Knowledge

Mersenne prime

Source 📝

2137: 2420:(PRP) test, based on development from Robert Gerbicz in 2017, and a simple way to verify tests developed by Krzysztof Pietrzak in 2018. Due to the low error rate and ease of proof, this nearly halved the computing time to rule out potential primes over the Lucas-Lehmer test (as two users would no longer have to perform the same test to confirm the other's result), although exponents passing the PRP test still require one to confirm their primality. 11803: 1237: 2132:
During the era of manual calculation, all the exponents up to and including 257 were tested with the Lucas–Lehmer test and found to be composite. A notable contribution was made by retired Yale physics professor Horace Scudder Uhler, who did the calculations for exponents 157, 167, 193, 199, 227, and
5239:
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667,
3413:
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667,
1895:
and got the same number, then returned to his seat (to applause) without speaking. He later said that the result had taken him "three years of Sundays" to find. A correct list of all Mersenne primes in this number range was completed and rigorously verified only about three centuries after Mersenne
944: 5256:
3, 4, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321, 986191, 4031399, ..., 13347311, 13372531, ...
1874:, though Mersenne claimed it was composite, and for this reason it is sometimes called Pervushin's number. This was the second-largest known prime number, and it remained so until 1911. Lucas had shown another error in Mersenne's list in 1876 by demonstrating that 3445:
for links to more information. The special number field sieve can factorize numbers with more than one large factor. If a number has only one very large factor then other algorithms can factorize larger numbers by first finding small factors and then running a
2133:
229. Unfortunately for those investigators, the interval they were testing contains the largest known relative gap between Mersenne primes: the next Mersenne prime exponent, 521, would turn out to be more than four times as large as the previous record of 127.
4761:
3, 2, 2, 5, 2, 3, 2, 3, 5, 5, 2, 3, 2, 3, 3, 7, 2, 17, 2, 3, 3, 11, 2, 3, 11, 0, 3, 7, 2, 109, 2, 5, 3, 11, 31, 5, 2, 3, 53, 17, 2, 5, 2, 103, 7, 5, 2, 7, 1153, 3, 7, 21943, 2, 3, 37, 53, 3, 17, 2, 7, 2, 3, 0, 19, 7, 3, 2, 11, 3, 5, 2, ... (sequence
6737:
2, 2, 2, 3, 2, 2, 7, 2, 2, 3, 2, 17, 3, 2, 2, 5, 3, 2, 5, 2, 2, 229, 2, 3, 3, 2, 3, 3, 2, 2, 5, 3, 2, 3, 2, 2, 3, 3, 2, 7, 2, 3, 37, 2, 3, 5, 58543, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 4663, 54517, 17, 3, 2, 5, 2, 3, 3, 2, 2, 47, 61, 19, ... (sequence
4719:
2, 3, 2, 3, 2, 5, 3, 0, 2, 17, 2, 5, 3, 3, 2, 3, 2, 19, 3, 3, 2, 5, 3, 0, 7, 3, 2, 5, 2, 7, 0, 3, 13, 313, 2, 13, 3, 349, 2, 3, 2, 5, 5, 19, 2, 127, 19, 0, 3, 4229, 2, 11, 3, 17, 7, 3, 2, 3, 2, 7, 3, 5, 0, 19, 2, 19, 5, 3, 2, 3, 2, ... (sequence
4290:
2, 3, 5, 7, 11, 19, 29, 47, 73, 79, 113, 151, 157, 163, 167, 239, 241, 283, 353, 367, 379, 457, 997, 1367, 3041, 10141, 14699, 27529, 49207, 77291, 85237, 106693, 160423, 203789, 364289, 991961, 1203793, 1667321, 3704053, 4792057, ... (sequence
4817:
2, 2, 2, 2, 5, 2, 2, 2, 10, 6, 2, 61, 14, 15, 5, 24, 19, 2, 46, 3, 11, 22, 41, 2, 12, 22, 3, 2, 12, 86, 2, 7, 13, 11, 5, 29, 56, 30, 44, 60, 304, 5, 74, 118, 33, 156, 46, 183, 72, 606, 602, 223, 115, 37, 52, 104, 41, 6, 338, 217, ... (sequence
6771:
1, 1, 1, 1, 5, 1, 1, 1, 5, 2, 1, 39, 6, 4, 12, 2, 2, 1, 6, 17, 46, 7, 5, 1, 25, 2, 41, 1, 12, 7, 1, 7, 327, 7, 8, 44, 26, 12, 75, 14, 51, 110, 4, 14, 49, 286, 15, 4, 39, 22, 109, 367, 22, 67, 27, 95, 80, 149, 2, 142, 3, 11, ... (sequence
4842:
3, 2, 2, 2, 2, 2, 2, 2, 2, 7, 2, 16, 61, 2, 6, 10, 6, 2, 5, 46, 18, 2, 49, 16, 70, 2, 5, 6, 12, 92, 2, 48, 89, 30, 16, 147, 19, 19, 2, 16, 11, 289, 2, 12, 52, 2, 66, 9, 22, 5, 489, 69, 137, 16, 36, 96, 76, 117, 26, 3, ... (sequence
1232:{\displaystyle {\begin{aligned}2^{ab}-1&=(2^{a}-1)\cdot \left(1+2^{a}+2^{2a}+2^{3a}+\cdots +2^{(b-1)a}\right)\\&=(2^{b}-1)\cdot \left(1+2^{b}+2^{2b}+2^{3b}+\cdots +2^{(a-1)b}\right).\end{aligned}}} 2345:
for their discovery of a very nearly 13-million-digit Mersenne prime. The prize, finally confirmed in October 2009, is for the first known prime with at least 10 million digits. The prime was found on a
1320:
that greatly aids this task, making it much easier to test the primality of Mersenne numbers than that of most other numbers of the same size. The search for the largest known prime has somewhat of a
315:
asserts a one-to-one correspondence between even perfect numbers and Mersenne primes. Many of the largest known primes are Mersenne primes because Mersenne numbers are easier to check for primality.
1280:
The evidence at hand suggests that a randomly selected Mersenne number is much more likely to be prime than an arbitrary randomly selected odd integer of similar size. Nonetheless, prime values of
949: 3433:
Since they are prime numbers, Mersenne primes are divisible only by 1 and themselves. However, not all Mersenne numbers are Mersenne primes. Mersenne numbers are very good test cases for the
1312:
The current lack of any simple test to determine whether a given Mersenne number is prime makes the search for Mersenne primes a difficult task, since Mersenne numbers grow very rapidly. The
419: 2379:(a number with 22,338,618 digits), as a result of a search executed by a GIMPS server network. This was the fourth Mersenne prime discovered by Cooper and his team in the past ten years. 4920: 2353:
On April 12, 2009, a GIMPS server log reported that a 47th Mersenne prime had possibly been found. The find was first noticed on June 4, 2009, and verified a week later. The prime is
1754:
His list replicated the known primes of his time with exponents up to 19. His next entry, 31, was correct, but the list then became largely incorrect, as Mersenne mistakenly included
4502: 790: 669: 2402:(a number with 23,249,425 digits), as a result of a search executed by a GIMPS server network. The discovery was made by a computer in the offices of a church in the same town. 9905: 8281: 8201: 8335:– status page gives various statistics on search progress, typically updated every week, including progress towards proving the ordering of the largest known Mersenne primes 1859: 719: 2182: 836: 1458: 1507: 9392: 450: 8624: 2357:. Although it is chronologically the 47th Mersenne prime to be discovered, it is smaller than the largest known at the time, which was the 45th to be discovered. 362: 1343:
of Mersenne number order requires knowing the factorization of that number, so Mersenne primes allow one to find primitive polynomials of very high order. Such
8995: 5273:
2, 3, 5, 17, 29, 31, 53, 59, 101, 277, 647, 1061, 2381, 2833, 3613, 3853, 3929, 5297, 7417, 90217, 122219, 173191, 256199, 336353, 485977, 591827, 1059503, ...
2140:
Graph of number of digits in largest known Mersenne prime by year – electronic era. The vertical scale is logarithmic in the number of digits, thus being a
1728:
The first 64 prime exponents with those corresponding to Mersenne primes shaded in cyan and in bold, and those thought to do so by Mersenne in red and bold
12302: 11884: 4383:
2, 5, 7, 11, 17, 19, 79, 163, 193, 239, 317, 353, 659, 709, 1049, 1103, 1759, 2029, 5153, 7541, 9049, 10453, 23743, 255361, 534827, 2237561, ... (sequence
3465:
is a 3,829,294-digit probable prime. It was discovered by a GIMPS participant with nickname "Funky Waddle". As of September 2022, the Mersenne number
3400: 3259:, so −2 is the product of a residue and a nonresidue and hence it is a nonresidue, which is a contradiction. Hence, the former congruence must be true and 7952:
Zalnezhad, Ali; Zalnezhad, Hossein; Shabani, Ghasem; Zalnezhad, Mehdi (March 2015). "Relationships and Algorithm in order to Achieve the Largest Primes".
5305:
2, 3, 5, 7, 13, 23, 43, 281, 359, 487, 577, 1579, 1663, 1741, 3191, 9209, 11257, 12743, 13093, 17027, 26633, 104243, 134227, 152287, 700897, 1205459, ...
3472:
is the smallest composite Mersenne number with no known factors; it has no prime factors below 2, and is very unlikely to have any factors below 10 (~2).
3441:
is the record-holder, having been factored with a variant of the special number field sieve that allows the factorization of several numbers at once. See
12297: 7060: 6779: 6745: 4850: 4825: 4769: 4727: 4580: 4549: 4537: 4408: 4390: 4323: 4298: 3749: 3482: 3421: 2435: 1742:, who compiled what was supposed to be a list of Mersenne primes with exponents up to 257. The exponents listed by Mersenne in 1644 were as follows: 576: 270: 240: 114: 9898: 9077: 358:
Many fundamental questions about Mersenne primes remain unresolved. It is not even known whether the set of Mersenne primes is finite or infinite.
352: 5337:
2, 3, 7, 17, 59, 283, 311, 383, 499, 521, 541, 599, 1193, 1993, 2671, 7547, 24019, 46301, 48121, 68597, 91283, 131497, 148663, 184463, 341233, ...
1336: 11924: 8536: 455:
It is also not known whether infinitely many Mersenne numbers with prime exponents are composite, although this would follow from widely believed
8480: 8468: 9000: 7461: 8914: 7919: 7807: 7691: 2213: 8548: 11879: 6834: 2338: 327: 8124: 1814:
is indeed prime, as Mersenne claimed. This was the largest known prime number for 75 years until 1951, when Ferrier found a larger prime,
334:
project. In December 2020, a major milestone in the project was passed after all exponents below 100 million were checked at least once.
10705: 9891: 2405:
On December 21, 2018, it was announced that The Great Internet Mersenne Prime Search (GIMPS) discovered the largest known prime number,
1344: 1340: 1887:
in 1903. Without speaking a word, he went to a blackboard and raised 2 to the 67th power, then subtracted one, resulting in the number
11839: 10700: 8617: 7324: 1324:. Consequently, a large amount of computer power has been expended searching for new Mersenne primes, much of which is now done using 10715: 10695: 12292: 12198: 8226: 7576: 11408: 10988: 9251: 8146: 2048: 1313: 8390: 2136: 10710: 9332: 2365: 2342: 11494: 8513: 8444: 7637: 7489: 6808: 5395:
3, 43, 59, 191, 223, 349, 563, 709, 743, 1663, 5471, 17707, 19609, 35449, 36697, 45259, 91493, 246497, 265007, 289937, ...
12233: 12113: 12018: 12013: 12008: 12003: 11998: 11993: 11988: 11983: 8610: 8320: 3442: 2361: 1348: 12118: 12048: 10810: 9454: 9112: 8439: 12108: 11160: 10479: 10272: 7516: 3780: 3437:
algorithm, so often the largest number factorized with this algorithm has been a Mersenne number. As of June 2019,
2206: 11195: 11165: 10840: 10830: 9479: 7902:
Solinas, Jerome A. (1 January 2011). "Generalized Mersenne Prime". In Tilborg, Henk C. A. van; Jajodia, Sushil (eds.).
7708: 11917: 11336: 10750: 10484: 10464: 8945: 8315: 12063: 11026: 11190: 7884: 372: 12307: 12208: 11285: 10908: 10665: 10474: 10456: 10350: 10340: 10330: 9387: 8398: 7558: 6840: 4245: 4003: 3434: 2741: 1905: 1356: 319: 11170: 3108:
are coprime. Consequently, a prime number divides at most one prime-exponent Mersenne number. That is, the set of
12193: 12058: 11413: 10958: 10579: 10365: 10360: 10355: 10345: 10322: 2019: 1871: 4868: 4305:
Like the sequence of exponents for usual Mersenne primes, this sequence contains only (rational) prime numbers.
1405: 1368: 312: 12317: 12312: 12271: 10398: 7383: 188: 10655: 7408: 205:. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form 11524: 11489: 11275: 11185: 11059: 11034: 10943: 10933: 10545: 10527: 10447: 9020: 5289:
3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, ...
4457: 3287: 12266: 12161: 11910: 11874: 11832: 11784: 11054: 10928: 10559: 10335: 10115: 10042: 9537: 8666: 6875: 6823: 5443:
3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, 13241, 13873, 16519, 201359, 396413, 1888279, ...
2287:
was the first with more than a million. In general, the number of digits in the decimal representation of
2188:
The search for Mersenne primes was revolutionized by the introduction of the electronic digital computer.
740: 2882:, which asserts the infinitude of primes, distinct from the proof written by Euclid: for every odd prime 618: 12228: 12218: 12156: 11039: 10893: 10820: 9975: 9874: 9464: 9117: 9025: 8493:
sequence A250197 (Numbers n such that the left Aurifeuillian primitive part of 2^n+1 is prime)
3991: 2970: 2395: 1325: 331: 11748: 11388: 8533: 3286:
With the exception of 1, a Mersenne number cannot be a perfect power. That is, and in accordance with
11859: 11681: 11575: 11539: 11280: 11003: 10983: 10800: 10469: 10257: 10229: 9444: 8477: 8465: 8310: 8232: 8152: 6813: 3132: 2394:
On January 3, 2018, it was announced that Jonathan Pace, a 51-year-old electrical engineer living in
2217: 604: 460: 8424: 4979:, the division is necessary for there to be any chance of finding prime numbers.) We can ask which 1817: 682: 12103: 11403: 11267: 11262: 11230: 10993: 10968: 10963: 10938: 10868: 10864: 10795: 10685: 10517: 10313: 10282: 9439: 9097: 7753: 7413: 7236: 3140: 2879: 2221: 2143: 908: 795: 463: 366: 11802: 2382:
On September 2, 2016, the Great Internet Mersenne Prime Search finished verifying all tests below
12151: 11806: 11560: 11555: 11469: 11443: 11341: 11320: 11092: 10973: 10923: 10845: 10815: 10755: 10522: 10502: 10433: 10146: 9547: 9484: 9474: 9459: 9092: 8950: 8545: 8460: 7953: 7494: 6938: 6934: 6023:
2, 3, 5, 7, 11, 17, 19, 41, 53, 109, 167, 2207, 3623, 5059, 5471, 7949, 21211, 32993, 60251, ...
