Knowledge (XXG)

Exfoliation joint

Source đź“ť

358:. Most notable may be their influence on slope stability. Exfoliation joints following the topography of inclined valley walls, bedrock hill slopes, and cliffs can create rock blocks that are particularly prone to sliding. Especially when the toe of the slope is undercut (naturally or by human activity), sliding along exfoliation joint planes is likely if the joint dip exceeds the joint's frictional angle. Foundation work may also be affected by the presence of exfoliation joints, for example in the case of 210: 99: 83: 25: 1790: 310: 264:, but horizontal stresses can remain in a competent rock mass since the medium is laterally confined. Horizontal stresses become aligned with the current ground surface as the vertical stress drops to zero at this boundary. Thus large surface-parallel compressive stresses can be generated through exhumation that may lead to tensile rock fracture as described below. 1095: 301:. However, not all mineral hydration results in increased volume, while field observations of exfoliation joints show that the joint surfaces have not experienced significant chemical alteration, so this theory can be rejected as an explanation for the origin of large-scale, deeper exfoliation joints. 337:
from near the tips of preferentially oriented microcracks, which then curve and align with the direction of the principle compressive stress. Fractures formed in this way are sometimes called axial cleavage, longitudinal splitting, or extensional fractures, and are commonly observed in the laboratory
237:
and exhumation of deeply buried rock to the ground surface allows previously compressed rock to expand radially, creating tensile stress and fracturing the rock in layers parallel to the ground surface. The description of this mechanism has led to alternate terms for exfoliation joints, including
332:
in rock, where the direction of fracture propagation is parallel to the greatest principle compressive stress and the direction of fracture opening is perpendicular to the free surface. This type of fracturing has been observed in the laboratory since at least 1900 (in both uniaxial and biaxial
345:
With consideration of the field evidence and observations of occurrence, fracture mode, and secondary forms, high surface-parallel compressive stresses and extensional fracturing (axial cleavage) seems to be the most plausible theory explaining the formation of exfoliation joints.
280:
or fire-induced temperature fluctuations have been observed to create thin lamination and flaking at the surface of rocks, sometimes labeled exfoliation. However, since diurnal temperature fluctuations only reach a few centimeters depth in rock (due to rock's low
200:
Despite their common occurrence in many different landscapes, geologists have yet to reach an agreement on a general theory of exfoliation joint formation. Many different theories have been suggested, below is a short overview of the most common.
276:/ contraction. Daily rock surface temperature variations can be quite large, and many have suggested that stresses created during heating cause the near-surface zone of rock to expand and detach in thin slabs (e.g. Wolters, 1969). Large 238:
pressure release or offloading joints. Though the logic of this theory is appealing, there are many inconsistencies with field and laboratory observations suggesting that it may be incomplete, such as:
333:
unconfined compressive loading; see Gramberg, 1989). Tensile cracks can form in a compressive stress field due to the influence of pervasive microcracks in the rock lattice and extension of so-called
35: 1127: 370:, while increased water pressure in joints may result in lifting or sliding of the dam. Finally, exfoliation joints can exert strong directional control on 1033:
Fairhurst, C.; Cook, N.G.W. (1966). "The phenomenon of rock splitting parallel to the direction of maximum compression in the neighbourhood of a surface".
645:
Bahat, D.; Grossenbacher, K.; Karasaki, K. (January 1999). "Mechanism of exfoliation joint formation in granitic rocks, Yosemite National Park".
1370: 700: 245:
Laboratory studies show that simple compression and relaxation of rock samples under realistic conditions does not cause fracturing.
69: 1120: 982: 1814: 1155: 277: 1099: 1819: 1793: 1113: 51: 338:
during uniaxial compression tests. High horizontal or surface-parallel compressive stress can result from regional
1455: 272:
Rock expands upon heating and contracts upon cooling and different rock-forming minerals have variable rates of
260:
theory (outlined below) is as follows (Goodman, 1989): The exhumation of deeply buried rocks relieves vertical
1460: 1236: 297:
by penetrating water can cause flaking of thin shells of rock since the volume of some minerals increases upon
1160: 732: 806:
Romani, J.R.; Twidale, C.R. (1999). "Sheet fractures, other stress forms and some engineering implications".
