Knowledge (XXG)

Electrostatic induction

Source 📝

1018: 1061:, for example by touching the terminal with a finger, this causes charge to flow from ground to the terminal, attracted by the charge on the object close to the terminal. This charge neutralizes the charge in the gold leaves, so the leaves come together again. The electroscope now contains a net charge opposite in polarity to that of the charged object. When the electrical contact to earth is broken, e.g. by lifting the finger, the extra charge that has just flowed into the electroscope cannot escape, and the instrument retains a net charge. The charge is held in the top of the electroscope terminal by the attraction of the inducing charge. But when the inducing charge is moved away, the charge is released and spreads throughout the electroscope terminal to the leaves, so the gold leaves move apart again. 938: 1021: 1025: 1024: 1020: 1019: 1026: 1023: 911: 1010: 43: 1054:'s metal rod, so that the top terminal gains a net charge of opposite polarity to that of the object, while the gold leaves gain a charge of the same polarity. Since both leaves have the same charge, they repel each other and spread apart. The electroscope has not acquired a net charge: the charge within it has merely been redistributed, so if the charged object were to be moved away from the electroscope the leaves will come together again. 1098: 1157:
metal under the influence of the external charge in such a way that they maintain local electrostatic neutrality; in any interior region the negative charge of the electrons balances the positive charge of the nuclei. The electrons move until they reach the surface of the metal and collect there, where they are constrained from moving by the boundary. The surface is the only location where a net electric charge can exist.
1969: 1022: 1934: 988:
causes a separation of these internal charges. For example, if a positive charge is brought near the object (see picture of cylindrical electrode near electrostatic machine), the electrons in the metal will be attracted toward it and move to the side of the object facing it. When the electrons move
1147:
is reached in which the induced charges are exactly the right size and shape to cancel the external electric field throughout the interior of the metal object. Then the remaining mobile charges (electrons) in the interior of the metal no longer feel a force and the net motion of the charges stops.
1156:
Since the mobile charges (electrons) in the interior of a metal object are free to move in any direction, there can never be a static concentration of charge inside the metal; if there was, it would disperse due to its mutual repulsion. Therefore in induction, the mobile charges move through the
1598:
are repelled and move slightly to the opposite side of the molecule. Since the negative charges are now closer to the external charge than the positive charges, their attraction is greater than the repulsion of the positive charges, resulting in a small net attraction of the molecule toward the
1593:
and are not free to move about the object as in conductors; however they can move a little within the molecules. If a positive charge is brought near a nonconductive object, the electrons in each molecule are attracted toward it, and move to the side of the molecule facing the charge, while the
1126:
are repelled and move to the surface facing away. These induced surface charges create an opposing electric field that exactly cancels the field of the external charge throughout the interior of the metal. Therefore electrostatic induction ensures that the electric field everywhere inside a
893:) is constant at any point throughout a conductor. Electrostatic induction is also responsible for the attraction of light nonconductive objects, such as balloons, paper or styrofoam scraps, to static electric charges. Electrostatic induction laws apply in dynamic situations as far as the 1043:, which is a large reservoir of both positive and negative charges, some of the negative charges in the ground will flow into the object, under the attraction of the nearby positive charge. When the contact with ground is broken, the object is left with a net negative charge. 1143:. As the charges in the metal object continue to separate, the resulting positive and negative regions create their own electric field, which opposes the field of the external charge. This process continues until very quickly (within a fraction of a second) an 856:
in an object that is caused by the influence of nearby charges. In the presence of a charged body, an insulated conductor develops a positive charge on one end and a negative charge on the other end. Induction was discovered by British scientist
989:
out of an area, they leave an unbalanced positive charge due to the nuclei. This results in a region of negative charge on the object nearest to the external charge, and a region of positive charge on the part away from it. These are called
1030:
Using an electroscope to show electrostatic induction. The device has leaves/needle that become charged when introducing a charged rod to it. The leaves bend the leave/needle, and the stronger the static introduced, the more bending
1050:, which is an instrument for detecting electric charge. The electroscope is first discharged, and a charged object is then brought close to the instrument's top terminal. Induction causes a separation of the charges inside the 1160:
This establishes the principle that electrostatic charges on conductive objects reside on the surface of the object. External electric fields induce surface charges on metal objects that exactly cancel the field within.
