDI.
381:
Professor Suematsu is best known for his contributions to the development of
1555: 1416: 1392: 136: 1193: 373:
He has authored at least 19 books and more than 260 scientific papers.
402:
The Earliest Demonstration of Optical Fiber Communication Experiment
507: 499: 473: 465: 457: 427: 419: 411: 391: 764: 1197: 737: 109: 59: 18: 636:
Yoshihisa Yamamoto: Curriculum Vitae. Dated January 2005.
580:
IEEE James H. Mulligan, Jr. Education Medal Recipients
261:
2015 The Order of Culture, from the Emperor of Japan.
1722: 1583: 1448: 1313: 1232: 1066: 905: 774: 312: 304: 257: 246: 238: 230: 210: 191: 690: 1832:Academic staff of Tokyo Institute of Technology 339: 575: 573: 333: 1209: 749: 8: 76:promotes the subject in a subjective manner 53:Learn how and when to remove these messages 1842:Recipients of the Medal with Purple Ribbon 1216: 1202: 1194: 756: 742: 734: 366:. In 1993, he was elected a member of the 271:IEEE James H. Mulligan Jr. Education Medal 199: 188: 139:. Please do not remove this message until 362:and later became Director General of the 177:Learn how and when to remove this message 159:Learn how and when to remove this message 98:Learn how and when to remove this message 601: 599: 597: 595: 593: 591: 135:Relevant discussion may be found on the 556: 554: 530: 552: 550: 548: 546: 544: 542: 540: 538: 536: 534: 483:Phase-Shift Distributed Feedback Laser 437:Creation of Dynamic Single Mode Lasers 768:James H. Mulligan Jr. Education Medal 7: 1837:Tokyo Institute of Technology alumni 608:IEEE Journal of Quantum Electronics 250:contributing to the development of 73:This article contains wording that 1847:Recipients of the Order of Culture 276:Medal of Honour with Purple Ribbon 205:Portrait of Yasuharu SUEMATSU-2006 78:without imparting real information 14: 689:Suematsu, Yasuharu (2014-03-15). 364:National Institute of Informatics 34:This article has multiple issues. 656:Kochi University of Technology: 114: 64: 23: 1643:/ John Frederick Grassle (2013) 697:Journal of Lightwave Technology 517:Social Contribution by Research 368:National Academy of Engineering 42:or discuss these issues on the 360:Kochi University of Technology 1: 1353:Ernest John Christopher Polge 356:Tokyo Institute of Technology 242:Tokyo Institute of Technology 692:"Dynamic Single-Mode Lasers" 678:Archived copy at archive.org 672:The Japan Prize Foundation: 662:Archived copy at archive.org 584:Archived copy at archive.org 566:Archived copy at archive.org 560:The Japan Prize Foundation: 1827:People from Gifu Prefecture 383:optical fiber communication 340: 252:optical fiber communication 141:conditions to do so are met 1863: 1369:William Hayward Pickering 1244:Ephraim Katchalski-Katzir 492:Wavelength Tuneable Laser 334: 322: 297: 198: 717:10.1109/JLT.2013.2293817 660:Dated January 31, 2014, 638:Original at stanford.edu 624:10.1109/JQE.1986.1073178 610:. QE-22 (9): 1880–1886. 292:IEEE David Sarnoff Award 1510:/ Keith J. Sainsbury / 788:William Littell Everitt 1681:Emmanuelle Charpentier 1300:Frank Sherwood Rowland 643:July 18, 2010, at the 562:Dr. Yasuharu Suematsu. 