1226: 757: 464: 355: 218: 91: 47: 1737: 1541: 1430: 1300: 1280: 1180: 1150: 285:), this theory cannot account for the observed depth of exfoliation jointing that may reach 100 meters. 209: 98: 1714: 1598: 1315: 1270: 1057: 939: 896: 853: 815: 769: 654: 616: 566: 433: 282: 178: 1747: 1623: 1608: 1585: 1581: 1360: 1285: 1185: 1170: 383: 82: 1724: 1696: 1593: 1475: 1380: 1295: 1260: 1190: 1136: 1015: 912: 869: 785: 582: 417: 329: 226: 160: 719:
Bradley, W.C. (1963). "Large-scale exfoliation in massive sandstones of the Colorado Plateau".
106:
State Natural Area, Texas, US. Detached blocks have slid along the steeply-dipping joint plane.
1732: 1666: 1618: 1613: 1483: 1425: 1200: 1073: 978: 955: 696: 670: 298: 273: 998:
Hoek, E.; Bieniawski, Z.T. (1965). "Brittle fracture propagation in rock under compression".
607:
Holzhausen, G.R. (1989). "Origin of sheet structure, 1. Morphology and boundary conditions".
1824: 1536: 1531: 1465: 1440: 1435: 1410: 1350: 1310: 1165: 1065: 1007: 947: 904: 861: 823: 777: 728: 662: 624: 574: 441: 325: 261: 249: 1775: 1671: 1571: 1546: 1518: 1503: 1405: 1355: 1345: 1340: 1216: 144: 118: 317:
National Park, helping create the many spectacular domes, including Half Dome shown here.
153:
Deeper joints have a larger radius of curvature, which tends to round the corners of the
1061: 943: 900: 857: 819: 773: 658: 620: 570: 437: 313:
Exfoliation joints have modified the near-surface portions of massive granitic rocks in
1676: 1653: 1638: 1508: 1488: 1400: 1325: 1320: 1290: 1275: 1241: 1231: 1175: 388: 138: 103: 827: 666: 248:
Exfoliation joints are most commonly found in regions of surface-parallel compressive
1808: 1566: 1019: 916: 873: 789: 628: 586: 528: 309: 147:
spacing increases with depth from a few centimeters near the surface to a few meters
1561: 1221: 1195: 354:
Recognizing the presence of exfoliation joints can have important implications in
468: 1742: 1628: 1603: 1556: 1551: 1526: 1415: 1335: 1305: 371: 1069: 844:
Wolters, R. (1969). "Zur Ursache der Entstehung oberflächenparalleler Klüfte".
1770: 1757: 1375: 1265: 294: 234: 131: 1077: 959: 674: 1706: 1686: 1681: 1661: 1643: 1633: 1445: 1390: 1252: 322: 242:
Exfoliation joints can be found in rocks that have never been deeply buried.
174: 167: 154: 87: 1094: 1765: 1691: 339: 314: 214: 188: 1498: 1450: 1395: 1011: 951: 865: 781: 445: 230: 225:
This theory was originally proposed by the pioneering geomorphologist
1365: 1330: 1105: 367: 421: 342:
or topographic stresses, or by erosion or excavation of overburden.
252:, whereas this theory calls for them to occur in zones of extension. 908: 578: 187:
Often associated with secondary compressive forms such as arching,
1385: 308: 208: 97: 81: 1035:
Proceedings 1st Congress, International Society of Rock Mechanics
328:
parallel to the land (or a free) surface can create tensile mode
1420: 975:
A non-conventional view on rock mechanics and fracture mechanics
359: 1109: 887:
Blackwelder, E. (1927). "Fire as an agent in rock weathering".
363: 18: 34:
deal primarily with the United States and do not represent a
391:, example of a natural rock monument caused by exfoliation. 121:
in rock, often leading to the erosion of concentric slabs.
1048:
Terzaghi, K. (1962). "Dam foundation on sheeted granite".
150:
Maximum depth of observed occurrence is around 100 meters.
733:
10.1130/0016-7606(1963)74[519:LEIMSO]2.0.CO;2
930:
Brunner, F.K.; Scheidegger, A.E. (1973). "Exfoliation".
256:
One possible extension of this theory to match with the
43: 170:
and climate zones, not unique to glaciated landscapes.