4209: 4172: 4157: 4141: 3835: 3280: 2485: 2416:
In late 2020, GIMPS began using a new technique to rule out potential Mersenne primes called the
1418: 1409: 467: 12053: 12043: 11864: 10690: 8871: 7674:
Kleinjung, Thorsten; Bos, Joppe W.; Lenstra, Arjen K. (2014). "Mersenne Factorization Factory".
4397:
The norms (that is, squares of absolute values) of these Eisenstein primes are rational primes:
1463: 5555:
2, 3, 11, 31, 43, 47, 59, 107, 811, 2819, 4817, 9601, 33581, 38447, 41341, 131891, 196337, ...
3779:
steps, assuming no mistakes are made. The number of rice grains on the whole chessboard in the
2372:(a number with 17,425,170 digits), as a result of a search executed by a GIMPS server network. 2047:
The most efficient method presently known for testing the primality of Mersenne numbers is the
1509:
is a Perfect Number. (Perfect Numbers are Triangular Numbers whose base is a Mersenne Prime.)
326:, is a Mersenne prime. Since 1997, all newly found Mersenne primes have been discovered by the 11825: 11700: 11645: 11499: 11474: 11448: 11225: 10903: 10898: 10825: 10805: 10790: 10512: 10494: 10413: 10403: 10388: 10166: 10151: 9516: 9491: 9469: 9449: 9072: 9044: 8737: 8585: 8566: 7915: 7803: 7687: 3109: 2193: 1884: 592: 7935: 7347: 5779:
7, 11, 17, 29, 31, 79, 113, 131, 139, 4357, 44029, 76213, 83663, 173687, 336419, 615997, ...
5427:
2, 5, 7, 13, 19, 37, 59, 67, 79, 307, 331, 599, 1301, 12263, 12589, 18443, 20149, 27983, ...
1904:
Fast algorithms for finding Mersenne primes are available, and as of June 2023, the six
12073: 12023: 11891: 11736: 11529: 11115: 11087: 11077: 11069: 10953: 10918: 10913: 10880: 10574: 10537: 10428: 10423: 10418: 10408: 10380: 10267: 10219: 10214: 10171: 10110: 9426: 9416: 9411: 9348: 9195: 9062: 8965: 8455: 7907: 7679: 7306: 7284: 6818: 4309: 4221: 4205: 2006: 1802: 1352: 290:. Sometimes, however, Mersenne numbers are defined to have the additional requirement that 198: 7332: 5885:
4, 7, 13, 31, 43, 269, 353, 383, 619, 829, 877, 4957, 5711, 8317, 21739, 24029, 38299, ...
5459:
5, 67, 101, 103, 229, 347, 4013, 23297, 30133, 177337, 193939, 266863, 277183, 335429, ...
5411:
13, 19, 23, 31, 47, 127, 223, 281, 2083, 5281, 7411, 7433, 19051, 27239, 35863, 70327, ...
3475:
The table below shows factorizations for the first 20 composite Mersenne numbers (sequence
428: 12213: 11712: 11601: 11534: 11460: 11383: 11357: 11175: 10888: 10745: 10680: 10650: 10640: 10635: 10301: 10209: 10156: 10000: 9940: 9127: 9087: 8970: 8935: 8899: 8854: 8707: 8695: 8552: 8540: 8484: 8472: 7641: 6880: 6845: 5379:
3, 5, 19, 37, 173, 211, 227, 619, 977, 1237, 2437, 5741, 13463, 23929, 81223, 121271, ...
2983: 2209: 7348:"A Brief History of the Investigations on Mersenne Numbers and the Latest Immense Primes" 3450:
on the cofactor. As of September 2022, the largest completely factored number (with
8098: 8072: 8024: 4542:
corresponding to primes 11, 1111111111111111111, 11111111111111111111111, ... (sequence
2224:. It was the first Mersenne prime to be identified in thirty-eight years; the next one, 12243: 12134: 12068: 12033: 11848: 11717: 11585: 11570: 11434: 11398: 11373: 11249: 11220: 11205: 11082: 10978: 10948: 10675: 10630: 10507: 10105: 10100: 10095: 10067: 9965: 9950: 9928: 9915: 9532: 9506: 9403: 9271: 9122: 9082: 9067: 8939: 8830: 8795: 8750: 8675: 8046: 8002: 7157: 6901: 6850: 5161: 4263: 4197: 3831: 3761: 3451: 3447: 3327: 2417: 2410: 2317: 2069: 1993: 1980: 1739: 1404:
proved that, conversely, all even perfect numbers have this form. This is known as the
1401: 1385: 1321: 1317: 225: 184: 39: 8518: 8362: 7972: 7849: 12286: 12203: 11978: 11958: 11933: 11640: 11624: 11565: 11519: 11215: 11200: 11110: 10835: 10393: 10262: 10224: 10181: 10062: 10047: 10037: 9995: 9985: 9960: 9542: 9307: 9171: 9144: 8980: 8845: 8783: 8774: 8759: 8722: 8648: 7466: 6870: 6860: 6798: 5523:
2, 5, 11, 13, 23, 61, 83, 421, 1039, 1511, 31237, 60413, 113177, 135647, 258413, ...
5491:
2, 3, 5, 7, 17, 19, 109, 509, 661, 709, 1231, 12889, 13043, 26723, 43963, 44789, ...
4596: 3940: 3816: 3804: 2347: 1735: 1332: 260: 8569: 7289: 7272: 4573:
2, 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, ... (sequence
1799:(which are prime). Mersenne gave little indication of how he came up with his list. 12238: 11676: 11665: 11580: 11418: 11393: 11310: 11210: 11180: 11155: 11139: 11044: 11011: 10760: 10734: 10645: 10584: 10161: 10057: 9990: 9970: 9945: 9863: 9858: 9853: 9848: 9843: 9838: 9833: 9828: 9823: 9818: 9813: 9808: 9803: 9798: 9793: 9788: 9783: 9778: 9773: 9768: 9763: 9758: 9753: 9748: 9743: 9738: 9733: 9728: 9723: 9718: 9713: 9708: 9703: 9698: 9693: 9496: 9219: 9102: 8985: 8975: 8960: 8955: 8919: 8633: 8588: 7590: 7534: 7253: 6855: 6803: 5539:
2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, 19889, 79987, 608099, ...
5048: 4031: 3800: 3742:
The number of factors for the first 500 Mersenne numbers can be found at (sequence
2041: 1883:
was composite without finding a factor. No factor was found until a famous talk by
907:, all other Mersenne numbers are also congruent to 3 (mod 4). Consequently, in the 722: 256: 158: 154: 95: 7654: 7435: 2233:, was found by the computer a little less than two hours later. Three more — 7911: 7683: 1239:
This rules out primality for Mersenne numbers with a composite exponent, such as
12248: 12188: 11635: 11510: 11315: 10779: 10670: 10625: 10620: 10370: 10277: 10176: 10005: 9980: 9955: 9688: 9683: 9678: 9673: 9668: 9663: 9658: 9653: 9648: 9643: 9638: 9633: 9628: 9623: 9618: 9613: 9608: 9603: 9598: 9593: 9588: 9434: 9107: 9015: 9010: 8990: 8904: 8807: 8683: 8430: 8406: 7939: 7659: 7634: 7249: 7210: 7103:
is a perfect fourth power, it can be shown that there are at most two values of
6865: 4201: 4161: 3820: 2350:
745 on August 23, 2008. This was the eighth Mersenne prime discovered at UCLA.
2189: 1309:
is prime for only 43 of the first two million prime numbers (up to 32,452,843).
252: 162: 146: 91: 69: 7888: 5240:
42643801, 43112609, 57885161, ..., 74207281, ..., 77232917, ..., 82589933, ...
1263:, this is not the case, and the smallest counterexample is the Mersenne number 17: 12253: 12038: 11772: 11753: 11049: 10660: 9511: 9327: 9235: 9155: 9005: 8909: 8332: 5475:
2, 3, 17, 19, 47, 101, 1709, 2539, 5591, 6037, 8011, 19373, 26489, 27427, ...
4027: 3855: 3456:
2 − 1 = 1,119,429,257 × 175,573,124,547,437,977 × 8,480,999,878,421,106,991 ×
2973:, every prime modulus in which the number 2 has a square root is congruent to 2375:
On January 19, 2016, Cooper published his discovery of a 49th Mersenne prime,
456: 248: 244: 233:
which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... (sequence
87: 83: 9883: 7520: 7369: 7183: 2205:, by this means was achieved at 10:00 pm on January 30, 1952, using the U.S. 12144: 12139: 11973: 11378: 11305: 11297: 11102: 11016: 10134: 9552: 9501: 9382: 8593: 8574: 8410: 7728: 7610: 7224: 6568:
2, 3, 5, 19, 97, 109, 317, 353, 701, 9739, 14951, 37573, 46889, 769543, ...
4312:(that is, squares of absolute values) of these numbers are rational primes: 6260:
5, 19, 67, 107, 593, 757, 1801, 2243, 2383, 6043, 10181, 11383, 15629, ...
5747:
2, 11, 31, 173, 271, 547, 1823, 2111, 5519, 7793, 22963, 41077, 49739, ...
5507:
4, 5, 7, 19, 29, 61, 137, 883, 1381, 1823, 5227, 25561, 29537, 300893, ...
2409:, having 24,862,048 digits. A computer volunteered by Patrick Laroche from 1335:, making them popular choices when a prime modulus is desired, such as the 8450: 8338: 6584:
2, 5, 11, 109, 193, 1483, 11353, 21419, 21911, 24071, 106859, 139739, ...
12078: 11479: 3843: 3827: 3796: 365:
claims that there are infinitely many Mersenne primes and predicts their
7773: 6356:
17, 19, 73, 139, 907, 1907, 2029, 4801, 5153, 10867, 20161, 293831, ...
4556:
These primes are called repunit primes. Another example is when we take
4316:
5, 13, 41, 113, 2113, 525313, 536903681, 140737471578113, ... (sequence
3725:
3,391 × 23,279 × 65,993 × 1,868,569 × 1,066,818,132,868,207 (16 digits)
1415:
An alternative form of Perfect Numbers (not affecting the essence): If
921: ) there must be at least one prime factor congruent to 3 (mod 4). 11968: 11484: 11143: 9054: 8602: 7678:. Lecture Notes in Computer Science. Vol. 8874. pp. 358–377. 6828: 6793: 4934: 4426: 4008:
The simplest generalized Mersenne primes are prime numbers of the form
3097: 925: 341: 175: 6340:
2, 5, 11, 13, 331, 599, 18839, 23747, 24371, 29339, 32141, 67421, ...
3414:
42643801, 43112609, 57885161, 74207281, 77232917, 82589933. (sequence
2391:, thus officially confirming its position as the 45th Mersenne prime. 2196:
in 1949, but the first successful identification of a Mersenne prime,
12223: 12028: 11963: 5321:
3, 4, 7, 11, 83, 149, 223, 599, 647, 1373, 8423, 149497, 388897, ...
4189:
does not lead to anything interesting (since it is always −1 for all
3955:
MF(2, 2), MF(2, 3), MF(2, 4), MF(2, 5), MF(3, 2), MF(3, 3), MF(7, 2),
3812: 3808: 3736:
263 × 10,350,794,431,055,162,386,718,619,237,468,234,569 (38 digits)
3405:
As of 2023, the 51 known Mersenne primes are 2 − 1 for the following
1389: 296:
be prime. The smallest composite Mersenne number with prime exponent
8534:
http://www.leyland.vispa.com/numth/factorization/cunningham/main.htm
5085:
is prime. However, this has not been proved for any single value of
3692:
7,432,339,208,719 (13 digits) × 341,117,531,003,194,129 (18 digits)
369:
and frequency: For every number n, there should on average be about
8363:
Property of Mersenne numbers with prime exponent that are composite
7958: 5991:
3, 59, 223, 547, 773, 1009, 1823, 3803, 49223, 193247, 703393, ...
5901:
2, 7, 29, 31, 67, 149, 401, 2531, 19913, 30773, 53857, 170099, ...
2260: — were found by the same program in the next several months. 1331:
Arithmetic modulo a Mersenne number is particularly efficient on a
9049: 9035: 8478:
http://www.leyland.vispa.com/numth/factorization/cunningham/2+.txt
8466:
http://www.leyland.vispa.com/numth/factorization/cunningham/2-.txt
5731:
2, 3, 5, 19, 41, 47, 8231, 33931, 43781, 50833, 53719, 67211, ...
5667:
5, 13, 131, 149, 1699, 14221, 35201, 126037, 371669, 1264699, ...
4530:
2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ... (sequence
2135: 11817: 8489: 7824: 5587:
2, 3, 7, 29, 41, 67, 1327, 1399, 2027, 69371, 86689, 355039, ...
307:
Mersenne primes were studied in antiquity because of their close
11902: 6212:
3, 5, 19, 311, 317, 1129, 4253, 7699, 18199, 35153, 206081, ...
5225: 2894:; thus there are always larger primes than any particular prime. 2428:
Mersenne numbers are 0, 1, 3, 7, 15, 31, 63, ... (sequence
11906: 11821: 11770: 11734: 11698: 11662: 11622: 11247: 11136: 10862: 10777: 10732: 10609: 10299: 10246: 10198: 10132: 10084: 10022: 9926: 9887: 8606: 7462:"Prime number with 22 million digits is the biggest ever found" 6087:
2, 3, 7, 11, 19, 29, 401, 709, 2531, 15787, 66949, 282493, ...
4445:, it is to simply take out this factor and ask which values of 4335:
One may encounter cases where such a Mersenne prime is also an
2337:
In September 2008, mathematicians at UCLA participating in the
11953: 8546:
http://www.leyland.vispa.com/numth/factorization/anbn/main.htm
7655:"Proof of a result of Euler and Lagrange on Mersenne Divisors" 7384:"UCLA mathematicians discover a 13-million-digit prime number" 4635:
is a perfect power, it can be shown that there is at most one
4513:
can be either positive or negative.) If, for example, we take
4144:, the former is not a prime. This can be remedied by allowing 3279:
All composite divisors of prime-exponent Mersenne numbers are
7490:"New Biggest Prime Number = 2 to the 74 Mil ... Uh, It's Big" 7436:"Mersenne Prime Number discovery – 2 − 1 is Prime!" 6071:
3, 7, 13, 19, 307, 619, 2089, 7297, 75571, 76103, 98897, ...
5699:
2, 5, 23, 73, 101, 401, 419, 457, 811, 1163, 1511, 8011, ...
3850:
then because it is primitive it constrains the odd leg to be
3846:
is always a Mersenne number. For example, if the even leg is
887:, all Mersenne primes are congruent to 3 (mod 4). Other than 7591:"GIMPS Discovers Largest Known Prime Number: 2^82,589,933-1" 6324:
3, 5, 19, 31, 367, 389, 431, 2179, 10667, 13103, 90397, ...
