Knowledge (XXG)

2-EXPTIME

Source 📝

378:
Generalizations of many fully observable games are EXPTIME-complete. These games can be viewed as particular instances of a class of transition systems defined in terms of a set of state variables and actions/events that change the values of the state variables, together with the question of whether
209: 260:
2-EXPTIME is one class in a hierarchy of complexity classes with increasingly higher time bounds. The class 3-EXPTIME is defined similarly to 2-EXPTIME but with a triply exponential time bound
87: 306: 257:
in exponential space. This is one way to see that EXPSPACE ⊆ 2-EXPTIME, since an alternating Turing machine is at least as powerful as a deterministic Turing machine.
331:
over a field. In the worst case, a Gröbner basis may have a number of elements which is doubly exponential in the number of variables. On the other hand, the
671: 551: 572: 426: 449: 356: 1033: 518: 664: 28: 51: 204:{\displaystyle {\mathsf {2{\mbox{-}}EXPTIME}}=\bigcup _{k\in \mathbb {N} }{\mathsf {DTIME}}\left(2^{2^{n^{k}}}\right).} 1068: 657: 499:
Kapur, Deepak; Narendran, Paliath (1992), "Double-exponential complexity of computing a complete set of AC-unifiers",
400: 384: 856: 1049: 254: 472: 1038: 363: 542:
Johannsen, Jan; Lange, Martin (2003), "CTL is complete for double exponential time", in Baeten, Jos C. M.;
992: 418: 348: 342: 335:
of Gröbner basis algorithms is doubly exponential in the number of variables as well as in the entry size.
987: 982: 332: 321: 633: 578: 263: 253:
2-EXPTIME can also be reformulated as the space class AEXPSPACE, the problems that can be solved by an
977: 547: 611:
Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP 2008)
553:
Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP 2003)
67: 524: 438: 367: 446: 997: 568: 543: 514: 422: 352: 43: 961: 851: 783: 773: 680: 614: 560: 506: 502:[1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science 481: 442: 380: 328: 47: 32: 886: 956: 946: 903: 893: 876: 866: 824: 819: 814: 798: 778: 756: 751: 746: 734: 729: 724: 719: 453: 222: 559:, Lecture Notes in Computer Science, vol. 2719, Springer-Verlag, pp. 767–775, 951: 839: 761: 714: 470:
Dubé, Thomas W. (August 1990). "The Structure of Polynomial Ideals and Gröbner Bases".
218: 55: 1062: 528: 603: 829: 739: 618: 941: 766: 246: 564: 510: 641:
Proceedings of International Conference on Automated Planning and Scheduling
500: 931: 926: 871: 694: 238: 234: 17: 921: 388: 383:
exists. A generalization of this class of fully observable problems to
230: 881: 1028: 1023: 898: 649: 226: 604:"Finite Automata, Digraph Connectivity, and Regular Expression Size" 485: 458:
Proceedings of the SIAM-AMS Symposium in Applied Mathematics Vol. 7
1018: 1013: 834: 78: 846: 704: 316:
Examples of algorithms that require at least 2-EXPTIME include:
653: 861: 793: 788: 709: 699: 308:. This can be generalized to higher and higher time bounds. 338:
Finding a complete set of associative-commutative unifiers