1000:
charge on the object; it still has no net charge. This induction effect is reversible; if the nearby charge is removed, the attraction between the positive and negative internal charges causes them to intermingle again.
1083:
of the object is momentarily grounded while the inducing charge is near, a charge opposite in polarity to the inducing charge will be attracted from ground into the object, and it will be left with a charge
1366: 1181:(work) required to move a small positive charge through an electric field between the two points, divided by the size of the charge. If there is an electric field directed from point 950:
that builds up on the fur causes a polarization of the molecules of the styrofoam due to electrostatic induction, resulting in a slight attraction of the styrofoam to the charged fur.
1534: 1461: 600: 1035:
However, the induction effect can also be used to put a net charge on an object. If, while it is close to the positive charge, the above object is momentarily connected through a
1499: 1426: 573: 1388: 1333: 1311: 1289: 1267: 1245: 1223: 1201: 585: 1548: 1539:
Another way of saying this is that in electrostatics, electrostatic induction ensures that the potential (voltage) throughout a conductive object is constant.
1064:
The sign of the charge left on the electroscope after grounding is always opposite in sign to the external inducing charge. The two rules of induction are:
1678: 836: 605: 1291:
against the opposing force of the electric field. Thus the electrostatic potential energy of the charge will increase. So the potential at point
615: 937: 1980: 1614:, which has a positive and negative end due to its structure, even in the absence of external charge. This is the principle of operation of a 440: 1748: 1599:
charge. This effect is microscopic, but since there are so many molecules, it adds up to enough force to move a light object like Styrofoam.
1944: 1869: 455: 77: 1950: 1859: 1825: 1724: 1684:... the Swede, Johann Karl Wilcke (1732–1796), then resident in Germany, who in 1762 published an account of experiments in which.... 335: 1835: 1758: 67: 1973: 1891: 250: 1682:. Vol. 9 (11th ed.). Cambridge University Press. pp. 179–193, see page 181, second para, three lines from end. 1788: 829: 595: 72: 610: 315: 1563:) objects, and is responsible for the attraction of small light nonconductive objects, like balloons, scraps of paper or 475: 465: 450: 215: 82: 961:
in each part of it, located close together, so no part of it has a net electric charge. The positive charges are the
927:, causing the cylinder's near end to acquire a negative charge and the far end to acquire a positive charge. The small 515: 205: 768: 643: 540: 435: 852:, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of 1595: 268: 996:
Since this process is just a redistribution of the charges that were already in the object, it doesn't change the
894: 822: 783: 310: 300: 240: 235: 175: 20: 1338: 882: 753: 633: 320: 1507: 1434: 2012: 1603: 1547: 1395: 1170: 969:
which are bound into the structure of matter and are not free to move. The negative charges are the atoms'
886: 874: 866: 758: 728: 160: 145: 1047: 1013:
Gold-leaf electroscope, showing induction (labelled polarity of charges), before the terminal is grounded.
928: 580: 350: 125: 1469: 917: 678: 365: 355: 305: 295: 42: 1638: 910: 1131:
A remaining question is how large the induced charges are. The movement of charges is caused by the
2017: 1988: 1663: 1400: 1058: 1040: 1036: 981: 974: 803: 703: 668: 420: 285: 185: 170: 105: 1602:
This change in the distribution of charge in a molecule due to an external electric field is called
210: 1102: 763: 743: 738: 545: 530: 415: 385: 280: 1778: 1371: 1316: 1294: 1272: 1250: 1228: 1206: 1184: 1120:
are attracted and move to the surface of the object facing the external charge. Positive charges
1009: 1568: 947: 638: 378: 180: 140: 1940: 1865: 1831: 1805: 1784: 1754: 1720: 1714: 1144: 870: 862: 698: 993:. If the external charge is negative, the polarity of the charged regions will be reversed. 1909: 1140: 985: 943: 798: 713: 673: 663: 550: 505: 488: 405: 340: 110: 34: 1668: 977:
objects such as metals, some of the electrons are able to move freely about in the object.