6167:
2, 3, 19, 31, 101, 139, 167, 1097, 43151, 60703, 90499, ...
2568:(which is a contradiction, as neither −1 nor 0 is prime) or 8492: 7304:
Bell, E.T. and Mathematical Association of America (1951).
7064: 6774: 6740: 6632: 6603: 6587: 6571: 6555: 6539: 6523: 6507: 6439: 6423: 6407: 6391: 6375: 6359: 6343: 6327: 6311: 6295: 6279: 6263: 6247: 6231: 6215: 6199: 6170: 6154: 6138: 6122: 6106: 6090: 6074: 6058: 6042: 6026: 6010: 5994: 5965: 5936: 5920: 5904: 5888: 5872: 5856: 5814: 5798: 5782: 5766: 5750: 5734: 5718: 5702: 5686: 5670: 5654: 5638: 5622: 5606: 5590: 5574: 5558: 5542: 5526: 5510: 5494: 5478: 5462: 5446: 5430: 5414: 5398: 5382: 5340: 5324: 5308: 5292: 5276: 5260: 5243: 4845: 4820: 4764: 4722: 4575: 4544: 4532: 4403: 4401:
7, 271, 2269, 176419, 129159847, 1162320517, ... (sequence
4385: 4318: 4293: 4097:
It is also natural to try to generalize primes of the form
3823:
having been discovered and named during the 19th century).
3744: 3477: 3416: 2430: 2269:
was the first prime discovered with more than 1000 digits,
1996:
in 1772. The next (in historical, not numerical order) was
571: 265: 235: 8327: 7870: 6436:
7, 11, 181, 421, 2297, 2797, 4129, 4139, 7151, 29033, ...
6183:
2, 3, 5, 11, 19, 1259, 1399, 2539, 2843, 5857, 10589, ...
3714:
745,988,807 × 870,035,986,098,720,987,332,873 (24 digits)
3703:
2,550,183,799 × 3,976,656,429,941,438,590,393 (22 digits)
3326:
The Mersenne number sequence is a member of the family of
2220:, with a computer search program written and run by Prof. 9583: 9578: 9573: 9568: 7158:"GIMPS Project Discovers Largest Known Prime Number: 2-1" 6039:
3, 5, 13, 17, 43, 127, 229, 277, 6043, 11131, 11821, ...
425:
with n decimal digits (i.e. 10 < p < 10) for which
6151:
5, 7, 19, 31, 53, 67, 293, 641, 2137, 3011, 268207, ...
6135:
2, 19, 23, 317, 1031, 49081, 86453, 109297, 270343, ...
5683:
3, 17, 23, 29, 47, 61, 1619, 18251, 106187, 201653, ...
5571:
3, 4, 5, 17, 397, 409, 643, 1783, 2617, 4583, 8783, ...
3842: ) generates a unique right triangle such that its 3807:
after Marin Mersenne, because 8191 is a Mersenne prime (
3681:
11,447 × 13,842,607,235,828,485,645,766,393 (26 digits)
1961:, was discovered anonymously before 1461; the next two ( 7211:"Heuristics: Deriving the Wagstaff Mersenne Conjecture" 5962:
2, 3, 5, 13, 29, 37, 1021, 1399, 2137, 4493, 5521, ...
1302:(the correct terms on Mersenne's original list), while 7577:"Found: A Special, Mind-Bogglingly Large Prime Number" 1734:
Mersenne primes take their name from the 17th-century
621: 8514:
Factorization of completely factored Mersenne numbers
8235: 8155: 7559:"Largest-known prime number found on church computer" 6655:
are not included in the corresponding OEIS sequence.
6388:
3, 5, 17, 67, 83, 101, 1373, 6101, 12119, 61781, ...
5715:
3, 13, 31, 313, 3709, 7933, 14797, 30689, 38333, ...
5635:
3, 7, 19, 109, 131, 607, 863, 2917, 5923, 12421, ...
4871: 4585:
corresponding to primes −11, 19141, 57154490053, ....
4460: 2146: 1820: 1466: 1421: 1291:
increases. For example, eight of the first 11 primes
947: 798: 743: 685: 431: 375: 123: 6600:
2, 3, 5, 13, 347, 977, 1091, 4861, 4967, 34679, ...
6372:
5, 7, 179, 229, 439, 557, 6113, 223999, 327001, ...
6308:
3, 5, 11, 17, 71, 89, 827, 22307, 45893, 63521, ...
4983:
makes this number prime. It can be shown that such
4123: 3659:
2,687 × 202,029,703 × 1,113,491,139,767 (13 digits)
838:
cannot be prime. The first four Mersenne primes are
459:
about prime numbers, for example, the infinitude of
12174: 12127: 12096: 12087: 11940: 11594: 11548: 11508: 11459: 11433: 11366: 11350: 11329: 11296: 11261: 11101: 11068: 11025: 11002: 10879: 10567: 10558: 10536: 10493: 10455: 10446: 10379: 10321: 10312: 9561: 9525: 9425: 9402: 9376: 9143: 9136: 9034: 8928: 8892: 8641: 8456:
Decimal digits and English names of Mersenne primes
7535:"Mersenne Prime Discovery - 2^77232917-1 is Prime!" 6552:2, 3, 31, 41, 53, 101, 421, 1259, 4721, 45259, ... 6292:5, 41, 149, 229, 263, 739, 3457, 20269, 98221, ... 941:must also be prime. This follows from the identity 113: 102: 79: 68: 56: 45: 35: 8275: 8195: 7305: 6055:2, 3, 107, 197, 2843, 3571, 4451, ..., 31517, ... 4914: 4496: 4148:to be an algebraic integer instead of an integer: 2176: 1853: 1501: 1452: 1231: 830: 784: 713: 663: 444: 413: 191:, who studied them in the early 17th century. If 6616:2, 3, 7, 67, 79, 167, 953, 1493, 3389, 4871, ... 5853:2, 5, 163, 191, 229, 271, 733, 21059, 25237, ... 5619:2, 5, 11, 61, 619, 2879, 2957, 24371, 69247, ... 3670:167 × 57,912,614,113,275,649,087,721 (23 digits) 9265: = 0, 1, 2, 3, ... 7873:. The On-Line Encyclopedia of Integer Sequences. 5651:3, 7, 19, 79, 431, 1373, 1801, 2897, 46997, ... 5603:3, 5, 7, 113, 397, 577, 7573, 14561, 58543, ... 3648:439 × 2,298,041 × 9,361,973,132,609 (13 digits) 1891:. On the other side of the board, he multiplied 286:without the primality requirement may be called 5012:is prime. It is a conjecture that for any pair 4196:). Thus, we can regard a ring of "integers" on 4185:are the usual Mersenne primes, and the formula 2897:It follows from this fact that for every prime 2341:(GIMPS) won part of a $ 100,000 prize from the 2212:at the Institute for Numerical Analysis at the 2051:. Specifically, it can be shown that for prime 878:and because the first Mersenne prime starts at 414:{\displaystyle e^{\gamma }\cdot \log _{2}(10)} 318:As of 2023, 51 Mersenne primes are known. The 11918: 11833: 9899: 8618: 8447:– contains factors for small Mersenne numbers 7277:Bulletin of the American Mathematical Society 4987:must be primes themselves or equal to 4, and 3943:. The only known Mersenne–Fermat primes with 3028:. If the given congruence is satisfied, then 1252:Though the above examples might suggest that 8: 7729:"M12720787 Mersenne number exponent details" 7225:Mersenne Primes: History, Theorems and Lists 6452:2, 5, 7, 107, 383, 17359, 21929, 26393, ... 5933:3, 11, 17, 173, 839, 971, 40867, 45821, ... 5795:2, 19, 1021, 5077, 34031, 46099, 65707, ... 4772:) (notice this OEIS sequence does not allow 1400:) is a perfect number. In the 18th century, 30: 6478:2, 3, 13, 31, 59, 131, 223, 227, 1523, ... 3429:Factorization of composite Mersenne numbers 3401:List of Mersenne primes and perfect numbers 3243:and therefore 2 is a quadratic residue mod 3007:does not hold. By Fermat's little theorem, 2040:) were found early in the 20th century, by 12093: 11925: 11911: 11903: 11840: 11826: 11818: 11767: 11731: 11695: 11659: 11619: 11293: 11258: 11244: 11133: 10876: 10859: 10774: 10729: 10606: 10564: 10452: 10318: 10309: 10296: 10243: 10200:Possessing a specific set of other numbers 10195: 10129: 10081: 10019: 9923: 9906: 9892: 9884: 9140: 8625: 8611: 8603: 7885:"A research of Mersenne and Fermat primes" 6680:, a difference of two consecutive perfect 5811:2, 3, 7, 19, 31, 67, 89, 9227, 43891, ... 4915:{\displaystyle {\frac {a^{n}-b^{n}}{a-b}}} 4589:It is a conjecture that for every integer 4359:. In these cases, such numbers are called 3626:193,707,721 × 761,838,257,287 (12 digits) 2904:, there is at least one prime of the form 1516: 349:Are there infinitely many Mersenne primes? 29: 8519:The Cunningham project, factorization of 8265: 8256: 8243: 8234: 8185: 8176: 8163: 8154: 7957: 7904:Encyclopedia of Cryptography and Security 7370:The Mathematics Department and the Mark 1 7308:Mathematics, queen and servant of science 7288: 6536:2, 3, 7, 13, 47, 89, 139, 523, 1051, ... 6276:2, 3, 11, 163, 191, 269, 1381, 1493, ... 5869:2, 7, 19, 167, 173, 223, 281, 21647, ... 4892: 4879: 4872: 4870: 4468: 4461: 4459: 4431:The other way to deal with the fact that 4373:is an Eisenstein prime for the following 3838:and has its even leg a power of 2 (  3223:, so −2 would be a quadratic residue mod 2999:is a Mersenne prime, then the congruence 2802:. As a result, for all positive integers 2278:was the first with more than 10,000, and 2145: 1843: 1828: 1819: 1748:2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. 1491: 1465: 1435: 1420: 1196: 1174: 1158: 1145: 1112: 1069: 1047: 1031: 1018: 985: 956: 948: 946: 822: 803: 797: 770: 748: 742: 690: 684: 622: 620: 436: 430: 393: 380: 374: 8427:with hyperlinks to original publications 8339:GIMPS, known factors of Mersenne numbers 7774:"M1277 Mersenne number exponent details" 7260:(4th ed.). Oxford University Press. 7258:An Introduction to the Theory of Numbers 6520:2, 3, 7, 89, 101, 293, 4463, 70067, ... 6007:2, 3, 7, 127, 283, 883, 1523, 4001, ... 5099: 3756:Mersenne numbers in nature and elsewhere 3615:179,951 × 3,203,431,780,337 (13 digits) 3487: 1247:= 2 − 1 = 15 = 3 × 5 = (2 − 1) × (1 + 2) 243:) and the resulting Mersenne primes are 7676:Advances in Cryptology – ASIACRYPT 2014 7149: 6893: 4862:Another generalized Mersenne number is 353:(more unsolved problems in mathematics) 7800:Famous Puzzles of Great Mathematicians 6244:2, 7, 11, 17, 37, 521, 877, 2423, ... 5051:, there are infinitely many values of 4599:, there are infinitely many values of 4497:{\displaystyle {\frac {b^{n}-1}{b-1}}} 4280:is a Gaussian prime for the following 3911:natural number, and can be written as 2790:is also the smallest positive integer 1870:was determined to be prime in 1883 by 1408:. It is unknown whether there are any 1287:appear to grow increasingly sparse as 928:about Mersenne numbers states that if 7936:The Prime Glossary: Gaussian Mersenne 6196:4, 7, 67, 73, 1091, 1483, 10937, ... 3112:Mersenne numbers is pairwise coprime. 2214:University of California, Los Angeles 1983:in 1588. After nearly two centuries, 363:Lenstra–Pomerance–Wagstaff conjecture 7: 11880:Great Internet Mersenne Prime Search 8495:– Factorization of Mersenne numbers 7707:Henri Lifchitz and Renaud Lifchitz. 7107:with this property: in these cases, 6835:Great Internet Mersenne Prime Search 6404:3, 103, 271, 523, 23087, 69833, ... 6119:2, 3, 5, 37, 599, 38393, 51431, ... 2675:is composite. By contraposition, if 2368:, discovered a 48th Mersenne prime, 2339:Great Internet Mersenne Prime Search 1951:were known in antiquity. The fifth, 1861:, using a desk calculating machine. 1351:with very large periods such as the 785:{\displaystyle \Phi _{p}(2)=2^{p}-1} 679:or 1. However, it cannot be 1 since 664:{\textstyle {\frac {(2p+1)-1}{2}}=p} 328:Great Internet Mersenne Prime Search 308: 7273:"On the factoring of large numbers" 6103:2, 31, 103, 617, 10253, 10691, ... 3637:228,479 × 48,544,121 × 212,885,833 3255:, −1 is a quadratic nonresidue mod 2630:is composite, hence can be written 2413:made the find on December 7, 2018. 2398:, had found a 50th Mersenne prime, 2184:function in the value of the prime. 1337:Park–Miller random number generator 591:is congruent to 7 mod 8, so 2 is a 12303:Unsolved problems in number theory 7488:Chang, Kenneth (21 January 2016). 