801: 799: 557:
Jahns, R.H. (1943). "Sheet structures in granites".
1756: 1723: 1705: 1652: 1580: 1517: 1474: 1250: 1209: 1143: 602: 600: 598: 596: 173:Host rock is generally sparsely jointed, fairly 640: 638: 184:Can have concave and convex upwards curvatures. 839: 837: 752: 750: 748: 746: 744: 742: 422:"Domes and dome structures of the high Sierra" 1121: 714: 712: 502: 500: 498: 496: 494: 492: 490: 488: 486: 459: 457: 455: 426:Bulletin of the Geological Society of America 412: 410: 408: 406: 404: 32:The examples and perspective in this article 8: 366:foundation can create a significant leakage 1000:International Journal of Fracture Mechanics 760:(1973). "On the origin of sheet jointing". 686: 684: 552: 550: 548: 546: 305:Compressive stress and extensional fracture 229:in 1904. The basis of this theory is that 1128: 1114: 1106: 522: 520: 518: 469:"Geologic history of the Yosemite Valley" 70:Learn how and when to remove this message 533:United States Geological Survey Bulletin 529:"The commercial granites of New England" 400: 721:Geological Society of America Bulletin 7: 1371:List of tectonic plate interactions 846:Rock Mechanics and Rock Engineering 762:Rock Mechanics and Rock Engineering 473:U.S. Geological Survey Professional 362:. Exfoliation joints underlying a 86:Exfoliation joints wrapping around 14: 205:Removal of overburden and rebound 102:Exfoliation joints in granite at 1789: 1788: 1093: 511:. New York: John Wiley and Sons. 374:flow and contaminant transport. 350:Engineering geology significance 213:Exfoliation joints exposed in a 23: 1: 828:10.1016/S0169-555X(99)00070-7 667:10.1016/s0191-8141(98)00069-8 647:Journal of Structural Geology 191:, and A-tents (buckled slabs) 629:10.1016/0013-7952(89)90035-5 695:. Berlin: Springer-Verlag. 46:, discuss the issue on the 1841: 1070:10.1680/geot.1962.12.3.199 1784: 1456:Thick-skinned deformation 1461:Thin-skinned deformation 1237:Stereographic projection 166:Occur in many different 16:Type of weathering joint 1227:Orthographic projection 1210:Measurement conventions 1156:LamĂ©'s stress ellipsoid 125:General characteristics 507:Goodman, R.E. (1993). 356:geological engineering 318: 222: 219:Yosemite National Park 141:into sub-planar slabs. 107: 95: 92:Yosemite National Park 1738:Paleostress inversion 1431:Strike-slip tectonics 1301:Extensional tectonics 1281:Continental collision 1151:Deformation mechanism 973:Gramberg, J. (1989). 312: 212: 157:as material is eroded 117:are surface-parallel 101: 85: 1815:Geological processes 1316:Fold and thrust belt 1102:at Wikimedia Commons 283:thermal conductivity 268:Thermoelastic strain 179:compressive strength 52:create a new article 44:improve this article 1748:Section restoration 1624:Rock microstructure 1286:Convergent boundary 1186:Strain partitioning 1171:Overburden pressure 1161:Mohr–Coulomb theory 1062:1962Getq...12..199T 944:1973RMFMR...5...43B 901:1927JG.....35..134B 858:1969RMFMR...1...53W 820:1999Geomo..31...13V 774:1973RMFMR...5..163T 659:1999JSG....21...85B 621:1989EngGe..27..225H 609:Engineering Geology 571:1943JG.....51...71J 527:Dale, T.N. (1923). 