513: 505: 479: 471: 463: 433: 425: 417: 398: 308:optical communications 511: 503: 477: 469: 461: 431: 423: 415: 395: 1786:John Michael Wallace 387:semiconductor lasers 1812:Japanese physicists 1770:/ Kazuo Hagimoto / 1609:Tadamitsu Kishimoto 1339:Jacques-Louis Lions 1110:Andrew S. Tanenbaum 1045:Stephen W. Director 961:Athanasios Papoulis 937:Aldert van der Ziel 709:2014JLwT...32.1144S 616:1986IJQE...22.1880N 128:of this article is 1748:Robert A. Weinberg 1730:Robert G. Gallager 1675:Steven D. Tanksley 1661:Theodore Friedmann 1564:Victor A. McKusick 1522:Masatoshi Takeichi 1470:Timothy R. Parsons 1466:John B. Goodenough 1460:Kimishige Ishizaka 1435:Jack L. Strominger 1431:W. Wesley Peterson 1411:Hiroyuki Yoshikawa 1407:Joseph Engelberger 1383:Edward F. Knipling 1080:Petar V. Kokotovic 925:Harold A. Peterson 878:Mac Van Valkenburg 842:William H. Huggins 812:George F. Corcoran 514: 506: 480: 472: 464: 434: 426: 418: 399: 317:Yoshihisa Yamamoto 286:John Tyndall Award 214:September 22, 1932 16:Japanese scientist 1799: 1798: 1768:Masataka Nakazawa 1762:Christopher Field 1647:Yasuharu Suematsu 1591:Shun-ichi Iwasaki 1550:Peter Shaw Ashton 1490:Benoit Mandelbrot 1484:Andrzej Tarkowski 1304:Elias James Corey 1191: 1190: 1176:Delores M. Etter 1086:Yasuharu Suematsu 1009:Ronald W. Schafer 985:Alan V. Oppenheim 979:Joseph W. Goodman 931:John R. Ragazzini 896:Charles A. Desoer 848:John Roy Whinnery 824:William Gould Dow 341:Suematsu Yasuharu 329:Yasuharu Suematsu 326: 325: 299:Scientific career 193:Yasuharu Suematsu 187: 186: 179: 169: 168: 161: 108: 107: 100: 57: 1854: 1637:C. Grant Willson 1425:Marc Van Montagu 1399:Takashi Sugimura 1333:Xavier Le Pichon 1278:Donald Henderson 1274:Georges Vendryes 1218: 1211: 1204: 1195: 1158:Richard Baraniuk 1122:Jose B. Cruz Jr. 1015:Ronald A. Rohrer 991:Ben G. Streetman 973:Richard B. Adler 967:James F. Gibbons 872:Franz Ollendorff 854:Edward C. Jordan 836:Hugh H. Skilling 782:Frederick Terman 758: 751: 744: 735: 729: 728: 703:(6): 1144–1158. 694: 686: 680: 670: 664: 654: 648: 634: 628: 627: 603: 586: 577: 568: 558: 345: 343: 337: 336: 313:Notable students 221: 219: 203: 189: 182: 175: 164: 157: 153: 150: 144: 118: 117: 110: 103: 96: 92: 89: 83: 68: 67: 60: 49: 27: 26: 19: 1862: 1861: 1857: 1856: 1855: 1853: 1852: 1851: 1802: 1801: 1800: 1795: 1790:Ronald M. Evans 1776:Karl Deisseroth 1772:Gero Miesenböck 1744:Bert Vogelstein 1740:Martin A. Green 1718: 1699:Max Dale Cooper 1685:Jennifer Doudna 1657:Yutaka Takahasi 1579: 1526:Erkki Ruoslahti 1508:Akira Fujishima 1476:Tim Berners-Lee 1444: 1439:Don Craig Wiley 1325:W. Jason Morgan 1309: 1268:Theodore Maiman 1254:Willem J. Kolff 1228: 1222: 1192: 1187: 1182:John G. Webster 1170:Stephen P. Boyd 1152:John G. Proakis 1140:Fawwaz T. Ulaby 1116:Joseph Bordogna 1104:Sanjit K. Mitra 1062: 1057:David Patterson 1051:Andries van Dam 1039:David A. Hodges 1021:Chung Laung Liu 1003:Hermann A. Haus 997:James D. Meindl 955:Mischa Schwartz 913:John G. Linvill 901: 860:Donald Pederson 830:B. R. Teare Jr. 