1895: 1466:
Since there can be no electric field inside a conductive object to exert force on charges
958: 853: 733: 658: 653: 520: 395: 360: 255: 220: 120: 773: 1097: 1611: 1136: 1057:
But if an electrical contact is now briefly made between the electroscope terminal and
693: 688: 510: 400: 325: 275: 225: 198: 155: 130: 100: 93: 1884: 2006: 1673: 966: 878: 808: 793: 778: 718: 430: 345: 330: 245: 230: 135: 1615: 1575: 1556: 1051: 788: 683: 648: 590: 525: 410: 290: 165: 445: 1855: 858: 708: 560: 390: 52: 1560: 957:
A normal uncharged piece of matter has equal numbers of positive and negative
425: 1564: 748: 723: 535: 460: 57: 1968: 1590: 1582: 1391: 1269:. Work will have to be done on the charge by a force to make it move to 1114:
causes the mobile charges in metal objects to separate. Negative charges
970: 931:
hanging from the bottom show that the charge is concentrated at the ends.
500: 495: 115: 984:
object, such as a piece of metal, the force of the nearby charge due to
1174: 890: 470: 916:
Demonstration of induction, in the 1870s. The positive terminal of an
1607: 1501:, within a conductive object the gradient of the potential is zero 1178: 555: 62: 1889:, Powerpoint presentation, p.27-28, 2009, S. Polytechnic State Univ. 1667: 1546: 1132: 1101:
Surface charges induced in metal objects by a nearby charge. The
1096: 1016: 1008: 1586: 962: 16:
Separation of electric charge due to presence of other charges
1068:
If the object is not grounded, the nearby charge will induce
1864:(3rd ed.). USA: John Wiley and Sons. pp. 594–596. 1093:
The electrostatic field inside a conductive object is zero
1747:
Halliday, David; Resnick, Robert; Walker, Jearl (2010).
1742: 1740: 1738: 1736: 1165:
The voltage throughout a conductive object is constant
1510: 1472: 1437: 1403: 1374: 1341: 1319: 1297: 1275: 1253: 1231: 1209: 1187: 980:
When a charged object is brought near an uncharged,
1987:. Oswego City School District. 1999. Archived from 1225:then it will exert a force on a charge moving from 1633: 1631: 1528: 1493: 1455: 1420: 1382: 1360: 1327: 1305: 1283: 1261: 1239: 1217: 1195: 1939:. USA: famous Publishing. 2009. p. 329. 830: 8: 1719:. Cambridge Univ. Press. pp. 127–128. 1713:Purcell, Edward M.; David J. Morin (2013). 923:is placed near an uncharged brass cylinder 1849: 1847: 1361:{\displaystyle \mathbf {E} (\mathbf {x} )} 837: 823: 41: 25: 1807:Magnetism & Electricity for Beginners 1708: 1706: 1704: 1702: 1700: 1698: 1696: 1694: 1692: 1606:, and the polarized molecules are called 1525: 1520: 1509: 1490: 1476: 1471: 1452: 1447: 1436: 1410: 1402: 1375: 1373: 1350: 1342: 1340: 1320: 1318: 1298: 1296: 1276: 1274: 1254: 1252: 1232: 1230: 1210: 1208: 1188: 1186: 1830:. US: Academic Press. pp. 159–161. 1819: 1817: 1551:Paper snippets attracted by a charged CD 1046:This method can be demonstrated using a 1810:. Macmillan & Company. p. 182. 