509:Engineering Geology 438:1904GSAB...15...29G 384:Exfoliating granite 289:Chemical weathering 1820:Structural geology 1725:Kinematic analysis 1381:Mountain formation 1296:Divergent boundary 1261:Accretionary wedge 1137:Structural geology 1100:Exfoliation joints 1012:10.1007/BF00186851 952:10.1007/bf01246756 889:Journal of Geology 866:10.1007/BF01247357 782:10.1007/BF01238046 691:Mandl, G. (2005). 559:Journal of Geology 446:10.1130/GSAB-15-29 321:Large compressive 319: 258:compressive stress 227:Grove Karl Gilbert 223: 111:Exfoliation joints 108: 96: 1802: 1801: 1733:3D fold evolution 1619:Pressure solution 1614:Oblique foliation 1494:Exfoliation joint 1484:Columnar jointing 1144:Underlying theory 1098:Media related to 274:thermal expansion 80: 79: 72: 54:, as appropriate. 1832: 1792: 1791: 1537:Detachment fault 1532:Cataclastic rock 1466:Thrust tectonics 1436:Structural basin 1411:Pull-apart basin 1351:Horst and graben 1130: 1123: 1116: 1107: 1097: 1082: 1081: 1045: 1039: 1038: 1030: 1024: 1023: 995: 989: 988: 970: 964: 963: 927: 921: 920: 884: 878: 877: 841: 832: 831: 803: 794: 793: 754: 737: 736: 716: 707: 706: 688: 679: 678: 642: 633: 632: 615:(1–4): 225–278. 604: 591: 590: 554: 541: 540: 524: 513: 512: 504: 481: 480: 461: 450: 449: 414: 130:Commonly follow 119:fracture systems 75: 68: 64: 61: 55: 27: 26: 19: 1840: 1839: 1835: 1834: 1833: 1831: 1830: 1829: 1805: 1804: 1803: 1798: 1780: 1752: 1719: 1701: 1672:Detachment fold 1648: 1576: 1572:Transform fault 1547:Fault mechanics 1513: 1470: 1406:Plate tectonics 1356:Intra-arc basin 1246: 1217:Brunton compass 1205: 1139: 1134: 1090: 1085: 1047: 1046: 1042: 1032: 1031: 1027: 997: 996: 992: 985: 977:. A.A.Balkema. 972: 971: 967: 929: 928: 924: 886: 885: 881: 843: 842: 835: 805: 804: 797: 756: 755: 740: 718: 717: 710: 703: 690: 689: 682: 644: 643: 636: 606: 605: 594: 556: 555: 544: 526: 525: 516: 506: 505: 484: 463: 462: 453: 416: 415: 402: 398: 380: 352: 307: 291: 270: 207: 198: 177:, and has high 163:mode is tensile 127: 76: 65: 59: 56: 41: 28: 24: 17: 12: 11: 5: 1838: 1836: 1828: 1827: 1822: 1817: 1807: 1806: 1800: 1799: 1797: 1796: 1785: 1782: 1781: 1779: 1778: 1773: 1768: 1762: 1760: 1754: 1753: 1751: 1750: 1745: 1740: 1735: 1729: 1727: 1721: 1720: 1718: 1717: 1711: 1709: 1703: 1702: 1700: 1699: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1658: 1656: 1650: 1649: 1647: 1646: 1641: 1639:Tectonic phase 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1590: 1588: 1578: 1577: 1575: 1574: 1569: 1564: 1559: 1554: 1549: 1544: 1539: 1534: 1529: 1523: 1521: 1515: 1514: 1512: 1511: 1506: 1501: 1496: 1491: 1486: 1480: 1478: 1472: 1471: 1469: 1468: 1463: 1458: 1453: 1448: 1443: 1438: 1433: 1428: 1423: 1418: 1413: 1408: 1403: 1401:Passive margin 1398: 1393: 1388: 1383: 1378: 1373: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1333: 1328: 1326:Foreland basin 1323: 1321:Fold mountains 1318: 1313: 1308: 1303: 1298: 1293: 1288: 1283: 1278: 1276:Back-arc basin 1273: 1268: 1263: 1257: 1255: 1248: 1247: 1245: 1244: 1242:Strike and dip 1239: 1234: 1229: 1224: 1219: 1213: 1211: 1207: 1206: 1204: 1203: 1198: 1193: 1188: 1183: 1178: 1176:Rock mechanics 1173: 1168: 1163: 1158: 1153: 1147: 1145: 1141: 1140: 1135: 1133: 1132: 1125: 1118: 1110: 1104: 1103: 1089: 1088:External links 1086: 1084: 1083: 1056:(3): 199–208. 1040: 1025: 1006:(3): 137–155. 990: 983: 965: 932:Rock Mechanics 922: 909:10.1086/623392 895:(2): 134–140. 