818:Ernst Guillemin 800:Gordon S. Brown 770: 762: 732: 688: 687: 683: 671: 667: 655: 651: 645:Wayback Machine 635: 631: 605: 604: 589: 578: 571: 559: 532: 528: 519: 494: 485: 439: 407: 404: 385:. He developed 379: 352: 331: 289: 283: 278: 273: 268: 262: 239:Alma mater 226: 223: 217: 215: 206: 194: 183: 172: 171: 170: 165: 154: 148: 145: 134: 119: 115: 104: 93: 87: 84: 81: 69: 65: 28: 24: 17: 12: 11: 5: 1860: 1858: 1850: 1849: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1804: 1803: 1797: 1796: 1794: 1793: 1779: 1765: 1754:Katalin KarikĂł 1751: 1737: 1726: 1724: 1720: 1719: 1717: 1716: 1709:Yoshio Okamoto 1706: 1703:Jacques Miller 1692: 1678: 1668: 1654: 1651:C. David Allis 1644: 1634: 1627:Nicholas Lydon 1616: 1605:Dennis Ritchie 1598: 1595:Peter Vitousek 1587: 1585: 1581: 1580: 1578: 1577: 1570:Dennis Meadows 1567: 1560:Robert E. Kahn 1553: 1546:Peter GrĂĽnberg 1539: 1529: 1515: 1512:John H. Lawton 1501: 1494:James A. Yorke 1487: 1473: 1463: 1452: 1450: 1446: 1445: 1443: 1442: 1428: 1414: 1396: 1389:Charles K. Kao 1386: 1376: 1373:Arvid Carlsson 1366: 1363:Kary B. Mullis 1356: 1346: 1336: 1317: 1315: 1311: 1310: 1308: 1307: 1297: 1290:Luc Montagnier 1271: 1260:Henry Beachell 1257: 1250:David Turnbull 1247: 1240:John R. Pierce 1236: 1234: 1230: 1229: 1223: 1221: 1220: 1213: 1206: 1198: 1189: 1188: 1186: 1185: 1179: 1173: 1167: 1161: 1155: 1149: 1146:J. David Irwin 1143: 1137: 1131: 1125: 1119: 1113: 1107: 1101: 1095: 1089: 1083: 1077: 1074:Brian Anderson 1070: 1068: 1064: 1063: 1061: 1060: 1054: 1048: 1042: 1036: 1030: 1027:Thomas Kailath 1024: 1018: 1012: 1006: 1000: 994: 988: 982: 976: 970: 964: 958: 952: 946: 940: 934: 928: 922: 916: 909: 907: 903: 902: 900: 899: 893: 890:John G. Truxal 887: 884:Lotfi A. Zadeh 881: 875: 869: 863: 857: 851: 845: 839: 833: 827: 821: 815: 809: 803: 797: 791: 785: 778: 776: 772: 771: 763: 761: 760: 753: 746: 738: 731: 730: 681: 665: 649: 629: 587: 569: 529: 527: 524: 518: 515: 493: 490: 484: 481: 438: 435: 403: 400: 378: 375: 351: 348: 324: 323: 320: 319: 314: 310: 309: 306: 302: 301: 295: 294: 259: 255: 254: 248: 247:Known for 244: 243: 240: 236: 235: 232: 228: 227: 224: 212: 208: 207: 204: 196: 195: 192: 185: 184: 167: 166: 122: 120: 113: 106: 105: 72: 70: 63: 58: 32: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1859: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1822:Living people 1820: 1818: 1815: 1813: 1810: 1809: 1807: 1791: 1787: 1783: 1782:Brian Hoskins 1780: 1777: 1773: 1769: 1766: 1763: 1759: 1758:Drew Weissman 1755: 1752: 1749: 1745: 1741: 1738: 1735: 1731: 1728: 1727: 1725: 1721: 1714: 1710: 1707: 1704: 1700: 1696: 1695:Akira Yoshino 1693: 1690: 1686: 1682: 1679: 1676: 1672: 1669: 1666: 1665:Alain Fischer 1662: 1658: 1655: 1652: 1648: 1645: 1642: 1638: 1635: 1632: 1631:Masato Sagawa 1628: 1624: 1620: 1617: 1614: 1613:Toshio Hirano 1610: 1606: 1602: 1599: 1596: 1592: 1589: 1588: 1586: 1582: 1575: 1574:David E. Kuhl 1571: 1568: 1565: 1561: 1557: 1554: 1551: 1547: 1543: 1540: 1537: 1533: 1532:John Houghton 1530: 1527: 1523: 1519: 1516: 