Knowledge

Hyperbolic sector

Source 📝

122: 184: 20: 416: 837: 771: 608: 697: 375: 328: 913: 281: 509:
To accommodate the case of negative logarithms and the corresponding negative hyperbolic angles, different hyperbolic sectors are constructed according to whether
1060: 483: 502:
producing a unit of area (under the hyperbola or in a hyperbolic sector in standard position). Then the natural logarithm could be recognized as the
869:. To establish hyperbolic measure on a line, Klein noted that the area of a hyperbolic sector provided visual illustration of the concept. 475:
addressed the problem of computing the areas bounded by a hyperbola. His findings led to the natural logarithm function, once called the
1037: 1057: 458: 467: 1081: 780: 714: 993: 516: 1086: 613: 997: 495: 472: 980: 454: 491: 343: 296: 915:. The area of such hyperbolic sectors has been used to define hyperbolic distance in a geometry textbook. 862: 81: 875: 198: 121: 31: 407:= 1 onto the main diagonal, in his article "Note on the addition theorem for hyperbolic functions". 1091: 866: 852: 334: 217: 110: 85: 392: 183: 1053: 1033: 432: 233: 138: 253: 952: 503: 400: 385: 191: 172: 1043: 1040: 1016: 924: 126: 35: 487: 446: 229: 175:
at the origin, with the measure of the latter being defined as the area of the former.
89: 43: 1076: 1070: 944: 965: 1008: 865:
was published in 1928, it provided a foundation for the subject by reference to
858: 19: 486:, the natural logarithm was known in terms of the area of a hyperbolic sector. 479:
since it is obtained by integrating, or finding the area, under the hyperbola.
471:), the hyperbolic quadrature required the invention in 1647 of a new function: 462: 245: 71: 39: 171:
When in standard position, a hyperbolic sector corresponds to a positive
156:, add triangle {(0, 0), (1, 0), (1, 1)}, and subtract triangle {(0, 0), ( 513:
is greater or less than one. A variable right triangle with area 1/2 is
415: 970:, Chapter VI: "On the connection of common and hyperbolic trigonometry" 391:
The analogy between circular and hyperbolic functions was described by
80:, or the corresponding region when this hyperbola is re-scaled and its 286:
with the hypotenuse being the segment from the origin to the point (
839:
This convention is in accord with a negative natural logarithm for
414: 182: 120: 16:
Region of the Cartesian plane bounded by a hyperbola and two radii
290:) on the hyperbola. The length of the base of this triangle is 134: 461:. Whereas quadrature of the parabola had been accomplished by 403:
used such triangles, projecting from a point on the hyperbola
129:, shown squeezing rectangles and rotating a hyperbolic sector 224:
When in standard position, a hyperbolic sector determines a
18: 1058:
On the introduction of the notion of hyperbolic functions
711:. A positive hyperbolic angle is given by the area of 872:
Hyperbolic sectors can also be drawn to the hyperbola
190:(yellow) and hyperbolic sector (red) corresponding to 878: 783: 717: 616: 519: 346: 299: 256: 949:
Ideas and Methods of Affine and Projective Geometry
46:from the origin to it. For example, the two points 907: 831: 765: 691: 602: 369: 322: 275: 832:{\displaystyle \int _{x}^{1}{\frac {dt}{t}}+V-T.} 766:{\displaystyle \int _{1}^{x}{\frac {dt}{t}}+T-V.} 699:The natural logarithm is known as the area under 168:)} (both triangles of which have the same area). 457:of the hyperbola. The other cases are given by 137:of a hyperbolic sector in standard position is 92:. A hyperbolic sector in standard position has 603:{\displaystyle V=\{(x,1/x),\ (x,0),\ (0,0)\}.} 88:leaving the center at the origin, as with the 1061:Bulletin of the American Mathematical Society 8: 1013:Vorlesungen über Nicht-Euklidische Geometrie 773:A negative hyperbolic angle is given by the 692:{\displaystyle T=\{(1,1),\ (1,0),\ (0,0)\}.