7460:Brook, Robert (January 19, 2016). 7382:Maugh II, Thomas H. (2008-09-27). 6420:2, 7, 53, 67, 71, 443, 26497, ... 2932:is an odd prime, then every prime 2692:is an odd prime, then every prime 1772:(which are composite) and omitted 745: 687: 482:(which is also prime) will divide 25: 12199:Indefinite and fictitious numbers 8461:Prime curios: 2305843009213693951 8451:Known factors of Mersenne numbers 7906:. Springer US. pp. 509–510. 7850:"JPL Small-Body Database Browser" 7434:Cooper, Curtis (7 January 2016). 7409:"Largest Prime Number Discovered" 6228:5, 31, 271, 929, 2789, 4153, ... 4858:Other generalized Mersenne primes 3339:(3, 2). That is, Mersenne number 2210:Western Automatic Computer (SWAC) 1355:, generalized shift register and 161:. That is, it is a prime number 12298:Eponymous numbers in mathematics 11801: 11409:Perfect digit-to-digit invariant 9001:Supersingular (moonshine theory) 4308:As for all Gaussian primes, the 3932:, it is a Mersenne number. When 3165:: 11 and 23 are both prime, and 2044:in 1911 and 1914, respectively. 27:Prime number of the form (2^n)-1 8276:{\displaystyle (a^{n}+b^{n})/c} 8196:{\displaystyle (a^{n}-b^{n})/c} 7290:10.1090/S0002-9904-1903-01079-9 7271:Cole, F. N. (1 December 1903). 6900:This number is the same as the 6504:53, 421, 647, 1601, 35527, ... 2600:which is not prime. Therefore, 2424:Theorems about Mersenne numbers 2216:(UCLA), under the direction of 1911:The first four Mersenne primes 344:Unsolved problem in mathematics 8996:Supersingular (elliptic curve) 8445:Will Edgington's Mersenne Page 8262: 8236: 8182: 8156: 7825:"Wheat and Chessboard Problem" 7802:. AMS Bookstore. p. 197. 7635:Will Edgington's Mersenne Page 7137:can be factored algebraically. 7019:. Thus, in this case the pair 6491:2, 3, 17, 41, 43, 59, 83, ... 3215:. Supposing latter true, then 3191:. By Fermat's little theorem, 2878:This fact leads to a proof of 2452:are natural numbers such that 2366:University of Central Missouri 2343:Electronic Frontier Foundation 2171: 2168: 2162: 2153: 1854:{\displaystyle (2^{148}+1)/17} 1840: 1821: 1488: 1476: 1447: 1422: 1349:pseudorandom number generators 1295:give rise to a Mersenne prime 1209: 1197: 1124: 1105: 1082: 1070: 997: 978: 760: 754: 714:{\displaystyle \Phi _{1}(2)=1} 702: 696: 640: 625: 408: 402: 58: 46: 1: 12114:Conway chained arrow notation 10248:Expressible via specific sums 8777:2 ± 2 ± 1 7611:"GIMPS - The Math - PrimeNet" 6705:, because it is divisible by 3443:integer factorization records 3395:List of known Mersenne primes 3127:are both prime (meaning that 2982:A Mersenne prime cannot be a 2700:must be 1 plus a multiple of 2177:{\displaystyle \log(\log(y))} 1900:Searching for Mersenne primes 1893:193,707,721 × 761,838,257,287 831:{\displaystyle 2^{p}-1=M_{p}} 309:connection to perfect numbers 8431:report about Mersenne primes 7912:10.1007/978-1-4419-5906-5_32 7684:10.1007/978-3-662-45611-8_19 4698:is prime are (starting with 4266:which will then be called a 4140:, so unless the latter is a 3781:wheat and chessboard problem 3760:In the mathematical problem 3733:272225893536...454145691647 3722:103845937170...992658440191 3711:649037107316...312041152511 3700:101412048018...973625643007 3689:253530120045...993406410751 3678:158456325028...187087900671 3667:967140655691...033397649407 3604:6,361 × 69,431 × 20,394,401 3018:. Therefore, one can write 2760:, for all positive integers 2207:National Bureau of Standards 1992:was verified to be prime by 935:is prime, then the exponent 911:of a Mersenne number (  11337:Multiplicative digital root 8528:= 2, 3, 5, 6, 7, 10, 11, 12 8425:Mersenne prime bibliography 8316:Encyclopedia of Mathematics 7754:"Exponent Status for M1277" 5160:(some large terms are only 5101:For more information, see 3764:, solving a puzzle with an 3593:2,351 × 4,513 × 13,264,529 2049:Lucas–Lehmer primality test 1906:largest known prime numbers 1889:147,573,952,589,676,412,927 1453:{\displaystyle (M=2^{n}-1)} 1357:Lagged Fibonacci generators 1314:Lucas–Lehmer primality test 128:Mersenne primes (of form 2^ 12334: 12209:Largest known prime number 7798:Petković, Miodrag (2009). 6841:Largest known prime number 6651:is even, then the numbers 6465:7, 1163, 4007, 10159, ... 5917:3, 5, 7, 4703, 30113, ... 4740:, they are (starting with 4424: 4361:Eisenstein Mersenne primes 4331:Eisenstein Mersenne primes 4004:Generalized Mersenne prime 4001: 3435:special number field sieve 3398: 2722:. A composite example is 1502:{\displaystyle P=M(M+1)/2} 1366: 579:). Since for these primes 320:largest known prime number 12262: 12194:Extended real number line 12109:Knuth's up-arrow notation 11855: 11797: 11780: 11766: 11744: 11730: 11708: 11694: 11672: 11658: 11631: 11618: 11414:Perfect digital invariant 11257: 11243: 11151: 11132: 10989:Superior highly composite 10875: 10858: 10786: 10773: 10741: 10728: 10616: 10605: 10308: 10295: 10253: 10242: 10205: 10194: 10142: 10128: 10091: 10080: 10033: 10018: 9936: 9922: 9872: 7184:"GIMPS Milestones Report" 5763:3, 53, 83, 487, 743, ... 4220:If we regard the ring of 3656:604462909807314587353087 3088:are natural numbers then 2364:, a mathematician at the 2192:searched for them on the 2020:Ivan Mikheevich Pervushin 1872:Ivan Mikheevich Pervushin 1727: 1388:. In the 4th century BC, 1384:are closely connected to 12293:Classes of prime numbers 12119:Steinhaus–Moser notation 11027:Euler's totient function 10811:Euler–Jacobi pseudoprime 10086:Other polynomial numbers 9383:Mega (1,000,000+ digits) 9252:Arithmetic progression ( 8399:"31 and Mersenne Primes" 8227:PRP records, search for 8147:PRP records, search for 7346:Horace S. Uhler (1952). 7325:"h2g2: Mersenne Numbers" 7190:. Mersenne Research, Inc 7054:must be prime. That is, 6629:47, 401, 509, 8609, ... 4991:can be 4 if and only if 4216:Gaussian Mersenne primes 3582:431 × 9,719 × 2,099,863 1460:is a prime number, then 1274:= 2 − 1 = 2047 = 23 × 89 1259:is prime for all primes 259:, 8191, 131071, 524287, 183:. They are named after 157:that is one less than a 10841:Somer–Lucas pseudoprime 10831:Lucas–Carmichael number 10666:Lazy caterer's sequence 8333:GIMPS Milestones Report 7312:. McGraw-Hill New York. 4969:is always divisible by 4507:be prime. (The integer 4438:is always divisible by 4268:Gaussian Mersenne prime 4133:is always divisible by 3862:and its inradius to be 3645:9444732965739290427391 3634:2361183241434822606847 3297:has no solutions where 2742:Fermat's little theorem 2707:. This holds even when 2666:(2) + (2) + ... + 2 + 1 675:is a prime, it must be 12162:Fast-growing hierarchy 11875:Double Mersenne number 10716:Wedderburn–Etherington 10116:Lucky numbers of Euler 9538:Industrial-grade prime 8915:Newman–Shanks–Williams 8433:– detection in detail 8277: 8197: 7563:christianchronicle.org 7440:Mersenne Research, Inc 7162:Mersenne Research, Inc 6824:Double Mersenne number 6809:Erdős–Borwein constant 4916: 4498: 4181:is either 2 or 0. But 4101:to primes of the form 3876:Mersenne–Fermat number 3870:Mersenne–Fermat primes 3623:147573952589676412927 2912:less than or equal to 2886:, all primes dividing 2551:. In the former case, 2185: 2178: 1855: 1503: 1454: 1316:(LLT) is an efficient 1233: 832: 786: 715: 665: 446: 415: 302:2 − 1 = 2047 = 23 × 89 12219:Long and short scales 12157:Grzegorczyk hierarchy 11004:Prime omega functions 10821:Frobenius pseudoprime 10611:Combinatorial numbers 10480:Centered dodecahedral 10273:Primary pseudoperfect 9875:List of prime numbers 9333:Sophie Germain/Safe ( 8278: 8198: 7237:Mersenne's conjecture 5032:are not both perfect 4917: 4499: 4122:). However (see also 4064:; another example is 3992:cyclotomic polynomial 3803:number 8191 is named 3770:-disc tower requires 3571:13,367 × 164,511,353 3055:= 1 + 2 + 2 + ... + 2 2971:quadratic reciprocity 2852:. Furthermore, since 2732:89 = 1 + 4 × (2 × 11) 2396:Germantown, Tennessee 2360:On January 25, 2013, 2179: 2139: 1908:are Mersenne primes. 1856: 1504: 1455: 1326:distributed computing 1234: 833: 787: 716: 666: 461:Sophie Germain primes 447: 445:{\displaystyle M_{p}} 416: 338:About Mersenne primes 332:distributed computing 263:, ... (sequence 11860:Mersenne conjectures 11463:-composition related 11263:Arithmetic functions 10865:Arithmetic functions 10801:Elliptic pseudoprime 10485:Centered icosahedral 10465:Centered tetrahedral 9057:(10 − 1)/9 8233: 8153: 7335:on December 5, 2014. 6814:Mersenne conjectures 4869: 4458: 4339:, being of the form 3549:233 × 1,103 × 2,089 3454:factors allowed) is 3288:Mihăilescu's theorem 3133:Sophie Germain prime 3075:which is impossible. 2962:is a square root of 2770:is also a factor of 2720:31 = 1 + 3 × (2 × 5) 2575:In the latter case, 2144: 1896:published his list. 1818: 1805:proved in 1876 that 1464: 1419: 1406:Euclid–Euler theorem 1369:Euclid–Euler theorem 1345:primitive trinomials 1341:primitive polynomial 945: 796: 741: 683: 619: 605:multiplicative order 470:). For these primes 429: 373: 313:Euclid–Euler theorem 276:Numbers of the form 12234:Orders of magnitude 12104:Scientific notation 11389:Kaprekar's constant 10909:Colossally abundant 10796:Catalan pseudoprime 10696:Schröder–Hipparchus 10475:Centered octahedral 10351:Centered heptagonal 10341:Centered pentagonal 10331:Centered triangular 9931:and related numbers 9366: ± 7, ... 8893:By integer sequence 8678:(2 + 1)/3 7823:Weisstein, Eric W. 7653:Caldwell, Chris K. 7565:. January 12, 2018. 7414:Scientific American 7352:Scripta Mathematica 7223:Chris K. Caldwell, 7089:th powers for some 6876:Gillies' conjecture 5102: 4832:For negative bases 4734:For negative bases 4210:Eisenstein integers 4030:with small integer 3612:576460752303423487 3281:strong pseudoprimes 2919:, for some integer 2864:is odd. Therefore, 2822:. Therefore, since 2782:is not a factor of 2022:in 1883. Two more ( 1410:odd perfect numbers 909:prime factorization 32: 12152:Ackermann function 11807:Mathematics portal 11749:Aronson's sequence 11495:Smarandache–Wellin 11252:-dependent numbers 10959:Primitive abundant 10846:Strong pseudoprime 10836:Perrin pseudoprime 10816:Fermat pseudoprime 10756:Wolstenholme prime 10580:Squared triangular 10366:Centered decagonal 10361:Centered nonagonal 10356:Centered octagonal 10346:Centered hexagonal 9548:Formula for primes 9181: + 2 or 9113:Smarandache–Wellin 8586:Weisstein, Eric W. 8567:Weisstein, Eric W. 8551:2016-02-02 at the 8539:2016-03-04 at the 8483:2013-05-02 at the 8471:2014-11-05 at the 8273: 8193: 7852:. Ssd.jpl.nasa.gov 7829:Mathworld. Wolfram 7640:2014-10-14 at the 7579:. January 5, 2018. 7495:The New York Times 7164:. 