1513: 1509: 1505: 1504:Kenichi Honda 1502: 1499: 1495: 1491: 1488: 1485: 1481: 1477: 1474: 1471: 1467: 1464: 1461: 1457: 1454: 1453: 1451: 1447: 1440: 1436: 1432: 1429: 1426: 1422: 1418: 1415: 1412: 1408: 1404: 1400: 1397: 1394: 1390: 1387: 1384: 1380: 1379:Nick Holonyak 1377: 1374: 1370: 1367: 1364: 1360: 1357: 1354: 1350: 1347: 1344: 1340: 1337: 1334: 1330: 1326: 1322: 1321:Marvin Minsky 1319: 1318: 1316: 1312: 1305: 1301: 1298: 1295: 1291: 1287: 1283: 1279: 1275: 1272: 1269: 1265: 1261: 1258: 1255: 1251: 1248: 1245: 1241: 1238: 1237: 1235: 1231: 1226: 1219: 1214: 1212: 1207: 1205: 1200: 1199: 1196: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1072: 1071: 1069: 1065: 1058: 1055: 1052: 1049: 1046: 1043: 1040: 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 998: 995: 992: 989: 986: 983: 980: 977: 974: 971: 968: 965: 962: 959: 956: 953: 950: 947: 944: 943:Ernest S. Kuh 941: 938: 935: 932: 929: 926: 923: 920: 917: 914: 911: 910: 908: 904: 897: 894: 891: 888: 885: 882: 879: 876: 873: 870: 867: 866:Jacob Millman 864: 861: 858: 855: 852: 849: 846: 843: 840: 837: 834: 831: 828: 825: 822: 819: 816: 813: 810: 807: 804: 801: 798: 795: 794:J. F. Calvert 792: 789: 786: 783: 780: 779: 777: 773: 769: 766: 759: 754: 752: 747: 745: 740: 739: 736: 726: 722: 718: 714: 710: 706: 702: 698: 693: 685: 682: 679: 675: 669: 666: 663: 659: 653: 650: 646: 642: 639: 633: 630: 625: 621: 617: 613: 609: 602: 600: 598: 596: 594: 592: 588: 585: 581: 576: 574: 570: 567: 563: 557: 555: 553: 551: 549: 547: 545: 543: 541: 539: 537: 535: 531: 525: 523: 516: 510: 502: 498: 491: 489: 482: 476: 468: 460: 456: 452: 449: 446: 443: 436: 430: 422: 414: 410: 401: 394: 390: 388: 384: 376: 374: 371: 369: 365: 361: 357: 349: 347: 342: 330: 321: 318: 315: 311: 307: 303: 300: 296: 293: 288: 287: 282: 281:C&C Prize 277: 272: 267: 260: 256: 253: 249: 245: 241: 237: 233: 229: 222:(age 91) 213: 209: 202: 197: 190: 181: 178: 163: 160: 152: 142: 138: 132: 131: 127: 121: 112: 111: 102: 99: 91: 79: 77: 71: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 1734:Svante Pääbo 1671:Hideo Hosono 1646: 1641:Jean FrĂ©chet 1623:Brian Druker 1619:Janet Rowley 1601:Ken Thompson 1518:Makoto Nagao 1480:Anne McLaren 1421:Jozef Schell 1349:Gerhard Ertl 1343:John J. Wild 1329:Dan McKenzie 1294:Robert Gallo 1286:Frank Fenner 1264:Gurdev Khush 1164:Simon Haykin 1098:Vincent Poor 1092:Paul R. Gray 1085: 1067:2001–present 700: 696: 684: 668: 652: 632: 607: 564:Dated 2014, 520: 495: 486: 453: 450: 447: 444: 440: 405: 380: 372: 353: 328: 327: 298: 263: 173: 155: 146: 124: 94: 85: 74: 50: 43: 37: 36:Please help 33: 1817:1932 births 1542:Albert Fert 1498:Seiji Ogawa 1359:Frank Press 1225:Japan Prize 949:King-Sun Fu 919:Robert Fano 806:Ernst Weber 397:Technology. 