1627: 1529:{\displaystyle \nabla V=\mathbf {0} \,} 1456:{\displaystyle \nabla V=\mathbf {E} \,} 885:in this context. Due to induction, the 586:Electromagnetism and special relativity 33: 1772: 1770: 1610:. This should not be confused with a 1981:"Charging by electrostatic induction" 1555:A similar induction effect occurs in 1177:between two points is defined as the 1152:Induced charge resides on the surface 606:Maxwell equations in curved spacetime 7: 1753:(9 ed.). John Wiley and Sons. 1139:of the external charged object, by 1887:Electric Charge and Electric Force 1511: 1494:{\displaystyle (\mathbf {E} =0)\,} 1438: 14: 1827:Electricity, magnetism, and light 1967: 1910:"Charge and Charge Interactions" 1521: 1477: 1448: 1411: 1376: 1351: 1343: 1321: 1299: 1277: 1255: 1233: 1211: 1189: 936: 909: 1543:Induction in dielectric objects 1421:{\displaystyle V(\mathbf {x} )} 1005:Charging an object by induction 881:, use this principle. See also 1487: 1473: 1415: 1407: 1355: 1347: 861:in 1753 and Swedish professor 1: 1936:Kaplan MCAT Physics 2010-2011 946:clinging to a cat's fur. The 611:Relativistic electromagnetism 1914:Static Electricity, Lesson 1 1804:Hadley, Harry Edwin (1899). 1777:Cope, Thomas A. Darlington. 1383:{\displaystyle \mathbf {x} } 1328:{\displaystyle \mathbf {a} } 1306:{\displaystyle \mathbf {b} } 1284:{\displaystyle \mathbf {b} } 1262:{\displaystyle \mathbf {b} } 1240:{\displaystyle \mathbf {a} } 1218:{\displaystyle \mathbf {a} } 1196:{\displaystyle \mathbf {b} } 1108:of a nearby positive charge 1572:(see picture of cat, above) 2034: 1645:. Britannica.com Inc. 2008 1127:conductive object is zero. 336:Liénard–Wiechert potential 18: 1824:Saslow, Wayne M. (2002). 1783:. Library of Alexandria. 1716:Electricity and Magnetism 1639:"Electrostatic induction" 895:quasistatic approximation 601:Mathematical descriptions 311:Electromagnetic radiation 301:Electromagnetic induction 241:Magnetic vector potential 236:Magnetic scalar potential 21:Electromagnetic induction 1985:Regents exam prep center 1394:(rate of change) of the 1313:is higher than at point 867:Electrostatic generators 19:Not to be confused with 1974:Electrostatic induction 1916:. The Physics Classroom 1908:Henderson, Tom (2011). 1894:April 19, 2012, at the 1861:Matter and Interactions 1750:Fundamentals of Physics 1679:Encyclopædia Britannica 1604:dielectric polarization 1569:static electric charges 1396:electrostatic potential 1171:electrostatic potential 1135:exerted on them by the 1088:to the inducing charge. 982:electrically conducting 975:electrically conductive 929:pith ball electroscopes 887:electrostatic potential 875:Van de Graaff generator 850:Electrostatic induction 151:Electrostatic induction 146:Electrostatic discharge 1898:on DocStoc.com website 1616:pith-ball electroscope 1581:In nonconductors, the 1552: 1530: 1495: 1457: 1422: 1384: 1362: 1335:. The electric field 1329: 1307: 1285: 1263: 1241: 1219: 1197: 1128: 1076:charges in the object. 1048:gold-leaf electroscope 1032: 1014: 581:Electromagnetic tensor 1664:Fleming, John Ambrose 1643:Britannica.com Online 1550: 1531: 1496: 1458: 1423: 1385: 1363: 1330: 1308: 1286: 1264: 1242: 1220: 1198: 1100: 1029: 1012: 918:electrostatic machine 574:Covariant formulation 366:Synchrotron radiation 306:Electromagnetic pulse 296:Electromagnetic field 1976:at Wikimedia Commons 1854:Sherwood, Bruce A.; 1508: 1470: 1435: 1401: 1372: 1339: 1317: 1295: 1273: 1251: 1229: 1207: 1185: 616:Stress–energy tensor 541:Reluctance (complex) 286:Displacement current 1669:"Electricity"  1106:(lines with arrows) 1103:electrostatic field 531:Magnetomotive force 416:Electromotive