21 December 2018 6939:quadratic equation 6684:th powers, and if 5170:are checked up to 5100: 5036:th powers for any 4912: 4494: 4224:, we get the case 3560:223 × 616,318,177 3309:are integers with 3217:2 = (2) ≡ −2 (mod 2598:0 − 1 = 0 − 1 = −1 2186: 2174: 1851: 1499: 1450: 1229: 1227: 828: 782: 711: 661: 442: 411: 109:(December 7, 2018) 103:Largest known term 12308:Integer sequences 12280: 12279: 12170: 12169: 11900: 11899: 11815: 11814: 11793: 11792: 11762: 11761: 11726: 11725: 11690: 11689: 11654: 11653: 11614: 11613: 11610: 11609: 11429: 11428: 11239: 11238: 11128: 11127: 11124: 11123: 11070:Aliquot sequences 10881:Divisor functions 10854: 10853: 10826:Lucas pseudoprime 10806:Euler pseudoprime 10791:Carmichael number 10769: 10768: 10724: 10723: 10601: 10600: 10597: 10596: 10593: 10592: 10554: 10553: 10442: 10441: 10399:Square triangular 10291: 10290: 10238: 10237: 10190: 10189: 10124: 10123: 10076: 10075: 10014: 10013: 9881: 9880: 9492:Carmichael number 9427:Composite numbers 9362: ± 3, 8 9358: ± 1, 4 9321: ± 1, … 9317: ± 1, 4 9313: ± 1, 2 9303: 9302: 8848:3·2 − 1 8753:2·3 + 1 8667:Double Mersenne ( 8570:"Mersenne number" 8311:"Mersenne number" 7921:978-1-4419-5905-8 7848:Alan Chamberlin. 7809:978-0-8218-4814-2 7709:"PRP Top Records" 7693:978-3-662-45607-1 7388:Los Angeles Times 7235:The Prime Pages, 7209:Caldwell, Chris. 7085:are both perfect 6638: 6637: 5366:2, 3 (no others) 5047:is not a perfect 4910: 4492: 4416:Divide an integer 4222:Gaussian integers 4206:Gaussian integers 3740: 3739: 3601:9007199254740991 3508:Factorization of 3227:. However, since 2728:23 = 1 + (2 × 11) 2320:(or equivalently 2194:Manchester Mark 1 1885:Frank Nelson Cole 1732: 1731: 653: 593:quadratic residue 143: 142: 16:(Redirected from 12325: 12094: 12024:Eddington number 11969:Hundred thousand 11927: 11920: 11913: 11904: 11892:Mersenne Twister 11842: 11835: 11828: 11819: 11805: 11768: 11737:Natural language 11732: 11696: 11664:Generated via a 11660: 11620: 11525:Digit-reassembly 11490:Self-descriptive 11294: 11259: 11245: 11196:Lucas–Carmichael 11186:Harmonic divisor 11134: 11060:Sparsely totient 11035:Highly cototient 10944:Multiply perfect 10934:Highly composite 10877: 10860: 10775: 10730: 10711:Telephone number 10607: 10565: 10546:Square pyramidal 10528:Stella octangula 10453: 10319: 10310: 10302:Figurate numbers 10297: 10244: 10196: 10130: 10082: 10020: 9924: 9908: 9901: 9894: 9885: 9412:Eisenstein prime 9367: 9343: 9322: 9294: 9266: 9246: 9230: 9214: 9209: + 6, 9205: + 2, 9190: 9185: + 4, 9166: 9141: 9058: 9021:Highly cototient 8883: 8882: 8876: 8866: 8849: 8840: 8825: 8802: 8801:·2 − 1 8790: 8789:·2 + 1 8778: 8769: 8754: 8745: 8732: 8717: 8702: 8690: 8689:·2 + 1 8679: 8670: 8661: 8652: 8627: 8620: 8613: 8604: 8599: 8598: 8589:"Mersenne prime" 8580: 8579: 8529: 8509: 8503: 8491: 8436: 8421: 8419: 8418: 8409:. Archived from 8389: 8361: 8324: 8298: 8296: 8284: 8282: 8280: 8279: 8274: 8269: 8261: 8260: 8248: 8247: 8224: 8218: 8216: 8204: 8202: 8200: 8199: 8194: 8189: 8181: 8180: 8168: 8167: 8144: 8138: 8135: 8131: 8122: 8116: 8113: 8109: 8096: 8090: 8087: 8083: 8070: 8064: 8061: 8057: 8044: 8038: 8035: 8031: 8022: 8016: 8013: 8009: 8000: 7994: 7991: 7987: 7979: 7970: 7964: 7963: 7961: 7949: 7943: 7934:Chris Caldwell: 7932: 7926: 7925: 7899: 7893: 7892: 7887:. Archived from 7881: 7875: 7874: 7867: 7861: 7860: 7858: 7857: 7845: 7839: 7838: 7836: 7835: 7820: 7814: 7813: 7795: 7789: 7788: 7786: 7784: 7770: 7764: 7763: 7761: 7760: 7750: 7744: 7743: 7741: 7739: 7725: 7719: 7718: 7716: 7715: 7704: 7698: 7697: 7671: 7665: 7664: 7650: 7644: 7632: 7626: 7625: 7623: 7621: 7615:www.mersenne.org 7607: 7601: 7600: 7598: 7597: 7587: 7581: 7580: 7573: 7567: 7566: 7555: 7549: 7548: 7546: 7545: 7539:www.mersenne.org 7531: 7525: 7524: 7519:. Archived from 7513: 7507: 7506: 7504: 7502: 7485: 7479: 7478: 7476: 7474: 7457: 7451: 7450: 7448: 7446: 7431: 7425: 7424: 7422: 7421: 7404: 7398: 7397: 7395: 7394: 7379: 7373: 7366: 7360: 7359: 7343: 7337: 7336: 7331:. Archived from 7321: 7315: 7313: 7311: 7301: 7295: 7294: 7292: 7268: 7262: 7261: 7246: 7240: 7233: 7227: 7221: 7215: 7214: 7206: 7200: 7199: 7197: 7195: 7180: 7174: 7173: 7171: 7169: 7154: 7138: 7136: 7135: 7133: 7132: 7123: 7120: 7106: 7102: 7095: 7088: 7084: 7080: 7075: 7069: 7067: 7057: 7053: 7042: 7030: 7018: 7000: 6998: 6997: 6988: 6985: 6970: 6964: 6962: 6932: 6928: 6924: 6898: 6819:Mersenne twister 6777: 6766: 6755: 6743: 6732: 6721: 6714: 6704: 6697: 6693: 6683: 6679: 6668: 6654: 6650: 6646: 5221: 5220: 5214: 5205: 5201: 5200: 5194: 5185: 5184: 5182: 5173: 5169: 5168: 5157: 5156: 5155: 5153: 5152: 5143: 5140: 5125: 5124: 5117: 5116: 5110: 5109: 5103: 5096: 5084: 5083: 5081: 5080: 5071: 5068: 5054: 5046: 5039: 5035: 5031: 5027: 5023: 5011: 5001: 4990: 4986: 4982: 4978: 4968: 4958: 4943: 4932: 4928: 4921: 4919: 4918: 4913: 4911: 4909: 4898: 4897: 4896: 4884: 4883: 4873: 4848: 4837: 4823: 4812: 4811: 4809: 4808: 4802: 4799: 4788: 4778: 4767: 4756: 4750: 4746: 4739: 4725: 4714: 4708: 4704: 4697: 4696: 4694: 4693: 4687: 4684: 4673: 4664: 4663: 4661: 4660: 4654: 4651: 4641:value such that 4640: 4634: 4629:is prime. (When 4628: 4627: 4625: 4624: 4618: 4615: 4604: 4594: 4578: 4568: 4562: 4547: 4535: 4525: 4519: 4512: 4503: 4501: 4500: 4495: 4493: 4491: 4480: 4473: 4472: 4462: 4450: 4444: 4437: 4406: 4388: 4378: 4372: 4358: 4348: 4337:Eisenstein prime 4321: 4296: 4285: 4279: 4261: 4253: 4243: 4233: 4195: 4188: 4184: 4180: 4170: 4160:of integers (on 4139: 4132: 4121: 4114: 4107: 4100: 4093: 4074: 4068:, in this case, 4067: 4063: 4044: 4038:, in this case, 4037: 4034:. An example is 4026:is a low-degree 4025: 4014: 3989: 3983: 3960: 3956: 3949: 3938: 3931: 3923: 3910: 3904: 3898: 3897: 3895: 3894: 3891: 3888: 3865: 3861: 3853: 3849: 3841: 3791: 3778: 3769: 3747: 3590:140737488355327 3516: 3505: 3495: 3488: 3480: 3464: 3460: 3459: 3440: 3419: 3389: 3379: 3369: 3338: 3322: 3315: 3308: 3304: 3300: 3296: 3273: 3266: 3258: 3254: 3251:is congruent to 3250: 3246: 3242: 3239:is congruent to 3238: 3234: 3231:is congruent to 3230: 3226: 3222: 3214: 3206: 3198: 3190: 3182: 3172: 3169:, so 23 divides 3168: 3158: 3154: 3146: 3138: 3130: 3126: 3118: 3107: 3103: 3095: 3091: 3087: 3083: 3074: 3071:, and therefore 3070: 3063: 3056: 3053: 3052: 3050: 3049: 3046: 3043: 3034: 3027: 3017: 3006: 2998: 2976: 2968: 2961: 2957: 2943: 2940:is congruent to 2939: 2935: 2931: 2922: 2918: 2911: 2903: 2893: 2890:are larger than 2889: 2885: 2880:Euclid's theorem 2874: 2863: 2860:, which is odd, 2859: 2855: 2851: 2840: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2777: 2773: 2769: 2765: 2759: 2755: 2751: 2747: 2733: 2729: 2725: 2721: 2717: 2710: 2706: 2699: 2695: 2691: 2678: 2674: 2670: 2660: 2657: 2654: 2650: 2643: 2639: 2629: 2619: 2615: 2606: 2599: 2595: 2588: 2581: 2574: 2567: 2560: 2550: 2543: 2532: 2525: 2514: 2503: 2492: 2472: 2465: 2458: 2451: 2447: 2433: 2408: 2401: 2390: 2378: 2371: 2356: 2333: 2315: 2307: 2295: 2286: 2277: 2268: 2259: 2250: 2241: 2232: 2204: 2183: 2181: 2180: 2175: 2128: 2121: 2101: 2091: 2079: 2067: 2057: 2039: 2030: 2017: 2004: 1991: 1979:) were found by 1978: 1969: 1960: 1950: 1940: 1930: 1920: 1894: 1890: 1882: 1869: 1860: 1858: 1857: 1852: 1847: 1833: 1832: 1813: 1798: 1789: 1780: 1771: 1762: 1517: 1508: 1506: 1505: 1500: 1495: 1459: 1457: 1456: 1451: 1440: 1439: 1399: 1395: 1383: 1373:Mersenne primes 1353:Mersenne twister 1308: 1301: 1294: 1290: 1286: 1275: 1262: 1258: 1248: 1238: 1236: 1235: 1230: 1228: 1221: 1217: 1216: 1215: 1182: 1181: 1166: 1165: 1150: 1149: 1117: 1116: 1098: 1094: 1090: 1089: 1088: 1055: 1054: 1039: 1038: 1023: 1022: 990: 989: 964: 963: 940: 934: 920: 906: 896: 886: 877: 867: 857: 847: 837: 835: 834: 829: 827: 826: 808: 807: 791: 789: 788: 783: 775: 774: 753: 752: 736: 728: 725:, so it must be 720: 718: 717: 712: 695: 694: 678: 674: 670: 668: 667: 662: 654: 649: 623: 614: 602: 590: 582: 574: 568: 558: 548: 538: 528: 518: 508: 498: 488: 481: 473: 451: 449: 448: 443: 441: 440: 420: 418: 417: 412: 398: 397: 385: 384: 345: 325: 303: 295: 288:Mersenne numbers 285: 268: 238: 232: 220: 214: 204: 199:composite number 196: 182: 173: 108: 75:Mersenne numbers 60: 48: 33: 21: 12333: 12332: 12328: 12327: 12326: 12324: 12323: 12322: 12318:Perfect numbers 12313:Mersenne primes 12283: 12282: 12281: 12276: 12258: 12214:List of numbers 12182: 12180: 12178: 12176: 12166: 12123: 12089: 12083: 12054:Graham's number 12044:Skewes's number 11946: 11944: 11942: 11936: 11931: 11901: 11896: 11865:Mersenne's laws 11851: 11846: 11816: 11811: 11789: 11785:Strobogrammatic 11776: 11758: 11740: 11722: 11704: 11686: 11668: 11650: 11627: 11606: 11590: 11549:Divisor-related 11544: 11504: 11455: 11425: 11362: 11346: 11325: 11292: 11265: 11253: 11235: 11147: 11146:related numbers 11120: 11097: 11064: 11055:Perfect totient 11021: 10998: 10929:Highly abundant 10871: 10850: 10782: 10765: 10737: 10720: 10706:Stirling second 10612: 10589: 10550: 10532: 10489: 10438: 10375: 10336:Centered square 10304: 10287: 10249: 10234: 10201: 10186: 10138: 10137:defined numbers 10120: 10087: 10072: 10043:Double Mersenne 10029: 10010: 9932: 9918: 9916:natural numbers 9912: 9882: 9877: 9868: 9562:First 60 primes 9557: 9521: 9421: 9404:Complex numbers 9398: 9372: 9350: 9334: 9309: 9308:Bi-twin chain ( 9299: 9273: 9253: 9237: 9221: 9197: 9173: 9157: 9132: 9118:Strobogrammatic 9056: 9030: 8924: 8888: 8880: 8874: 8873: 8856: 8847: 8832: 8809: 8797: 8785: 8776: 8761: 8752: 8739: 8731:# + 1 8729: 8724: 8716:# ± 1 8714: 8709: 8701:! ± 1 8697: 8685: 8677: 8669:2 − 1 8668: 8660:2 − 1 8659: 8651:2 + 1 8650: 8637: 8631: 8584: 8583: 8565: 8564: 8561: 8559:MathWorld links 8553:Wayback Machine 8541:Wayback Machine 8520: 8505: 8501: 8496: 8485:Wayback Machine 8473:Wayback Machine 8434: 8416: 8414: 8396: 8376: 8368: 8351: 8343: 8328:GIMPS home page 8309: 8306: 8301: 8286: 8252: 8239: 8231: 8230: 8228: 8225: 8221: 8206: 8172: 8159: 8151: 8150: 8148: 8145: 8141: 8133: 8125: 8123: 8119: 8111: 8099: 8097: 8093: 8085: 8073: 8071: 8067: 8059: 8047: 8045: 8041: 8033: 8025: 8023: 8019: 8011: 8003: 8001: 7997: 7989: 7981: 7973: 7971: 7967: 7951: 7950: 7946: 7933: 7929: 7922: 7901: 7900: 7896: 7883: 7882: 7878: 7869: 7868: 7864: 7855: 7853: 7847: 7846: 7842: 7833: 7831: 7822: 7821: 7817: 7810: 7797: 7796: 7792: 7782: 7780: 7778:www.mersenne.ca 7772: 7771: 7767: 7758: 7756: 7752: 7751: 7747: 7737: 7735: 7733:www.mersenne.ca 7727: 7726: 7722: 7713: 7711: 7706: 7705: 7701: 7694: 7673: 7672: 7668: 7652: 7651: 7647: 7642:Wayback Machine 7633: 7629: 7619: 7617: 7609: 7608: 7604: 7595: 7593: 7589: 7588: 7584: 7575: 7574: 7570: 7557: 7556: 7552: 7543: 7541: 7533: 7532: 7528: 7515: 7514: 7510: 7500: 7498: 7487: 7486: 7482: 7472: 7470: 7459: 7458: 7454: 