} 683: 623: 594: 526: 484:Introduction to the Analysis of the Infinite 955:), page 151, Ministry of Education, Moscow 897: 885: 877: 799: 793: 788: 782: 733: 727: 722: 716: 615: 541: 518: 366: 347: 345: 319: 300: 298: 272: 255: 109:Hyperbolic sectors are the basis for the 236:at the origin, base on the diagonal ray 936: 125:Hyperbolic sector area is preserved by 370:{\displaystyle {\sqrt {2}}\sinh u,\,} 323:{\displaystyle {\sqrt {2}}\cosh u,\,} 7: 218:hyperbolic cosine and sine functions 1030:Perspectives on Projective Geometry 908:{\displaystyle y={\sqrt {1+x^{2}}}} 482:Before 1748 and the publication of 506:to the transcendental function e. 14: 490:changed that when he introduced 209:). The legs of the triangle are 967:Trigonometry and Double Algebra 397:Trigonometry and Double Algebra 983:20:145–8, see diagram page 146 680: 668: 659: 647: 638: 626: 591: 579: 570: 558: 549: 529: 468:The Quadrature of the Parabola 459:Cavalieri's quadrature formula 1: 1028:Jürgen Richter-Gebert (2011) 494:such as 10. Euler identified 465:in the third century BC (in 1108: 964:Augustus De Morgan (1849) 850: 453:= –1 corresponding to the 430: 244:, and third vertex on the 998:Humboldt State University 994:The History of Logarithms 473:Gregoire de Saint-Vincent 148:Proof: Integrate under 1/ 981:Messenger of Mathematics 979:William Burnside (1890) 492:transcendental functions 276:{\displaystyle xy=1,\,} 1015:, p. 173, figure 113, 909: 863:non-Euclidean geometry 833: 767: 693: 610:The isosceles case is 604: 428: 427:as exploited by Euler. 371: 324: 277: 221: 130: 23: 943:V.G. Ashkinuse & 910: 834: 768: 694: 605: 418: 372: 325: 278: 199:rectangular hyperbola 186: 124: 72:rectangular hyperbola 22: 876: 781: 715: 614: 517: 477:hyperbolic logarithm 411:Hyperbolic logarithm 344: 297: 254: 111:hyperbolic functions 1082:Elementary geometry 867:projective geometry 853:Hyperbolic geometry 847:Hyperbolic geometry 798: 732: 449:except in the case 437:It is known that f( 384:is the appropriate 226:hyperbolic triangle 188:Hyperbolic triangle 179:Hyperbolic triangle 905: 829: 784: 763: 718: 689: 600: 429: 393:Augustus De Morgan 367: 320: 273: 222: 131: 24: 1087:Integral calculus 1054:Mellen W. Haskell 903: 812: 746: 667: 646: 578: 557: 445:has an algebraic 433:Natural logarithm 352: 305: 139:natural logarithm 28:hyperbolic sector 1099: 1046: 1026: 1020: 1006: 1000: 992:Martin Flashman 990: 984: 977: 971: 962: 956: 941: 914: 912: 911: 906: 904: 902: 901: 886: 838: 836: 835: 830: 813: 808: 800: 797: 792: 772: 770: 769: 764: 747: 742: 734: 731: 726: 707:between one and 698: 696: 695: 690: 665: 644: 609: 607: 606: 601: 576: 555: 545: 504:inverse function 498:as the value of 401:William Burnside 386:hyperbolic angle 376: 374: 373: 368: 353: 348: 329: 327: 326: 321: 306: 301: 282: 280: 279: 274: 215: 214: 192:hyperbolic angle 173:hyperbolic angle 105: 98: 84:is altered by a 79: 69: 57: 1107: 1106: 1102: 1101: 1100: 1098: 1097: 1096: 1067: 1066: 1050: 1049: 1027: 1023: 1017:Julius Springer 1007: 1003: 991: 987: 978: 974: 963: 959: 942: 938: 933: 925:Squeeze mapping 921: 893: 874: 873: 855: 849: 801: 779: 778: 735: 713: 712: 612: 611: 515: 514: 435: 419:Unit area when 413: 342: 341: 295: 294: 252: 251: 212: 210: 181: 127:squeeze mapping 119: 100: 93: 74: 59: 47: 36:Cartesian plane 17: 12: 11: 5: 1105: 1103: 1095: 1094: 1089: 1084: 1079: 1069: 1068: 1065: 1064: 1048: 1047: 1021: 1001: 985: 972: 957: 935: 934: 932: 929: 928: 927: 920: 917: 900: 896: 892: 889: 884: 881: 851:Main article: 848: 845: 828: 825: 822: 819: 816: 811: 807: 804: 796: 791: 787: 762: 759: 756: 753: 750: 745: 741: 738: 730: 725: 721: 688: 685: 682: 679: 676: 673: 670: 664: 661: 658: 655: 652: 649: 643: 640: 637: 634: 631: 628: 625: 622: 619: 599: 596: 593: 590: 587: 584: 581: 575: 572: 569: 566: 563: 560: 554: 551: 548: 544: 540: 537: 534: 531: 528: 