force 386:Alternating current 321:Jefimenko equations 281:Cyclotron radiation 1885:Paul E. Tippens, 1553: 1526: 1491: 1453: 1418: 1380: 1358: 1325: 1303: 1281: 1259: 1237: 1215: 1193: 1129: 1033: 1015: 948:static electricity 379:Electrical network 216:Gauss magnetic law 181:Static electricity 141:Electric potential 1972:Media related to 1946:978-1-4277-9875-6 1871:978-0-470-50347-8 1041:electrical ground 1027: 944:Styrofoam peanuts 871:Wimshurst machine 863:Johan Carl Wilcke 847: 846: 546:Reluctance (real) 516:Gyrator–capacitor 461:Resonant cavities 351:Maxwell equations 2025: 1999: 1997: 1996: 1971: 1955: 1954: 1949:. Archived from 1931: 1925: 1924: 1922: 1921: 1905: 1899: 1882: 1876: 1875: 1851: 1842: 1841: 1821: 1812: 1811: 1801: 1795: 1794: 1774: 1765: 1764: 1744: 1731: 1730: 1710: 1687: 1686: 1671: 1660: 1654: 1653: 1651: 1650: 1635: 1535: 1533: 1532: 1527: 1524: 1500: 1498: 1497: 1492: 1480: 1462: 1460: 1459: 1454: 1451: 1427: 1425: 1424: 1419: 1414: 1389: 1387: 1386: 1381: 1379: 1367: 1365: 1364: 1359: 1354: 1346: 1334: 1332: 1331: 1326: 1324: 1312: 1310: 1309: 1304: 1302: 1290: 1288: 1287: 1282: 1280: 1268: 1266: 1265: 1260: 1258: 1246: 1244: 1243: 1238: 1236: 1224: 1222: 1221: 1216: 1214: 1202: 1200: 1199: 1194: 1192: 1124: 1118: 1112: 1028: 959:electric charges 940: 913: 839: 832: 825: 506:Electric machine 489:Magnetic circuit 451:Parallel circuit 441:Network analysis 406:Electric current 341:London equations 186:Triboelectricity 176:Potential energy 45: 35:Electromagnetism 26: 2033: 2032: 2028: 2027: 2026: 2024: 2023: 2022: 2003: 2002: 1994: 1992: 1979: 1964: 1959: 1958: 1947: 1933: 1932: 1928: 1919: 1917: 1907: 1906: 1902: 1896:Wayback Machine 1883: 1879: 1872: 1853: 1852: 1845: 1838: 1823: 1822: 1815: 1803: 1802: 1798: 1791: 1776: 1775: 1768: 1761: 1746: 1745: 1734: 1727: 1712: 1711: 1690: 1662: 1661: 1657: 1648: 1646: 1637: 1636: 1629: 1624: 1545: 1506: 1505: 1468: 1467: 1433: 1432: 1399: 1398: 1370: 1369: 1337: 1336: 1315: 1314: 1293: 1292: 1271: 1270: 1249: 1248: 1227: 1226: 1205: 1204: 1183: 1182: 1167: 1154: 1122: 1116: 1110: 1095: 1017: 1007: 991:induced charges 955: 954: 953: 952: 951: 941: 933: 932: 914: 903: 854:electric charge 843: 814: 813: 629: 621: 620: 576: 566: 565: 521:Induction motor 491: 481: 480: 396:Current density 381: 371: 370: 361:Poynting vector 271: 269:Electrodynamics 261: 260: 256:Right-hand rule 221:Magnetic dipole 211:Biot–Savart law 201: 191: 190: 126:Electric dipole 121:Electric charge 96: 24: 17: 12: 11: 5: 2031: 2029: 2021: 2020: 2015: 2013:Electrostatics 2005: 2004: 2001: 2000: 1977: 1963: 1962:External links 1960: 1957: 1956: 1953:on 2014-01-31. 1945: 1926: 1900: 1877: 1870: 1856:Ruth W. Chabay 1843: 1836: 1813: 1796: 1789: 1766: 1759: 1732: 1726:978-1107014022 1725: 1688: 1674:Chisholm, Hugh 1655: 1626: 1625: 1623: 1620: 1612:polar molecule 1544: 1541: 1537: 1536: 1523: 1519: 1516: 1513: 1489: 1486: 1483: 1479: 1475: 1464: 1463: 1450: 1446: 1443: 1440: 1417: 1413: 1409: 1406: 1378: 1357: 1353: 1349: 1345: 1323: 1301: 1279: 1257: 1235: 1213: 1191: 1166: 1163: 1153: 1150: 1137:electric field 1094: 1091: 1090: 1089: 1077: 1006: 1003: 942: 935: 934: 915: 908: 907: 906: 905: 904: 902: 899: 869:, such as the 845: 844: 842: 841: 834: 827: 819: 816: 