7444: 7442: 7433: 7432: 7428: 7419: 7417: 7406: 7405: 7401: 7392: 7390: 7381: 7380: 7376: 7367: 7363: 7345: 7344: 7340: 7323: 7322: 7318: 7303: 7302: 7298: 7270: 7269: 7265: 7248: 7247: 7243: 7234: 7230: 7222: 7218: 7208: 7207: 7203: 7193: 7191: 7182: 7181: 7177: 7167: 7165: 7156: 7155: 7151: 7147: 7142: 7141: 7124: 7121: 7112: 7111: 7109: 7108: 7104: 7097: 7090: 7086: 7082: 7078: 7076: 7072: 7059: 7055: 7044: 7032: 7020: 6989: 6986: 6977: 6976: 6974: 6973: 6971: 6967: 6941: 6930: 6926: 6909: 6904: 6899: 6895: 6890: 6885: 6881:Williams number 6846:Wieferich prime 6789: 6773: 6757: 6753: 6739: 6723: 6719: 6706: 6699: 6695: 6694:is prime, then 6685: 6681: 6670: 6659: 6652: 6648: 6641: 5210: 5208: 5207: 5203: 5190: 5188: 5187: 5178: 5176: 5175: 5171: 5166: 5165: 5162:probable primes 5159: 5144: 5141: 5132: 5131: 5129: 5128: 5127: 5122: 5121: 5114: 5113: 5107: 5106: 5086: 5072: 5069: 5060: 5059: 5057: 5056: 5052: 5041: 5037: 5033: 5029: 5025: 5013: 5003: 4992: 4988: 4984: 4980: 4970: 4960: 4945: 4938: 4930: 4926: 4899: 4888: 4875: 4874: 4867: 4866: 4860: 4844: 4833: 4819: 4803: 4800: 4794: 4793: 4791: 4790: 4784: 4773: 4763: 4752: 4748: 4741: 4735: 4721: 4710: 4706: 4699: 4688: 4685: 4679: 4678: 4676: 4675: 4669: 4655: 4652: 4646: 4645: 4643: 4642: 4636: 4630: 4619: 4616: 4610: 4609: 4607: 4606: 4600: 4595:which is not a 4590: 4584: 4574: 4564: 4557: 4543: 4541: 4531: 4521: 4514: 4508: 4481: 4464: 4463: 4456: 4455: 4446: 4439: 4432: 4429: 4423: 4418: 4402: 4384: 4374: 4366: 4350: 4340: 4333: 4317: 4292: 4281: 4273: 4255: 4249: 4244:, and can ask ( 4235: 4225: 4218: 4198:complex numbers 4190: 4186: 4182: 4176: 4165: 4154: 4152:Complex numbers 4134: 4127: 4116: 4109: 4102: 4098: 4076: 4069: 4065: 4046: 4039: 4035: 4016: 4009: 4006: 4000: 3998:Generalizations 3985: 3980: 3966: 3958: 3954: 3944: 3933: 3926: 3913: 3906: 3900: 3892: 3889: 3883: 3882: 3880: 3879: 3872: 3864:2 − 1 3863: 3860:4 + 1 3859: 3852:4 − 1 3851: 3847: 3839: 3789: 3784: 3776: 3771: 3765: 3758: 3743: 3514: 3509: 3503: 3498: 3491: 3476: 3471: 3462: 3457: 3455: 3438: 3431: 3415: 3403: 3397: 3387: 3381: 3377: 3371: 3368: 3358: 3348: 3340: 3337: 3331: 3328:Lucas sequences 3317: 3310: 3306: 3302: 3298: 3291: 3290:, the equation 3272: 3268: 3260: 3256: 3252: 3248: 3244: 3240: 3236: 3232: 3228: 3224: 3216: 3208: 3200: 3192: 3184: 3180: 3170: 3166: 3156: 3148: 3144: 3136: 3128: 3120: 3116: 3105: 3101: 3100:if and only if 3093: 3089: 3085: 3081: 3072: 3065: 3057: 3054: 3047: 3044: 3041: 3040: 3038: 3036: 3029: 3019: 3008: 3000: 2993: 2984:Wieferich prime 2974: 2963: 2959: 2951: 2941: 2937: 2933: 2929: 2920: 2917: 2913: 2905: 2898: 2891: 2887: 2883: 2865: 2861: 2857: 2856:is a factor of 2853: 2842: 2835: 2834:is a factor of 2831: 2827: 2826:is a factor of 2823: 2819: 2818:is a factor of 2815: 2814:if and only if 2811: 2810:is a factor of 2807: 2803: 2799: 2798:is a factor of 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2761: 2757: 2756:is a factor of 2753: 2749: 2748:is a factor of 2745: 2731: 2727: 2724:2 − 1 = 23 × 89 2723: 2719: 2715: 2708: 2701: 2697: 2693: 2689: 2676: 2672: 2669: 2665: 2661: 2658: 2655: 2652: 2645: 2641: 2631: 2627: 2626:: Suppose that 2617: 2616:is prime, then 2613: 2601: 2597: 2590: 2583: 2576: 2569: 2562: 2552: 2545: 2534: 2527: 2516: 2505: 2494: 2480: 2467: 2460: 2459:is prime, then 2453: 2449: 2443: 2429: 2426: 2406: 2399: 2389: 2383: 2376: 2369: 2354: 2330: 2325: 2321: 2309: 2305: 2297: 2293: 2288: 2285: 2279: 2276: 2270: 2267: 2261: 2258: 2252: 2249: 2243: 2240: 2234: 2231: 2225: 2203: 2197: 2142: 2141: 2123: 2119: 2108: 2103: 2099: 2093: 2090: 2081: 2077: 2072: 2064: 2059: 2052: 2038: 2032: 2029: 2023: 2016: 2010: 2003: 1997: 1990: 1984: 1977: 1971: 1968: 1962: 1958: 1952: 1948: 1942: 1938: 1932: 1928: 1922: 1918: 1912: 1902: 1892: 1888: 1881: 1875: 1868: 1862: 1824: 1816: 1815: 1812: 1806: 1797: 1791: 1788: 1782: 1779: 1773: 1770: 1764: 1761: 1755: 1515: 1462: 1461: 1431: 1417: 1416: 1397: 1396:is prime, then 1393: 1392:proved that if 1386:perfect numbers 1382: 1374: 1371: 1365: 1363:Perfect numbers 1333:binary computer 1307: 1303: 1300: 1296: 1292: 1288: 1285: 1281: 1273: 1267: 1260: 1257: 1253: 1246: 1240: 1226: 1225: 1192: 1170: 1154: 1141: 1134: 1130: 1108: 1096: 1095: 1065: 1043: 1027: 1014: 1007: 1003: 981: 971: 952: 943: 942: 936: 933: 929: 919: 912: 904: 898: 894: 888: 885: 879: 875: 869: 865: 859: 855: 849: 845: 839: 818: 799: 794: 793: 766: 744: 739: 738: 730: 726: 686: 681: 680: 676: 672: 624: 617: 616: 608: 596: 584: 580: 570: 567: 560: 557: 550: 547: 540: 537: 530: 527: 520: 517: 510: 507: 500: 497: 490: 489:, for example, 487: 483: 475: 471: 432: 427: 426: 389: 376: 371: 370: 367:order of growth 356: 355: 350: 347: 343: 340: 323: 301: 291: 282: 277: 264: 234: 228: 216: 215:for some prime 211: 206: 202: 192: 178: 170: 165: 139: 106: 28: 23: 22: 18:524287 (number) 15: 12: 11: 5: 12331: 12329: 12321: 12320: 12315: 12310: 12305: 12300: 12295: 12285: 12284: 12278: 12277: 12275: 12274: 12269: 12263: 12260: 12259: 12257: 12256: 12251: 12246: 12244:Power of three 12241: 12236: 12231: 12226: 12224:Number systems 12221: 12216: 12211: 12206: 12201: 12196: 12191: 12185: 12183: 12179:(alphabetical 12172: 12171: 12168: 12167: 12165: 12164: 12159: 12154: 12149: 12148: 12147: 12142: 12135:Hyperoperation 12131: 12129: 12125: 12124: 12122: 12121: 12116: 12111: 12106: 12100: 12098: 12091: 12085: 12084: 12082: 12081: 12076: 12071: 12066: 12061: 12056: 12051: 12049:Moser's number 12046: 12041: 12036: 12034:Shannon number 12031: 12026: 12021: 12016: 12011: 12006: 12001: 11996: 11991: 11986: 11981: 11976: 11971: 11966: 11961: 11956: 11950: 11948: 11938: 11937: 11932: 11930: 11929: 11922: 11915: 11907: 11898: 11897: 11895: 11894: 11889: 11888: 11887: 11882: 11877: 11870:Mersenne prime 11867: 11862: 11856: 11853: 11852: 11849:Marin Mersenne 11847: 11845: 11844: 11837: 11830: 11822: 11813: 11812: 11810: 11809: 11798: 11795: 11794: 11791: 11790: 11788: 11787: 11781: 11778: 11777: 11771: 11764: 11763: 11760: 11759: 11757: 11756: 11751: 11745: 11742: 11741: 11735: 11728: 11727: 11724: 11723: 11721: 11720: 11718:Sorting number 11715: 11713:Pancake number 11709: 11706: 11705: 11699: 11692: 11691: 11688: 11687: 11685: 11684: 11679: 11673: 11670: 11669: 11663: 11656: 11655: 11652: 11651: 11649: 11648: 11643: 11638: 11632: 11629: 11628: 11625:Binary numbers 11623: 11616: 11615: 11612: 11611: 11608: 11607: 11605: 11604: 11598: 11596: 11592: 11591: 11589: 11588: 11583: 11578: 11573: 11568: 11563: 11558: 11552: 11550: 11546: 11545: 11543: 11542: 11537: 11532: 11527: 11522: 11516: 11514: 11506: 11505: 11503: 11502: 11497: 11492: 11487: 11482: 11477: 11472: 11466: 11464: 11457: 11456: 11454: 11453: 11452: 11451: 11440: 11438: 11435:P-adic numbers 11431: 11430: 11427: 11426: 11424: 11423: 11422: 11421: 11411: 11406: 11401: 11396: 11391: 11386: 11381: 11376: 11370: 11368: 11364: 11363: 11361: 11360: 11354: 11352: 11351:Coding-related 11348: 11347: 11345: 11344: 11339: 11333: 11331: 11327: 11326: 11324: 11323: 11318: 11313: 11308: 11302: 11300: 11291: 11290: 11289: 11288: 11286:Multiplicative 11283: 11272: 11270: 11255: 11254: 11250:Numeral system 11248: 11241: 11240: 11237: 11236: 11234: 11233: 11228: 11223: 11218: 11213: 11208: 11203: 11198: 11193: 11188: 11183: 11178: 11173: 11168: 11163: 11158: 11152: 11149: 11148: 11137: 11130: 11129: 11126: 11125: 11122: 11121: 11119: 11118: 11113: 11107: 11105: 11099: 11098: 11096: 11095: 11090: 11085: 11080: 11074: 11072: 11066: 11065: 11063: 11062: 11057: 11052: 11047: 11042: 11040:Highly totient 11037: 11031: 11029: 11023: 11022: 11020: 11019: 11014: 11008: 11006: 11000: 10999: 10997: 10996: 10991: 10986: 10981: 10976: 10971: 10966: 10961: 10956: 10951: 10946: 10941: 10936: 10931: 10926: 10921: 10916: 10911: 10906: 10901: 10896: 10894:Almost perfect 10891: 10885: 10883: 10873: 10872: 10863: 10856: 10855: 10852: 10851: 10849: 10848: 10843: 10838: 10833: 10828: 10823: 10818: 10813: 10808: 10803: 10798: 10793: 10787: 10784: 10783: 10778: 10771: 10770: 10767: 10766: 10764: 10763: 10758: 10753: 10748: 10742: 10739: 10738: 10733: 10726: 10725: 10722: 10721: 10719: 10718: 10713: 10708: 10703: 10701:Stirling first 10698: 10693: 10688: 10683: 10678: 10673: 10668: 10663: 10658: 10653: 10648: 10643: 10638: 10633: 10628: 10623: 10617: 10614: 10613: 10610: 10603: 10602: 10599: 10598: 10595: 10594: 10591: 10590: 10588: 10587: 10582: 10577: 10571: 10569: 10562: 10556: 10555: 10552: 10551: 10549: 10548: 10542: 10540: 10534: 10533: 10531: 10530: 10525: 10520: 10515: 10510: 10505: 10499: 10497: 10491: 10490: 10488: 10487: 10482: 10477: 10472: 10467: 10461: 10459: 10450: 10444: 10443: 10440: 10439: 10437: 10436: 10431: 10426: 10421: 10416: 10411: 10406: 10401: 10396: 10391: 10385: 10383: 10377: 10376: 10374: 10373: 10368: 10363: 10358: 10353: 10348: 10343: 10338: 10333: 10327: 10325: 10316: 10306: 10305: 10300: 10293: 10292: 10289: 10288: 10286: 10285: 10280: 10275: 10270: 10265: 10260: 10254: 10251: 10250: 10247: 10240: 10239: 10236: 10235: 10233: 10232: 10227: 10222: 10217: 10212: 10206: 10203: 10202: 10199: 10192: 10191: 10188: 10187: 10185: 10184: 10179: 10174: 10169: 10164: 10159: 10154: 10149: 10143: 10140: 10139: 10133: 10126: 10125: 10122: 10121: 10119: 10118: 10113: 10108: 10103: 10098: 10092: 10089: 10088: 10085: 10078: 10077: 10074: 10073: 10071: 10070: 10065: 10060: 10055: 10050: 10045: 10040: 10034: 10031: 10030: 10023: 10016: 10015: 10012: 10011: 10009: 10008: 10003: 9998: 9993: 9988: 9983: 9978: 9973: 9968: 9963: 9958: 9953: 9948: 9943: 9937: 9934: 9933: 9927: 9920: 9919: 9913: 9911: 9910: 9903: 9896: 9888: 9879: 9878: 9873: 9870: 9869: 9867: 9866: 9861: 9856: 9851: 9846: 9841: 9836: 9831: 9826: 9821: 9816: 9811: 9806: 9801: 9796: 9791: 9786: 9781: 9776: 9771: 9766: 9761: 9756: 9751: 9746: 9741: 9736: 9731: 9726: 9721: 9716: 9711: 9706: 9701: 9696: 9691: 9686: 9681: 9676: 9671: 9666: 9661: 9656: 9651: 9646: 9641: 9636: 9631: 9626: 9621: 9616: 9611: 9606: 9601: 9596: 9591: 9586: 9581: 9576: 9571: 9565: 9563: 9559: 9558: 9556: 9555: 9550: 9545: 9540: 9535: 9533:Probable prime 9529: 9527: 9526:Related topics 9523: 9522: 9520: 9519: 9514: 9509: 9507:Sphenic number 9504: 9499: 9494: 9489: 9488: 9487: 9482: 9477: 9472: 9467: 9462: 9457: 9452: 9447: 9442: 9431: 9429: 9423: 9422: 9420: 9419: 9417:Gaussian prime 9414: 9408: 9406: 9400: 9399: 9397: 9396: 9395: 9385: 9380: 9378: 9374: 9373: 9371: 9370: 9346: 9342: + 1 9330: 9325: 9304: 9301: 9300: 9298: 9297: 9269: 9249: 9245: + 6 9233: 9229: + 4 9217: 9213: + 8 9193: 9189: + 6 9169: 9165: + 2 9152: 9150: 9138: 9134: 9133: 9131: 9130: 9125: 9120: 9115: 9110: 9105: 9100: 9095: 9090: 9085: 9080: 9075: 9070: 9065: 9060: 9052: 9047: 9041: 9039: 9032: 9031: 9029: 9028: 9023: 9018: 9013: 9008: 9003: 8998: 8993: 8988: 8983: 8978: 8973: 8968: 8963: 8958: 8953: 8948: 8943: 8932: 8930: 8926: 8925: 8923: 8922: 8917: 8912: 8907: 8902: 8896: 8894: 8890: 8889: 8887: 8886: 8869: 8865: − 1 8852: 8843: 8828: 8805: 8793: 8781: 8772: 8757: 8748: 8744: + 1 8735: 8727: 8720: 8712: 8705: 8693: 8681: 8673: 8664: 8655: 8645: 8643: 8639: 8638: 8632: 8630: 8629: 8622: 8615: 8607: 8601: 8600: 8581: 8560: 8557: 8556: 8555: 8543: 8531: 8516: 8511: 8499: 8487: 8475: 8463: 8458: 8453: 8448: 8442: 8437: 8428: 8422: 8397:Grime, James. 