879: 833: 814:(1–4): 13–27. 795: 768:(3): 163–187. 738: 727:(5): 519–527. 708: 701: 680: 634: 592: 579:10.1086/625130 542: 514: 482: 451: 399: 397: 394: 393: 392: 389:Steinerne Rose 386: 379: 376: 351: 348: 306: 303: 290: 287: 269: 266: 254: 253: 246: 243: 206: 203: 197: 194: 193: 192: 185: 182: 171: 164: 158: 151: 148: 142: 135: 126: 123: 104:Enchanted Rock 78: 77: 38:of the subject 36:worldwide view 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1837: 1826: 1823: 1821: 1818: 1816: 1813: 1812: 1810: 1795: 1787: 1786: 1783: 1777: 1774: 1772: 1769: 1767: 1764: 1763: 1761: 1759: 1755: 1749: 1746: 1744: 1741: 1739: 1736: 1734: 1731: 1730: 1728: 1726: 1722: 1716: 1713: 1712: 1710: 1708: 1704: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1659: 1657: 1655: 1651: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1591: 1589: 1587: 1583: 1579: 1573: 1570: 1568: 1567:Transfer zone 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1524: 1522: 1520: 1516: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1490: 1487: 1485: 1482: 1481: 1479: 1477: 1473: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1384: 1382: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1258: 1256: 1254: 1249: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1214: 1212: 1208: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1166:Mohr's circle 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1148: 1146: 1142: 1138: 1131: 1126: 1124: 1119: 1117: 1112: 1111: 1108: 1101: 1096: 1092: 1091: 1087: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1044: 1041: 1036: 1029: 1026: 1021: 1017: 1013: 1009: 1005: 1001: 994: 991: 986: 980: 976: 969: 966: 961: 957: 953: 949: 945: 941: 937: 933: 926: 923: 918: 914: 910: 906: 902: 898: 894: 890: 883: 880: 875: 871: 867: 863: 859: 855: 851: 847: 840: 838: 834: 829: 825: 821: 817: 813: 809: 808:Geomorphology 802: 800: 796: 791: 787: 783: 779: 775: 771: 767: 763: 759: 758:Twidale, C.R. 753: 751: 749: 747: 745: 743: 739: 734: 730: 726: 722: 715: 713: 709: 704: 702:9783642063916 698: 694: 687: 685: 681: 676: 672: 668: 664: 660: 656: 652: 648: 641: 639: 635: 630: 626: 622: 618: 614: 610: 603: 601: 599: 597: 593: 588: 584: 580: 576: 572: 568: 564: 560: 553: 551: 549: 547: 543: 538: 534: 530: 523: 521: 519: 515: 510: 503: 501: 499: 497: 495: 493: 491: 489: 487: 483: 478: 474: 470: 466: 465:Matthes, F.E. 460: 458: 456: 452: 447: 443: 439: 435: 431: 427: 423: 419: 418:Gilbert, G.K. 413: 411: 409: 407: 405: 401: 395: 390: 387: 385: 382: 381: 377: 375: 373: 369: 365: 361: 357: 349: 347: 343: 341: 336: 331: 327: 324: 316: 311: 304: 302: 300: 296: 288: 286: 284: 279: 275: 267: 265: 263: 259: 251: 247: 244: 241: 240: 239: 236: 232: 228: 221:, California. 220: 216: 211: 204: 202: 195: 190: 186: 183: 180: 176: 172: 169: 165: 162: 159: 156: 152: 149: 146: 143: 140: 136: 133: 129: 128: 124: 122: 120: 116: 112: 105: 100: 94:, California. 93: 89: 84: 74: 71: 63: 53: 49: 45: 39: 37: 30: 21: 20: 1562:Thrust fault 1493: 1251:Large-scale 1222:Inclinometer 1196:Stress field 1053: 1050:Geotechnique 1049: 1043: 1034: 1028: 1003: 999: 993: 974: 968: 938:(1): 43–62. 935: 931: 925: 892: 888: 882: 852:(1): 53–70. 849: 845: 811: 807: 765: 761: 724: 720: 692: 653:(1): 85–96. 