815: 812: 811: 806: 801: 796: 791: 786: 781: 776: 771: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 676: 671: 666: 661: 656: 651: 646: 641: 636: 630: 627: 626: 623: 622: 619: 618: 613: 608: 603: 598: 596:Four-potential 593: 588: 583: 577: 572: 571: 568: 567: 564: 563: 558: 553: 548: 543: 538: 533: 528: 523: 518: 513: 511:Electric motor 508: 503: 498: 492: 487: 486: 483: 482: 479: 478: 473: 468: 466:Series circuit 463: 458: 453: 448: 443: 438: 436:Kirchhoff laws 433: 428: 423: 418: 413: 408: 403: 401:Direct current 398: 393: 388: 382: 377: 376: 373: 372: 369: 368: 363: 358: 356:Maxwell tensor 353: 348: 343: 338: 333: 328: 326:Larmor formula 323: 318: 313: 308: 303: 298: 293: 288: 283: 278: 276:Bremsstrahlung 272: 267: 266: 263: 262: 259: 258: 253: 248: 243: 238: 233: 228: 226:Magnetic field 223: 218: 213: 208: 202: 199:Magnetostatics 197: 196: 193: 192: 189: 188: 183: 178: 173: 168: 163: 158: 153: 148: 143: 138: 133: 131:Electric field 128: 123: 118: 113: 108: 103: 101:Charge density 97: 94:Electrostatics 92: 91: 88: 87: 86: 85: 80: 75: 70: 65: 60: 55: 47: 46: 38: 37: 31: 30: 29:Articles about 15: 13: 10: 9: 6: 4: 3: 2: 2030: 2019: 2016: 2014: 2011: 2010: 2008: 1991:on 2008-08-28 1990: 1986: 1982: 1978: 1975: 1970: 1966: 1965: 1961: 1952: 1948: 1942: 1938: 1937: 1930: 1927: 1915: 1911: 1904: 1901: 1897: 1893: 1890: 1888: 1881: 1878: 1873: 1867: 1863: 1862: 1857: 1850: 1848: 1844: 1839: 1837:0-12-619455-6 1833: 1829: 1828: 1820: 1818: 1814: 1809: 1808: 1800: 1797: 1792: 1786: 1782: 1781: 1773: 1771: 1767: 1762: 1760:9780470469118 1756: 1752: 1751: 1743: 1741: 1739: 1737: 1733: 1728: 1722: 1718: 1717: 1709: 1707: 1705: 1703: 1701: 1699: 1697: 1695: 1693: 1689: 1685: 1681: 1680: 1675: 1670: 1665: 1659: 1656: 1644: 1640: 1634: 1632: 1628: 1621: 1619: 1617: 1613: 1609: 1605: 1600: 1597: 1592: 1588: 1585:are bound to 1584: 1579: 1577: 1574:, as well as 1573: 1570: 1566: 1562: 1558: 1557:nonconductive 1549: 1542: 1540: 1517: 1514: 1504: 1503: 1502: 1484: 1481: 1444: 1441: 1431: 1430: 1429: 1404: 1397: 1393: 1368:at any point 1180: 1176: 1172: 1164: 1162: 1158: 1151: 1149: 1146: 1142: 1141:Coulomb's law 1138: 1134: 1125: 1119: 1113: 1107: 1104: 1099: 1092: 1087: 1082: 1078: 1075: 1071: 1067: 1066: 1065: 1062: 1060: 1055: 1053: 1049: 1044: 1042: 1038: 1011: 1004: 1002: 999: 994: 992: 987: 986:Coulomb's law 983: 978: 976: 972: 968: 964: 960: 949: 945: 939: 930: 926: 922: 919: 912: 900: 898: 896: 892: 888: 884: 880: 879:electrophorus 876: 872: 868: 864: 860: 855: 851: 840: 835: 833: 828: 826: 821: 820: 818: 817: 810: 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 631: 625: 624: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 578: 575: 570: 569: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 493: 490: 485: 484: 477: 474: 472: 469: 467: 464: 462: 459: 457: 454: 452: 449: 447: 444: 442: 439: 437: 434: 432: 431:Joule heating 429: 427: 424: 422: 419: 417: 414: 412: 409: 407: 404: 402: 399: 397: 394: 392: 389: 387: 384: 383: 380: 375: 374: 367: 364: 362: 359: 357: 354: 352: 349: 347: 346:Lorentz force 344: 342: 339: 337: 334: 332: 329: 327: 324: 322: 319: 317: 314: 312: 309: 307: 304: 302: 299: 297: 294: 292: 289: 287: 284: 282: 279: 277: 274: 273: 270: 265: 264: 257: 254: 252: 249: 