8394: 8372: 8366: 8347: 8341: 8336: 8330: 8325: 8305: 8304:External links 8302: 8300: 8299: 8272: 8268: 8264: 8259: 8255: 8251: 8246: 8242: 8238: 8219: 8192: 8188: 8184: 8179: 8175: 8171: 8166: 8162: 8158: 8139: 8117: 8091: 8065: 8039: 8017: 7995: 7965: 7944: 7927: 7920: 7894: 7891:on 2012-05-29. 7876: 7871:"OEIS A016131" 7862: 7840: 7815: 7808: 7790: 7765: 7745: 7720: 7699: 7692: 7666: 7645: 7627: 7602: 7582: 7568: 7550: 7526: 7523:on 2016-09-03. 7508: 7480: 7452: 7426: 7399: 7374: 7368:Brian Napper, 7361: 7338: 7316: 7296: 7283:(3): 134–138. 7263: 7241: 7228: 7216: 7201: 7175: 7148: 7146: 7143: 7140: 7139: 7070: 6965: 6907: 6892: 6891: 6889: 6886: 6884: 6883: 6878: 6873: 6868: 6863: 6858: 6853: 6851:Wagstaff prime 6848: 6843: 6838: 6832: 6826: 6821: 6816: 6811: 6806: 6801: 6796: 6790: 6788: 6785: 6784: 6783: 6750: 6749: 6636: 6635: 6630: 6627: 6624: 6620: 6619: 6617: 6614: 6611: 6607: 6606: 6601: 6598: 6595: 6591: 6590: 6585: 6582: 6579: 6575: 6574: 6569: 6566: 6563: 6559: 6558: 6553: 6550: 6547: 6543: 6542: 6537: 6534: 6531: 6527: 6526: 6521: 6518: 6515: 6511: 6510: 6505: 6502: 6499: 6495: 6494: 6492: 6489: 6486: 6482: 6481: 6479: 6476: 6473: 6469: 6468: 6466: 6463: 6460: 6456: 6455: 6453: 6450: 6447: 6443: 6442: 6437: 6434: 6431: 6427: 6426: 6421: 6418: 6415: 6411: 6410: 6405: 6402: 6399: 6395: 6394: 6389: 6386: 6383: 6379: 6378: 6373: 6370: 6367: 6363: 6362: 6357: 6354: 6351: 6347: 6346: 6341: 6338: 6335: 6331: 6330: 6325: 6322: 6319: 6315: 6314: 6309: 6306: 6303: 6299: 6298: 6293: 6290: 6287: 6283: 6282: 6277: 6274: 6271: 6267: 6266: 6261: 6258: 6255: 6251: 6250: 6245: 6242: 6239: 6235: 6234: 6229: 6226: 6223: 6219: 6218: 6213: 6210: 6207: 6203: 6202: 6197: 6194: 6191: 6187: 6186: 6184: 6181: 6178: 6174: 6173: 6168: 6165: 6162: 6158: 6157: 6152: 6149: 6146: 6142: 6141: 6136: 6133: 6130: 6126: 6125: 6120: 6117: 6114: 6110: 6109: 6104: 6101: 6098: 6094: 6093: 6088: 6085: 6082: 6078: 6077: 6072: 6069: 6066: 6062: 6061: 6056: 6053: 6050: 6046: 6045: 6040: 6037: 6034: 6030: 6029: 6024: 6021: 6018: 6014: 6013: 6008: 6005: 6002: 5998: 5997: 5992: 5989: 5986: 5982: 5981: 5979: 5976: 5973: 5969: 5968: 5963: 5960: 5957: 5953: 5952: 5950: 5949:2 (no others) 5947: 5944: 5940: 5939: 5934: 5931: 5928: 5924: 5923: 5918: 5915: 5912: 5908: 5907: 5902: 5899: 5896: 5892: 5891: 5886: 5883: 5880: 5876: 5875: 5870: 5867: 5864: 5860: 5859: 5854: 5851: 5848: 5844: 5843: 5841: 5840:2 (no others) 5838: 5835: 5831: 5830: 5828: 5827:3 (no others) 5825: 5822: 5818: 5817: 5812: 5809: 5806: 5802: 5801: 5796: 5793: 5790: 5786: 5785: 5780: 5777: 5774: 5770: 5769: 5764: 5761: 5758: 5754: 5753: 5748: 5745: 5742: 5738: 5737: 5732: 5729: 5726: 5722: 5721: 5716: 5713: 5710: 5706: 5705: 5700: 5697: 5694: 5690: 5689: 5684: 5681: 5678: 5674: 5673: 5668: 5665: 5662: 5658: 5657: 5652: 5649: 5646: 5642: 5641: 5636: 5633: 5630: 5626: 5625: 5620: 5617: 5614: 5610: 5609: 5604: 5601: 5598: 5594: 5593: 5588: 5585: 5582: 5578: 5577: 5572: 5569: 5566: 5562: 5561: 5556: 5553: 5550: 5546: 5545: 5540: 5537: 5534: 5530: 5529: 5524: 5521: 5518: 5514: 5513: 5508: 5505: 5502: 5498: 5497: 5492: 5489: 5486: 5482: 5481: 5476: 5473: 5470: 5466: 5465: 5460: 5457: 5454: 5450: 5449: 5444: 5441: 5438: 5434: 5433: 5428: 5425: 5422: 5418: 5417: 5412: 5409: 5406: 5402: 5401: 5396: 5393: 5390: 5386: 5385: 5380: 5377: 5374: 5370: 5369: 5367: 5364: 5361: 5357: 5356: 5354: 5353:2 (no others) 5351: 5348: 5344: 5343: 5338: 5335: 5332: 5328: 5327: 5322: 5319: 5316: 5312: 5311: 5306: 5303: 5300: 5296: 5295: 5290: 5287: 5284: 5280: 5279: 5274: 5271: 5268: 5264: 5263: 5258: 5254: 5251: 5247: 5246: 5241: 5237: 5234: 5230: 5229: 5223: 5118: 5111: 4923: 4922: 4908: 4905: 4902: 4895: 4891: 4887: 4882: 4878: 4859: 4856: 4855: 4854: 4830: 4829: 4781: 4780: 4732: 4731: 4587: 4586: 4554: 4553: 4505: 4504: 4490: 4487: 4484: 4479: 4476: 4471: 4467: 4425:Main article: 4422: 4421:Repunit primes 4419: 4417: 4414: 4413: 4412: 4395: 4394: 4332: 4329: 4328: 4327: 4303: 4302: 4264:Gaussian prime 4217: 4214: 4153: 4150: 4124:theorems above 4002:Main article: 3999: 3996: 3978: 3963: 3962: 3878:is defined as 3871: 3868: 3832:right triangle 3787: 3774: 3762:Tower of Hanoi 3757: 3754: 3738: 3737: 3734: 3731: 3727: 3726: 3723: 3720: 3716: 3715: 3712: 3709: 3705: 3704: 3701: 3698: 3694: 3693: 3690: 3687: 3683: 3682: 3679: 3676: 3672: 3671: 3668: 3665: 3661: 3660: 3657: 3654: 3650: 3649: 3646: 3643: 3639: 3638: 3635: 3632: 3628: 3627: 3624: 3621: 3617: 3616: 3613: 3610: 3606: 3605: 3602: 3599: 3595: 3594: 3591: 3588: 3584: 3583: 3580: 3579:8796093022207 3577: 3573: 3572: 3569: 3568:2199023255551 3566: 3562: 3561: 3558: 3555: 3551: 3550: 3547: 3544: 3540: 3539: 3536: 3533: 3529: 3528: 3525: 3522: 3518: 3517: 3512: 3506: 3501: 3496: 3469: 3452:probable prime 3448:primality test 3430: 3427: 3426: 3425: 3399:Main article: 3396: 3393: 3392: 3391: 3385: 3375: 3363: 3353: 3344: 3333: 3324: 3284: 3283:to the base 2. 3277: 3276: 3275: 3270: 3174: 3167:11 = 2 × 4 + 3 3113: 3078: 3077: 3076: 3073:−1 = 0 (mod p) 2980: 2979: 2978: 2926: 2925: 2924: 2915: 2895: 2876: 2735: 2718:is prime, and 2686: 2685: 2684: 2679:is prime then 2667: 2663: 2610: 2609: 2608: 2425: 2422: 2418:Probable prime 2411:Ocala, Florida 2387: 2328: 2323: 2318:floor function 2303: 2291: 2283: 2274: 2265: 2256: 2247: 2238: 2229: 2222:R. M. Robinson 2201: 2173: 2170: 2167: 2164: 2161: 2158: 2155: 2152: 2149: 2114: 2106: 2097: 2085: 2075: 2070:if and only if 2062: 2036: 2027: 2014: 2009:in 1876, then 2001: 1994:Leonhard Euler 1988: 1981:Pietro Cataldi 1975: 1966: 1956: 1946: 1936: 1926: 1916: 1901: 1898: 1879: 1866: 1850: 1846: 1842: 1839: 1836: 1831: 1827: 1823: 1810: 1795: 1786: 1777: 1768: 1759: 1752: 1751: 1750: 1749: 1740:Marin Mersenne 1730: 1729: 1725: 1724: 1721: 1718: 1715: 1712: 1709: 1706: 1703: 1699: 1698: 1695: 1692: 1689: 1686: 1683: 1680: 1677: 1673: 1672: 1669: 1666: 1663: 1660: 1657: 1654: 1651: 1647: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1621: 1620: 1617: 1614: 1611: 1608: 1605: 1602: 1599: 1595: 1594: 1591: 1588: 1585: 1582: 1579: 1576: 1573: 1569: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1543: 1542: 1539: 1536: 1533: 1530: 1527: 1524: 1521: 1514: 1511: 1498: 1494: 1490: 1487: 1484: 1481: 1478: 1475: 1472: 1469: 1449: 1446: 1443: 1438: 1434: 1430: 1427: 1424: 1402:Leonhard Euler 1378: 1367:Main article: 1364: 1361: 1322:cult following 1318:primality test 1305: 1298: 1283: 1278: 1277: 1271: 1255: 1244: 1224: 1220: 1214: 1211: 1208: 1205: 1202: 1199: 1195: 1191: 1188: 1185: 1180: 1177: 1173: 1169: 1164: 1161: 1157: 1153: 1148: 1144: 1140: 1137: 1133: 1129: 1126: 1123: 1120: 1115: 1111: 1107: 1104: 1101: 1099: 1097: 1093: 1087: 1084: 1081: 1078: 1075: 1072: 1068: 1064: 1061: 1058: 1053: 1050: 1046: 1042: 1037: 1034: 1030: 1026: 1021: 1017: 1013: 1010: 1006: 1002: 999: 996: 993: 988: 984: 980: 977: 974: 972: 970: 967: 962: 959: 955: 951: 950: 931: 917: 902: 892: 883: 873: 863: 853: 843: 825: 821: 817: 814: 811: 806: 802: 781: 778: 773: 769: 765: 762: 759: 756: 751: 747: 710: 707: 704: 701: 698: 693: 689: 660: 657: 652: 648: 645: 642: 639: 636: 633: 630: 627: 565: 555: 545: 535: 525: 515: 505: 495: 485: 439: 435: 421:≈ 5.92 primes 410: 407: 404: 401: 396: 392: 388: 383: 379: 351: 348: 342: 339: 336: 280: 209: 185:Marin Mersenne 168: 151:Mersenne prime 141: 140: 138: 137: 126: 120: 118: 111: 110: 104: 100: 99: 81: 77: 76: 73: 66: 65: 62: 54: 53: 50: 49:of known terms 43: 42: 40:Marin Mersenne 37: 31:Mersenne prime 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 12330: 12319: 12316: 12314: 12311: 12309: 12306: 12304: 12301: 12299: 12296: 12294: 12291: 12290: 12288: 12273: 12270: 12268: 12265: 12264: 12261: 12255: 12252: 12250: 12247: 12245: 12242: 12240: 12237: 12235: 12232: 12230: 12227: 12225: 12222: 12220: 12217: 12215: 12212: 12210: 12207: 12205: 12204:Infinitesimal 12202: 12200: 12197: 12195: 12192: 12190: 12187: 12186: 12184: 12173: 12163: 12160: 12158: 12155: 12153: 12150: 12146: 12143: 12141: 12138: 12137: 12136: 12133: 12132: 12130: 12126: 12120: 12117: 12115: 12112: 12110: 12107: 12105: 12102: 12101: 12099: 12095: 12092: 12086: 12080: 12077: 12075: 12074:Rayo's number 12072: 12070: 12067: 12065: 12062: 12060: 12057: 12055: 12052: 12050: 12047: 12045: 12042: 12040: 12037: 12035: 12032: 12030: 12027: 12025: 12022: 12020: 12017: 12015: 12012: 12010: 12007: 12005: 12002: 12000: 11997: 11995: 11992: 11990: 11987: 11985: 11982: 11980: 11977: 11975: 11972: 11970: 11967: 11965: 11962: 11960: 11957: 11955: 11952: 11951: 11949: 11939: 11935: 11934:Large numbers 11928: 11923: 11921: 11916: 11914: 11909: 11908: 11905: 11893: 11890: 11886: 11883: 11881: 11878: 11876: 11873: 11872: 11871: 11868: 11866: 11863: 11861: 11858: 11857: 11854: 11850: 11843: 11838: 11836: 11831: 11829: 11824: 11823: 11820: 11808: 11804: 11800: 11799: 11796: 11786: 11783: 11782: 11779: 11774: 11769: 11765: 11755: 11752: 11750: 11747: 11746: 11743: 11738: 11733: 11729: 11719: 11716: 11714: 11711: 11710: 11707: 11702: 11697: 11693: 11683: 11680: 11678: 11675: 11674: 11671: 11667: 11661: 11657: 11647: 11644: 11642: 11639: 11637: 11634: 11633: 11630: 11626: 11621: 11617: 11603: 11600: 11599: 11597: 11593: 11587: 11584: 11582: 11579: 11577: 11576:Polydivisible 11574: 11572: 11569: 11567: 11564: 11562: 11559: 11557: 11554: 11553: 11551: 11547: 11541: 11538: 11536: 11533: 11531: 11528: 11526: 11523: 11521: 11518: 11517: 11515: 11512: 11507: 11501: 11498: 11496: 11493: 11491: 11488: 11486: 11483: 11481: 11478: 11476: 11473: 11471: 11468: 11467: 11465: 11462: 11458: 11450: 11447: 11446: 11445: 11442: 11441: 11439: 11436: 11432: 11420: 11417: 11416: 11415: 11412: 11410: 11407: 11405: 11402: 11400: 11397: 11395: 11392: 11390: 11387: 11385: 11382: 11380: 11377: 11375: 11372: 11371: 11369: 11365: 11359: 11356: 11355: 11353: 11349: 11343: 11340: 11338: 11335: 11334: 11332: 11330:Digit product 11328: 11322: 11319: 11317: 11314: 11312: 11309: 11307: 11304: 11303: 11301: 11299: 11295: 11287: 11284: 11282: 11279: 11278: 11277: 11274: 11273: 11271: 11269: 11264: 11260: 11256: 11251: 11246: 11242: 11232: 11229: 