447:"Super-Exponential Complexity of Presburger Arithmetic. 97: 266: 90: 1006: 970: 914: 807: 687: 634:"Complexity of Planning with Partial Observability" 324:provably requires at least doubly exponential time 300: 203: 665: 8: 672: 658: 650: 286: 281: 276: 271: 265: 184: 179: 174: 148: 147: 141: 140: 133: 98: 96: 92: 91: 89: 602:Gruber, Hermann; Holzer, Markus (2008). 411: 345:(which is, in fact, 2-EXPTIME-complete) 429:. Section 20.1, corollary 3, page 495. 161: 158: 155: 152: 149: 121: 118: 115: 112: 109: 106: 103: 93: 7: 421:, Computational Complexity (1994), 357:Cylindrical algebraic decomposition 355:takes doubly exponential time (see 613:. Vol. 5126. pp. 39–50. 25: 1034:Probabilistically checkable proof 391:-complete to 2-EXPTIME-complete. 301:{\displaystyle 2^{2^{2^{n^{k}}}}} 29:computational complexity theory 1: 385:partially observable problems 320:Each decision procedure for 52:deterministic Turing machine 619:10.1007/978-3-540-70583-3_4 401:Double exponential function 374:2-EXPTIME-complete problems 1085: 1050:List of complexity classes 387:lifts the complexity from 255:alternating Turing machine 1047: 473:SIAM Journal on Computing 1039:Interactive proof system 565:10.1007/3-540-45061-0_60 511:10.1109/LICS.1992.185515 632:Jussi Rintanen (2004). 993:Arithmetical hierarchy 643:. AAAI Press: 345–354. 419:Christos Papadimitriou 349:Quantifier elimination 302: 205: 988:Grzegorczyk hierarchy 983:Exponential hierarchy 915:Considered infeasible 548:Woeginger, Gerhard J. 333:worst-case complexity 322:Presburger arithmetic 303: 206: 978:Polynomial hierarchy 808:Suspected infeasible 264: 88: 1007:Families of classes 688:Considered feasible 546:; Parrow, Joachim; 68:polynomial function 1069:Complexity classes 681:Complexity classes 544:Lenstra, Jan Karel 505:, pp. 11–21, 452:2006-09-15 at the 368:regular expression 353:real closed fields 298: 201: 146: 101: 38:(sometimes called 1056: 1055: 998:Boolean hierarchy 971:Class hierarchies 574:978-3-540-40493-4 427:978-0-201-53082-7 129: 100: 48:decision problems 16:(Redirected from 1076: 674: 667: 660: 651: 645: 644: 638: 629: 623: 622: 608: 599: 593: 591: 590: 589: 583: 577:, archived from 558: 539: 533: 531: 496: 490: 489: 467: 461: 443:Michael O. Rabin 436: 430: 416: 381:winning strategy 362:Calculating the 307: 305: 304: 299: 297: 296: 295: 294: 293: 292: 291: 290: 210: 208: 207: 202: 197: 193: 192: 191: 190: 189: 188: 165: 164: 145: 144: 125: 124: 102: 58:(2) time, where 33:complexity class 21: 1084: 1083: 1079: 1078: 1077: 1075: 1074: 1073: 1059: 1058: 1057: 1052: 1043: 1002: 966: 910: 904:PSPACE-complete 803: 683: 678: 648: 636: 631: 630: 626: 606: 601: 600: 596: 587: 585: 581: 575: 556: 541: 540: 536: 521: 498: 497: 493: 486:10.1137/0219053 469: 468: 464: 454:Wayback Machine 437: 433: 417: 413: 409: 397: 376: 314: 282: 277: 272: 267: 262: 261: 180: 175: 170: 166: 86: 85: 23: 22: 15: 12: 11: 5: 1082: 1080: 1072: 1071: 1061: 1060: 1054: 1053: 1048: 1045: 1044: 1042: 1041: 1036: 1031: 1026: 1021: 1016: 1010: 1008: 1004: 1003: 1001: 1000: 995: 990: 985: 980: 974: 972: 968: 967: 965: 964: 959: 954: 949: 944: 939: 934: 929: 924: 918: 916: 912: 911: 909: 908: 907: 906: 896: 891: 890: 889: 879: 874: 869: 864: 859: 854: 849: 844: 843: 842: 840:co-NP-complete 837: 832: 827: 817: 811: 809: 805: 804: 802: 801: 796: 791: 786: 781: 776: 771: 770: 769: 759: 754: 749: 744: 743: 742: 732: 727: 722: 717: 712: 707: 702: 697: 691: 689: 685: 684: 679: 677: 676: 669: 662: 654: 647: 646: 624: 594: 573: 534: 519: 491: 480:(4): 750–773. 