266:Japan Prize 231:Nationality 225:Gifu, Japan 1806:Categories 1713:Rattan Lal 1689:Adi Shamir 1536:Akira Endo 1456:Ian McHarg 1403:Bruce Ames 1282:Isao Arita 1227:recipients 1134:Raj Mittra 1128:Randy Katz 1033:Adel Sedra 526:References 218:1932-09-22 149:April 2020 126:neutrality 88:April 2020 39:improve it 1556:Vint Cerf 1417:Leo Esaki 1393:Masao Ito 906:1976–2000 775:1956–1975 350:Biography 137:talk page 45:talk page 725:31634729 641:Archived 377:Research 234:Japanese 130:disputed 705:Bibcode 612:Bibcode 216: ( 1792:(2024) 1778:(2023) 1764:(2022) 1750:(2021) 1736:(2020) 1715:(2019) 1705:(2018) 1691:(2017) 1677:(2016) 1667:(2015) 1653:(2014) 1633:(2012) 1615:(2011) 1597:(2010) 1576:(2009) 1566:(2008) 1552:(2007) 1538:(2006) 1528:(2005) 1514:(2004) 1500:(2003) 1486:(2002) 1472:(2001) 1462:(2000) 1441:(1999) 1427:(1998) 1413:(1997) 1395:(1996) 1385:(1995) 1381:Jr. / 1375:(1994) 1365:(1993) 1355:(1992) 1345:(1991) 1335:(1990) 1306:(1989) 1296:(1988) 1270:(1987) 1256:(1986) 1246:(1985) 1184:(2019) 1178:(2018) 1172:(2017) 1166:(2016) 1160:(2015) 1154:(2014) 1148:(2013) 1142:(2012) 1136:(2011) 1130:(2010) 1124:(2009) 1118:(2008) 1112:(2007) 1106:(2006) 1100:(2005) 1094:(2004) 1088:(2003) 1082:(2002) 1076:(2001) 1059:(2000) 1053:(1999) 1047:(1998) 1041:(1997) 1035:(1996) 1029:(1995) 1023:(1994) 1017:(1993) 1011:(1992) 1005:(1991) 999:(1990) 993:(1989) 987:(1988) 981:(1987) 975:(1986) 969:(1985) 963:(1984) 957:(1983) 951:(1982) 945:(1981) 939:(1980) 933:(1979) 927:(1978) 921:(1977) 915:(1976) 898:(1975) 892:(1974) 886:(1973) 880:(1972) 874:(1971) 868:(1970) 862:(1969) 856:(1968) 850:(1967) 844:(1966) 838:(1965) 832:(1964) 826:(1963) 820:(1962) 814:(1961) 808:(1960) 802:(1959) 796:(1958) 790:(1957) 784:(1956) 723:  305:Fields 258:Awards 1723:2020s 1584:2010s 1449:2000s 1314:1990s 1233:1980s 721:S2CID 335:ćś«ćťľ 安晴 290:1986 284:1994 279:1994 274:1996 269:2003 264:2014 765:IEEE 211:Born 123:The 713:doi 620:doi 1808:: 1788:/ 1784:/ 1774:/ 1760:/ 1756:/ 1746:/ 1742:/ 1732:/ 1711:/ 1701:/ 1697:/ 1687:/ 1683:/ 1673:/ 1663:/ 1659:/ 1649:/ 1639:/ 1629:/ 1625:/ 1621:/ 1611:/ 1607:/ 1603:/ 1593:/ 1572:/ 1562:/ 1558:/ 1548:/ 1544:/ 1534:/ 1524:/ 1520:/ 1506:/ 1496:/ 1492:/ 1482:/ 1478:/ 1468:/ 1458:/ 1437:/ 1433:/ 1423:/ 1419:/ 1409:/ 1405:/ 1401:/ 1391:/ 1371:/ 1361:/ 1351:/ 1341:/ 1331:/ 1327:/ 1323:/ 1302:/ 1292:/ 1288:/ 1284:/ 1280:/ 1276:/ 1266:/ 1262:/ 1252:/ 1242:/ 719:. 711:. 701:32 699:. 695:. 676:, 647:, 618:. 590:^ 582:, 572:^ 533:^ 338:, 48:. 1217:e 1210:t 1203:v 757:e 750:t 743:v 727:. 715:: 707:: 626:. 622:: 614:: 344:) 332:( 220:) 180:) 174:( 162:) 156:( 151:) 147:( 143:. 133:. 101:) 95:( 90:) 86:( 80:. 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages
promotes the subject in a subjective manner
Learn how and when to remove this message
neutrality
disputed
talk page
conditions to do so are met
Learn how and when to remove this message
Learn how and when to remove this message

optical fiber communication
Japan Prize
IEEE James H. Mulligan Jr. Education Medal
Medal of Honour with Purple Ribbon
C&C Prize
John Tyndall Award
IEEE David Sarnoff Award
Yoshihisa Yamamoto
Tokyo Institute of Technology
Kochi University of Technology
National Institute of Informatics
National Academy of Engineering
optical fiber communication
semiconductor lasers



Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