247: 246:Magnetization 244: 242: 239: 237: 234: 232: 231:Magnetic flux 229: 227: 224: 222: 219: 217: 214: 212: 209: 207: 204: 203: 200: 195: 194: 187: 184: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 152: 149: 147: 144: 142: 139: 137: 136:Electric flux 134: 132: 129: 127: 124: 122: 119: 117: 114: 112: 109: 107: 104: 102: 99: 98: 95: 90: 89: 84: 81: 79: 76: 74: 73:Computational 71: 69: 66: 64: 61: 59: 56: 54: 51: 50: 49: 48: 44: 40: 39: 36: 32: 28: 27: 22: 1993:. Retrieved 1989:the original 1984: 1951:the original 1935: 1929: 1918:. Retrieved 1913: 1903: 1886: 1880: 1860: 1826: 1806: 1799: 1779: 1749: 1715: 1683: 1677: 1658: 1647:. Retrieved 1642: 1601: 1580: 1578:in clothes. 1576:static cling 1571: 1554: 1538: 1465: 1168: 1159: 1155: 1130: 1121: 1115: 1109: 1105: 1085: 1080: 1073: 1069: 1063: 1056: 1052:electroscope 1045: 1034: 997: 995: 990: 979: 956: 924: 920: 883:Stephen Gray 849: 848: 591:Four-current 526:Linear motor 411:Electrolysis 291:Eddy current 251:Permeability 171:Polarization 166:Permittivity 150: 2018:Electricity 1145:equilibrium 901:Explanation 859:John Canton 561:Transformer 391:Capacitance 316:Faraday law 111:Coulomb law 53:Electricity 2007:Categories 1995:2008-06-25 1920:2012-01-01 1790:1465543724 1649:2008-06-25 1622:References 1561:dielectric 1037:conductive 897:is valid. 865:in 1762. 628:Scientists 476:Waveguides 456:Resistance 426:Inductance 206:Ampère law 1594:positive 1591:molecules 1583:electrons 1565:Styrofoam 1512:∇ 1439:∇ 1428: : 1203:to point 971:electrons 784:Steinmetz 714:Kirchhoff 699:Jefimenko 694:Hopkinson 679:Helmholtz 674:Heaviside 536:Permeance 421:Impedance 161:Insulator 156:Gauss law 106:Conductor 83:Phenomena 78:Textbooks 58:Magnetism 1892:Archived 1858:(2011). 1666:(1911). 1392:gradient 1086:opposite 1081:any part 1074:opposite 1039:path to 877:and the 809:Wiechert 764:Poynting 654:Einstein 501:DC motor 496:AC motor 331:Lenz law 116:Electret 1780:Physics 1676:(ed.). 1608:dipoles 1390:is the 1175:voltage 1031:occurs. 921:(right) 891:voltage 794:Thomson 769:Ritchie 759:Poisson 744:Neumann 739:Maxwell 734:Lorentz 729:Liénard 659:Faraday 644:Coulomb 471:Voltage 446:Ohm law 68:History 1943:  1868:  1834:  1787:  1757:  1723:  1596:nuclei 1179:energy 1117:(blue) 1059:ground 973:. In 967:nuclei 925:(left) 873:, the 779:Singer 774:Savart 754:Ørsted 719:Larmor 709:Kelvin 664:Fizeau 634:Ampère 556:Stator 63:Optics 1672:. In 1587:atoms 1567:, to 1133:force 1123:(red) 1070:equal 998:total 963:atoms 804:Weber 799:Volta 789:Tesla 704:Joule 689:Hertz 684:Henry 669:Gauss 551:Rotor 1941:ISBN 1866:ISBN 1832:ISBN 1785:ISBN 1755:ISBN 1721:ISBN 1169:The 1072:and 724:Lenz 649:Davy 639:Biot 1589:or 1247:to 1173:or 1111:(+) 1079:If 749:Ohm 2009:: 1983:. 1912:. 1846:^ 1816:^ 1769:^ 1735:^ 1691:^ 1641:. 1630:^ 1618:. 965:' 1998:. 1923:. 1874:. 1840:. 1793:. 1763:. 1729:. 1652:. 1559:( 1522:0 1518:= 1515:V 1488:) 1485:0 1482:= 1478:E 1474:( 1449:E 1445:= 1442:V 1416:) 1412:x 1408:( 1405:V 1377:x 1356:) 1352:x 1348:( 1344:E 1322:a 1300:b 1278:b 1256:b 1234:a 1212:a 1190:b 889:( 838:e 831:t 824:v 23:.

Index

Electromagnetic induction
Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity
Triboelectricity
Magnetostatics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.