462: 439:Fischer, M. J. 431: 410: 408: 405: 404: 403: 396: 393: 375: 372: 371: 370: 360: 346: 339: 336: 325: 313: 310: 289: 285: 280: 275: 270: 251: 250: 212: 211: 200: 196: 187: 183: 178: 173: 169: 163: 160: 157: 154: 151: 143: 139: 136: 132: 128: 123: 120: 117: 114: 111: 108: 105: 95: 50:solvable by a 24: 14: 13: 10: 9: 6: 4: 3: 2: 1081: 1070: 1067: 1066: 1064: 1051: 1046: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1011: 1009: 1005: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 975: 973: 969: 963: 960: 958: 955: 953: 950: 948: 945: 943: 940: 938: 935: 933: 930: 928: 925: 923: 920: 919: 917: 913: 905: 902: 901: 900: 897: 895: 892: 888: 885: 884: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 841: 838: 836: 833: 831: 828: 826: 823: 822: 821: 818: 816: 813: 812: 810: 806: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 775: 772: 768: 765: 764: 763: 760: 758: 755: 753: 750: 748: 745: 741: 738: 737: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 692: 690: 686: 682: 675: 670: 668: 663: 661: 656: 655: 652: 642: 635: 628: 625: 620: 616: 612: 605: 598: 595: 584:on 2007-09-30 580: 576: 570: 566: 562: 555: 554: 549: 545: 538: 535: 530: 526: 522: 520:0-8186-2735-2 516: 512: 508: 504: 503: 495: 492: 487: 483: 479: 475: 474: 466: 463: 459: 455: 451: 448: 444: 440: 435: 432: 428: 424: 420: 415: 412: 406: 402: 399: 398: 394: 392: 390: 386: 382: 373: 369: 365: 361: 358: 354: 350: 347: 344: 340: 337: 334: 330: 329:Gröbner basis 326: 323: 319: 318: 317: 311: 309: 287: 283: 278: 273: 268: 258: 256: 248: 244: 240: 236: 232: 228: 224: 220: 217: 216: 215: 198: 194: 185: 181: 176: 171: 167: 137: 134: 130: 126: 84: 83: 82: 80: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 34: 30: 19: 936: 640: 627: 610: 597: 586:, retrieved 579:the original 552: 537: 501: 494: 477: 471: 465: 457: 434: 414: 377: 327:Computing a 315: 259: 252: 242: 213: 77:In terms of 76: 71: 63: 59: 39: 35: 26: 887:#P-complete 825:NP-complete 740:NL-complete 341:Satisfying 942:ELEMENTARY 767:P-complete 588:2006-12-22 407:References 364:complement 247:ELEMENTARY 937:2-EXPTIME 529:206437926 445:, 1974, " 243:2-EXPTIME 138:∈ 131:⋃ 42:) is the 36:2-EXPTIME 1063:Category 932:EXPSPACE 927:NEXPTIME 695:DLOGTIME 550:(eds.), 450:Archived 395:See also 312:Examples 239:EXPSPACE 235:NEXPTIME 214:We know 18:2EXPTIME 922:EXPTIME 830:NP-hard 460:: 27–41 389:EXPTIME 231:EXPTIME 66:) is a 46:of all 1029:NSPACE 1024:DSPACE 899:PSPACE 571:  527:  517:  441:, and 425:  227:PSPACE 31:, the 1019:NTIME 1014:DTIME 835:co-NP 637:(PDF) 607:(PDF) 582:(PDF) 557:(PDF) 525:S2CID 366:of a 79:DTIME 40:2-EXP 847:TFNP 569:ISBN 515:ISBN 423:ISBN 962:ALL 862:QMA 852:FNP 794:APX 789:BQP 784:BPP 774:ZPP 705:ACC 615:doi 561:doi 507:doi 482:doi 351:on 343:CTL 70:of 54:in 44:set 27:In 1065:: 957:RE 947:PR 894:IP 882:#P 877:PP 872:⊕P 867:PH 857:AM 820:NP 815:UP 799:FP 779:RP 757:CC 752:SC 747:NC 735:NL 730:FL 725:RL 720:SL 710:TC 700:AC 639:. 609:. 567:, 523:, 513:, 478:19 476:. 456:" 379:a 359:). 245:⊆ 241:⊆ 237:⊆ 233:⊆ 229:⊆ 225:⊆ 223:NP 221:⊆ 81:, 74:. 952:R 762:P 715:L 673:e 666:t 659:v 621:. 617:: 592:. 563:: 532:. 509:: 488:. 484:: 288:k 284:n 279:2 274:2 269:2 249:. 219:P 199:. 195:) 186:k 182:n 177:2 172:2 168:( 162:E 159:M 156:I 153:T 150:D 142:N 135:k 127:= 122:E 119:M 116:I 113:T 110:P 107:X 104:E 99:- 94:2 72:n 64:n 62:( 60:p 56:O 20:)

Index

2EXPTIME
computational complexity theory
complexity class
set
decision problems
deterministic Turing machine
O
polynomial function
DTIME
P
NP
PSPACE
EXPTIME
NEXPTIME
EXPSPACE
ELEMENTARY
alternating Turing machine
Presburger arithmetic
Gröbner basis
worst-case complexity
CTL
Quantifier elimination
real closed fields
Cylindrical algebraic decomposition
complement
regular expression
winning strategy
partially observable problems
EXPTIME
Double exponential function

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.