525: 522: 488:Leonhard Euler 447:antiderivative 431:Main article: 412: 409: 378: 377: 365: 362: 359: 356: 351: 331: 330: 318: 315: 312: 309: 304: 284: 283: 271: 268: 265: 262: 259: 230:right triangle 180: 177: 118: 115: 90:unit hyperbola 15: 13: 10: 9: 6: 4: 3: 2: 1104: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1074: 1072: 1062: 1059: 1055: 1052: 1051: 1045: 1042: 1039: 1038:9783642172854 1035: 1031: 1025: 1022: 1018: 1014: 1010: 1005: 1002: 999: 995: 989: 986: 982: 976: 973: 969: 968: 961: 958: 954: 950: 946: 940: 937: 930: 926: 923: 922: 918: 916: 898: 894: 890: 887: 882: 879: 870: 868: 864: 860: 854: 846: 844: 842: 826: 823: 820: 817: 814: 809: 805: 802: 794: 789: 785: 776: 760: 757: 754: 751: 748: 743: 739: 736: 728: 723: 719: 710: 706: 702: 686: 677: 674: 671: 662: 656: 653: 650: 641: 635: 632: 629: 620: 617: 597: 588: 585: 582: 573: 567: 564: 561: 552: 546: 542: 538: 535: 532: 523: 520: 512: 507: 505: 501: 497: 493: 489: 485: 480: 478: 474: 470: 469: 464: 460: 456: 452: 448: 444: 440: 434: 426: 422: 417: 410: 408: 406: 402: 398: 394: 389: 387: 383: 363: 360: 357: 354: 349: 340: 339: 338: 336: 316: 313: 310: 307: 302: 293: 292: 291: 289: 269: 266: 263: 260: 257: 250: 249: 248: 247: 243: 240: =  239: 235: 231: 227: 219: 208: 204: 200: 196: 193: 189: 185: 178: 176: 174: 169: 167: 163: 159: 155: 151: 146: 144: 140: 136: 128: 123: 116: 114: 112: 107: 103: 96: 91: 87: 83: 77: 73: 67: 63: 55: 51: 45: 41: 38:bounded by a 37: 33: 29: 21: 1029: 1024: 1012: 1004: 988: 975: 966: 960: 948: 945:Isaak Yaglom 939: 871: 856: 840: 777:of the area 774: 708: 704: 700: 510: 508: 499: 481: 476: 466: 450: 442: 438: 436: 424: 420: 404: 396: 390: 381: 379: 332: 287: 285: 241: 237: 225: 223: 206: 202: 194: 187: 170: 165: 161: 157: 153: 149: 147: 142: 132: 108: 101: 94: 75: 65: 61: 53: 49: 27: 25: 1063:1(6):155–9. 1009:Felix Klein 861:'s book on 859:Felix Klein 82:orientation 1092:Logarithms 1071:Categories 1032:, p. 385, 931:References 843:in (0,1). 463:Archimedes 455:quadrature 216:times the 201:(equation 197:, to the 152:from 1 to 821:− 786:∫ 755:− 720:∫ 358:⁡ 311:⁡ 246:hyperbola 232:with one 40:hyperbola 1019:, Berlin 919:See also 775:negative 399:(1849). 335:altitude 333:and the 86:rotation 70:on the 42:and two 1056:(1895) 1044:2791970 1011:(1928) 953:Russian 947:(1962) 395:in his 211:√ 160:, 0), ( 34:of the 1036:  666:  645:  577:  556:  380:where 234:vertex 228:, the 104:> 1 32:region 996:from 857:When 30:is a 1077:Area 1034:ISBN 951:(in 703:= 1/ 441:) = 355:sinh 337:is 308:cosh 288:x, y 205:= 1/ 164:, 1/ 141:of 135:area 133:The 117:Area 99:and 64:, 1/ 58:and 52:, 1/ 44:rays 97:= 1 78:= 1 1073:: 1041:MR 423:= 405:xy 388:. 145:. 113:. 106:. 76:xy 26:A 899:2 895:x 891:+ 888:1 883:= 880:y 841:x 827:. 824:T 818:V 815:+ 810:t 806:t 803:d 795:1 790:x 761:. 758:V 752:T 749:+ 744:t 740:t 737:d 729:x 724:1 709:x 705:x 701:y 687:. 684:} 681:) 678:0 675:, 672:0 669:( 663:, 660:) 657:0 654:, 651:1 648:( 642:, 639:) 636:1 633:, 630:1 627:( 624:{ 621:= 618:T 598:. 595:} 592:) 589:0 586:, 583:0 580:( 574:, 571:) 568:0 565:, 562:x 559:( 553:, 550:) 547:x 543:/ 539:1 536:, 533:x 530:( 527:{ 524:= 521:V 511:x 500:b 496:e 451:p 443:x 439:x 425:e 421:b 382:u 364:, 361:u 350:2 317:, 314:u 303:2 270:, 267:1 264:= 261:y 258:x 242:x 238:y 220:. 213:2 207:x 203:y 195:u 166:b 162:b 158:b 154:b 150:x 143:b 102:b 95:a 68:) 66:b 62:b 60:( 56:) 54:a 50:a 48:(

Index


region
Cartesian plane
hyperbola
rays
rectangular hyperbola
orientation
rotation
unit hyperbola
hyperbolic functions

squeeze mapping
area
natural logarithm
hyperbolic angle

hyperbolic angle
rectangular hyperbola
hyperbolic cosine and sine functions
right triangle
vertex
hyperbola
altitude
hyperbolic angle
Augustus De Morgan
William Burnside

Natural logarithm
antiderivative
quadrature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.