650: 646: 612: 608: 565:(2): 71–98. 562: 558: 536: 532: 508: 476: 472: 432:(1): 29–36. 429: 425: 353: 344: 334: 320: 292: 271: 257: 255: 224: 199: 115:sheet joints 114: 110: 109: 66: 60:October 2015 57: 33: 1743:Paleostress 1629:Slickenside 1604:Crenulation 1557:Fault trace 1552:Fault scarp 1542:Disturbance 1527:Cataclasite 1416:Rift valley 1336:Half-graben 1306:Fault block 1291:DĂ©collement 693:Rock Joints 372:groundwater 335:wing cracks 168:lithologies 137:Divide the 1809:Categories 1771:Pure shear 1758:Shear zone 1715:Competence 1599:Compaction 1476:Fracturing 1271:Autochthon 1266:Allochthon 1037:: 687–692. 984:9061918065 396:References 295:weathering 235:overburden 132:topography 1707:Boudinage 1687:Monocline 1682:Homocline 1662:Anticline 1644:Tectonite 1634:Stylolite 1609:Fissility 1586:lineation 1582:Foliation 1446:Syneclise 1391:Obduction 1361:Inversion 1253:tectonics 1078:0016-8505 1020:198179354 960:1434-453X 917:129709077 874:129174541 790:129852438 675:0191-8141 587:129646638 330:fractures 299:hydration 196:Formation 175:isotropic 155:landscape 88:Half Dome 48:talk page 1794:Category 1766:Mylonite 1697:Vergence 1692:Syncline 1594:Cleavage 1519:Faulting 467:(1930). 420:(1904). 378:See also 340:tectonic 326:stresses 323:tectonic 315:Yosemite 293:Mineral 215:road cut 189:buckling 161:Fracture 42:You may 1825:Erosion 1667:Chevron 1654:Folding 1499:Fissure 1451:Terrane 1396:Orogeny 1376:MĂ©lange 1311:Fenster 1201:Tension 1058:Bibcode 940:Bibcode 897:Bibcode 854:Bibcode 816:Bibcode 770:Bibcode 655:Bibcode 617:Bibcode 567:Bibcode 434:Bibcode 278:diurnal 231:erosion 1441:Suture 1426:Saddle 1366:Klippe 1331:Graben 1191:Stress 1181:Strain 1076:  1018:  981:  958:  915:  872:  788:  699:  673:  585:  368:hazard 262:stress 250:stress 1776:Shear 1504:Joint 1386:Nappe 1346:Horst 1341:Horse 1016:S2CID 913:S2CID 870:S2CID 786:S2CID 583:S2CID 145:Joint 50:, or 1677:Dome 1584:and 1509:Vein 1489:Dike 1421:Rift 1232:Rake 1074:ISSN 979:ISBN 956:ISSN 697:ISBN 671:ISSN 360:dams 139:rock 1066:doi 1008:doi 948:doi 905:doi 862:doi 824:doi 778:doi 729:doi 663:doi 625:doi 575:doi 537:738 477:160 442:doi 364:dam 233:of 217:in 113:or 90:in 1811:: 1072:. 1064:. 1054:12 1052:. 1014:. 1002:. 954:. 946:. 934:. 911:. 903:. 893:35 891:. 868:. 860:. 848:. 836:^ 822:. 812:31 810:. 798:^ 784:. 776:. 764:. 741:^ 725:74 723:. 711:^ 683:^ 669:. 661:. 651:21 649:. 637:^ 623:. 613:27 611:. 595:^ 581:. 573:. 563:51 561:. 545:^ 535:. 531:. 517:^ 485:^ 475:. 471:. 454:^ 440:. 430:15 428:. 424:. 403:^ 1129:e 1122:t 1115:v 1080:. 1068:: 1060:: 1022:. 1010:: 1004:1 987:. 962:. 950:: 942:: 936:5 919:. 907:: 899:: 876:. 864:: 856:: 850:1 830:. 826:: 818:: 792:. 780:: 772:: 766:5 735:. 731:: 705:. 677:. 665:: 657:: 631:. 627:: 619:: 589:. 577:: 569:: 539:. 479:. 448:. 444:: 436:: 181:. 134:. 73:) 67:( 62:) 58:( 40:.

Index

worldwide view
improve this article
talk page
create a new article
Learn how and when to remove this message

Half Dome
Yosemite National Park

Enchanted Rock
fracture systems
topography
rock
Joint
landscape
Fracture
lithologies
isotropic
compressive strength
buckling

road cut
Yosemite National Park
Grove Karl Gilbert
erosion
overburden
stress
stress
thermal expansion
diurnal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