11227: 11224: 11222: 11219: 11217: 11214: 11212: 11209: 11207: 11204: 11202: 11199: 11197: 11194: 11192: 11189: 11187: 11184: 11182: 11179: 11177: 11174: 11172: 11169: 11167: 11166:Erdős–Nicolas 11164: 11162: 11159: 11157: 11154: 11153: 11150: 11145: 11141: 11135: 11131: 11117: 11114: 11112: 11109: 11108: 11106: 11104: 11100: 11094: 11091: 11089: 11086: 11084: 11081: 11079: 11076: 11075: 11073: 11071: 11067: 11061: 11058: 11056: 11053: 11051: 11048: 11046: 11043: 11041: 11038: 11036: 11033: 11032: 11030: 11028: 11024: 11018: 11015: 11013: 11010: 11009: 11007: 11005: 11001: 10995: 10992: 10990: 10987: 10985: 10984:Superabundant 10982: 10980: 10977: 10975: 10972: 10970: 10967: 10965: 10962: 10960: 10957: 10955: 10952: 10950: 10947: 10945: 10942: 10940: 10937: 10935: 10932: 10930: 10927: 10925: 10922: 10920: 10917: 10915: 10912: 10910: 10907: 10905: 10902: 10900: 10897: 10895: 10892: 10890: 10887: 10886: 10884: 10882: 10878: 10874: 10870: 10866: 10861: 10857: 10847: 10844: 10842: 10839: 10837: 10834: 10832: 10829: 10827: 10824: 10822: 10819: 10817: 10814: 10812: 10809: 10807: 10804: 10802: 10799: 10797: 10794: 10792: 10789: 10788: 10785: 10781: 10776: 10772: 10762: 10759: 10757: 10754: 10752: 10749: 10747: 10744: 10743: 10740: 10736: 10731: 10727: 10717: 10714: 10712: 10709: 10707: 10704: 10702: 10699: 10697: 10694: 10692: 10689: 10687: 10684: 10682: 10679: 10677: 10674: 10672: 10669: 10667: 10664: 10662: 10659: 10657: 10654: 10652: 10649: 10647: 10644: 10642: 10639: 10637: 10634: 10632: 10629: 10627: 10624: 10622: 10619: 10618: 10615: 10608: 10604: 10586: 10583: 10581: 10578: 10576: 10573: 10572: 10570: 10566: 10563: 10561: 10560:4-dimensional 10557: 10547: 10544: 10543: 10541: 10539: 10535: 10529: 10526: 10524: 10521: 10519: 10516: 10514: 10511: 10509: 10506: 10504: 10501: 10500: 10498: 10496: 10492: 10486: 10483: 10481: 10478: 10476: 10473: 10471: 10470:Centered cube 10468: 10466: 10463: 10462: 10460: 10458: 10454: 10451: 10449: 10448:3-dimensional 10445: 10435: 10432: 10430: 10427: 10425: 10422: 10420: 10417: 10415: 10412: 10410: 10407: 10405: 10402: 10400: 10397: 10395: 10392: 10390: 10387: 10386: 10384: 10382: 10378: 10372: 10369: 10367: 10364: 10362: 10359: 10357: 10354: 10352: 10349: 10347: 10344: 10342: 10339: 10337: 10334: 10332: 10329: 10328: 10326: 10324: 10320: 10317: 10315: 10314:2-dimensional 10311: 10307: 10303: 10298: 10294: 10284: 10281: 10279: 10276: 10274: 10271: 10269: 10266: 10264: 10261: 10259: 10258:Nonhypotenuse 10256: 10255: 10252: 10245: 10241: 10231: 10228: 10226: 10223: 10221: 10218: 10216: 10213: 10211: 10208: 10207: 10204: 10197: 10193: 10183: 10180: 10178: 10175: 10173: 10170: 10168: 10165: 10163: 10160: 10158: 10155: 10153: 10150: 10148: 10145: 10144: 10141: 10136: 10131: 10127: 10117: 10114: 10112: 10109: 10107: 10104: 10102: 10099: 10097: 10094: 10093: 10090: 10083: 10079: 10069: 10066: 10064: 10061: 10059: 10056: 10054: 10051: 10049: 10046: 10044: 10041: 10039: 10036: 10035: 10032: 10027: 10021: 10017: 10007: 10004: 10002: 9999: 9997: 9996:Perfect power 9994: 9992: 9989: 9987: 9986:Seventh power 9984: 9982: 9979: 9977: 9974: 9972: 9969: 9967: 9964: 9962: 9959: 9957: 9954: 9952: 9949: 9947: 9944: 9942: 9939: 9938: 9935: 9930: 9925: 9921: 9917: 9909: 9904: 9902: 9897: 9895: 9890: 9889: 9886: 9876: 9871: 9865: 9862: 9860: 9857: 9855: 9852: 9850: 9847: 9845: 9842: 9840: 9837: 9835: 9832: 9830: 9827: 9825: 9822: 9820: 9817: 9815: 9812: 9810: 9807: 9805: 9802: 9800: 9797: 9795: 9792: 9790: 9787: 9785: 9782: 9780: 9777: 9775: 9772: 9770: 9767: 9765: 9762: 9760: 9757: 9755: 9752: 9750: 9747: 9745: 9742: 9740: 9737: 9735: 9732: 9730: 9727: 9725: 9722: 9720: 9717: 9715: 9712: 9710: 9707: 9705: 9702: 9700: 9697: 9695: 9692: 9690: 9687: 9685: 9682: 9680: 9677: 9675: 9672: 9670: 9667: 9665: 9662: 9660: 9657: 9655: 9652: 9650: 9647: 9645: 9642: 9640: 9637: 9635: 9632: 9630: 9627: 9625: 9622: 9620: 9617: 9615: 9612: 9610: 9607: 9605: 9602: 9600: 9597: 9595: 9592: 9590: 9587: 9585: 9582: 9580: 9577: 9575: 9572: 9570: 9567: 9566: 9564: 9560: 9554: 9551: 9549: 9546: 9544: 9543:Illegal prime 9541: 9539: 9536: 9534: 9531: 9530: 9528: 9524: 9518: 9515: 9513: 9510: 9508: 9505: 9503: 9500: 9498: 9495: 9493: 9490: 9486: 9483: 9481: 9478: 9476: 9473: 9471: 9468: 9466: 9463: 9461: 9458: 9456: 9453: 9451: 9448: 9446: 9443: 9441: 9438: 9437: 9436: 9433: 9432: 9430: 9428: 9424: 9418: 9415: 9413: 9410: 9409: 9407: 9405: 9401: 9394: 9391: 9390: 9389: 9388:Largest known 9386: 9384: 9381: 9379: 9375: 9369: 9365: 9361: 9357: 9353: 9347: 9345: 9341: 9337: 9331: 9329: 9326: 9324: 9320: 9316: 9312: 9306: 9305: 9296: 9293: 9290: +  9289: 9285: 9281: 9278: −  9277: 9270: 9268: 9264: 9260: 9257: +  9256: 9250: 9248: 9244: 9240: 9234: 9232: 9228: 9224: 9218: 9216: 9212: 9208: 9204: 9200: 9194: 9192: 9188: 9184: 9180: 9176: 9170: 9168: 9164: 9160: 9154: 9153: 9151: 9149: 9147: 9142: 9139: 9135: 9129: 9126: 9124: 9121: 9119: 9116: 9114: 9111: 9109: 9106: 9104: 9101: 9099: 9096: 9094: 9091: 9089: 9086: 9084: 9081: 9079: 9076: 9074: 9071: 9069: 9066: 9064: 9061: 9059: 9053: 9051: 9048: 9046: 9043: 9042: 9040: 9037: 9033: 9027: 9024: 9022: 9019: 9017: 9014: 9012: 9009: 9007: 9004: 9002: 8999: 8997: 8994: 8992: 8989: 8987: 8984: 8982: 8979: 8977: 8974: 8972: 8969: 8967: 8964: 8962: 8959: 8957: 8954: 8952: 8949: 8947: 8944: 8941: 8937: 8934: 8933: 8931: 8927: 8921: 8918: 8916: 8913: 8911: 8908: 8906: 8903: 8901: 8898: 8897: 8895: 8891: 8885: 8879: 8870: 8868: 8864: 8860: 8853: 8851: 8844: 8842: 8839: 8836: +  8835: 8829: 8827: 8824: 8821: −  8820: 8816: 8813: −  8812: 8806: 8804: 8800: 8794: 8792: 8788: 8782: 8780: 8773: 8771: 8768: 8765: +  8764: 8758: 8756: 8749: 8747: 8743: 8738:Pythagorean ( 8736: 8734: 8730: 8721: 8719: 8715: 8706: 8704: 8700: 8694: 8692: 8688: 8682: 8680: 8674: 8672: 8665: 8663: 8656: 8654: 8647: 8646: 8644: 8640: 8635: 8628: 8623: 8621: 8616: 8614: 8609: 8608: 8605: 8596: 8595: 8590: 8587: 8582: 8577: 8576: 8571: 8568: 8563: 8562: 8558: 8554: 8550: 8547: 8544: 8542: 8538: 8535: 8532: 8530: 8527: 8523: 8517: 8515: 8512: 8508: 8502: 8494: 8488: 8486: 8482: 8479: 8476: 8474: 8470: 8467: 8464: 8462: 8459: 8457: 8454: 8452: 8449: 8446: 8443: 8441: 8438: 8432: 8429: 8426: 8423: 8413:on 2013-05-31 8412: 8408: 8404: 8400: 8395: 8392: 8388: 8384: 8380: 8375: 8371: 8367: 8364: 8359: 8355: 8350: 8346: 8342: 8340: 8337: 8334: 8331: 8329: 8326: 8322: 8318: 8317: 8312: 8308: 8307: 8303: 8297: 8294: 8290: 8270: 8266: 8257: 8253: 8249: 8244: 8240: 8223: 8220: 8217: 8214: 8210: 8190: 8186: 8177: 8173: 8169: 8164: 8160: 8143: 8140: 8137: 8129: 8121: 8118: 8115: 8107: 8103: 8095: 8092: 8089: 8081: 8077: 8069: 8066: 8063: 8055: 8051: 8043: 8040: 8037: 8029: 8021: 8018: 8015: 8007: 7999: 7996: 7993: 7985: 7977: 7969: 7966: 7960: 7955: 7948: 7945: 7941: 7938:(part of the 7937: 7931: 7928: 7923: 7917: 7913: 7909: 7905: 7898: 7895: 7890: 7886: 7880: 7877: 7872: 7866: 7863: 7851: 7844: 7841: 7830: 7826: 7819: 7816: 7811: 7805: 7801: 7794: 7791: 7779: 7775: 7769: 7766: 7755: 7749: 7746: 7734: 7730: 7724: 7721: 7710: 7703: 7700: 7695: 7689: 7685: 7681: 7677: 7670: 7667: 7662: 7661: 7656: 7649: 7646: 7643: 7639: 7636: 7631: 7628: 7616: 7612: 7606: 7603: 7592: 7586: 7583: 7578: 7572: 7569: 7564: 7560: 7554: 7551: 7540: 7536: 7530: 7527: 7522: 7518: 7512: 7509: 7497: 7496: 7491: 7484: 7481: 7469: 7468: 7467:New Scientist 7463: 7456: 7453: 7441: 7437: 7430: 7427: 7416: 7415: 7410: 7403: 7400: 7389: 7385: 7378: 7375: 7371: 7365: 7362: 7357: 7353: 7349: 7342: 7339: 7334: 7330: 7326: 7320: 7317: 7310: 7309: 7300: 7297: 7291: 7286: 7282: 7278: 7274: 7267: 7264: 7259: 7255: 7254:Wright, E. M. 7251: 7245: 7242: 7238: 7232: 7229: 7226: 7220: 7217: 7212: 7205: 7202: 7189: 7185: 7179: 7176: 7163: 7159: 7153: 7150: 7144: 7131: 7127: 7119: 7115: 7101: 7093: 7074: 7071: 7066: 7062: 7051: 7047: 7040: 7036: 7028: 7024: 7016: 7012: 7008: 7004: 6996: 6992: 6984: 6980: 6969: 6966: 6960: 6956: 6952: 6948: 6944: 6940: 6936: 6922: 6918: 6914: 6910: 6903: 6897: 6894: 6887: 6882: 6879: 6877: 6874: 6872: 6871:Solinas prime 6869: 6867: 6864: 6862: 6861:Woodall prime 6859: 6857: 6854: 6852: 6849: 6847: 6844: 6842: 6839: 6836: 6833: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6805: 6802: 6800: 6799:Fermat number 6797: 6795: 6792: 6791: 6786: 6781: 6776: 6770: 6769: 6768: 6767:is prime are 6765: 6761: 6747: 6742: 6736: 6735: 6734: 6733:is prime are 6731: 6727: 6716: 6713: 6709: 6702: 6692: 6688: 6678: 6674: 6666: 6662: 6656: 6644: 6634: 6631: 6628: 6625: 6622: 6621: 6618: 6615: 6612: 6609: 6608: 6605: 6602: 6599: 6596: 6593: 6592: 6589: 6586: 6583: 6580: 6577: 6576: 6573: 6570: 6567: 6564: 6561: 6560: 6557: 6554: 6551: 6548: 6545: 6544: 6541: 6538: 6535: 6532: 6529: 6528: 6525: 6522: 6519: 6516: 6513: 6512: 6509: 6506: 6503: 6500: 6497: 6496: 6493: 6490: 6487: 6484: 6483: 6480: 6477: 6474: 6471: 6470: 6467: 6464: 6461: 6458: 6457: 6454: 6451: 6448: 6445: 6444: 6441: 6438: 6435: 6432: 6429: 6428: 6425: 6422: 6419: 6416: 6413: 6412: 6409: 6406: 6403: 6400: 6397: 6396: 6393: 6390: 6387: 6384: 6381: 6380: 6377: 6374: 6371: 6368: 6365: 6364: 6361: 6358: 6355: 6352: 6349: 6348: 6345: 6342: 6339: 6336: 6333: 6332: 6329: 6326: 6323: 6320: 6317: 6316: 6313: 6310: 6307: 6304: 6301: 6300: 6297: 6294: 6291: 6288: 6285: 6284: 6281: 6278: 6275: 6272: 6269: 6268: 6265: 6262: 6259: 6256: 6253: 6252: 6249: 6246: 6243: 6240: 6237: 6236: 6233: 6230: 6227: 6224: 6221: 6220: 6217: 6214: 6211: 6208: 6205: 6204: 6201: 6198: 6195: 6192: 6189: 6188: 6185: 6182: 6179: 6176: 6175: 6172: 6169: 6166: 6163: 6160: 6159: 6156: 6153: 6150: 6147: 6144: 6143: 6140: 6137: 6134: 6131: 6128: 6127: 6124: 6121: 6118: 6115: 6112: 6111: 6108: 6105: 6102: 6099: 6096: 6095: 6092: 6089: 6086: 6083: 6080: 6079: 6076: 6073: 6070: 6067: 6064: 6063: 6060: 6057: 6054: 6051: 6048: 6047: 6044: 6041: 6038: 6035: 6032: 6031: 6028: 6025: 6022: 6019: 6016: 6015: 6012: 6009: 6006: 6003: 6000: 5999: 5996: 5993: 5990: 5987: 5984: 5983: 5980: 5977: 5974: 5971: 5970: 5967: 5964: 5961: 5958: 5955: 5954: 5951: 5948: 5945: 5942: 5941: 5938: 5935: 5932: 5929: 5926: 5925: 5922: 5919: 5916: 5913: 5910: 5909: 5906: 5903: 5900: 5897: 5894: 5893: 5890: 5887: 5884: 5881: 5878: 5877: 5874: 5871: 5868: 5865: 5862: 5861: 5858: 5855: 5852: 5849: 5846: 5845: 5842: 5839: 5836: 5833: 5832: 5829: 5826: 5823: 5820: 5819: 5816: 5813: 5810: 5807: 5804: 5803: 5800: 5797: 5794: 5791: 5788: 5787: 5784: 5781: 5778: 5775: 5772: 5771: 5768: 5765: 5762: 5759: 5756: 5755: 5752: 5749: 5746: 5743: 5740: 5739: 5736: 5733: 5730: 5727: 5724: 5723: 5720: 5717: 5714: 5711: 5708: 5707: 5704: 5701: 5698: 5695: 5692: 5691: 5688: 5685: 5682: 5679: 5676: 5675: 5672: 5669: 5666: 5663: 5660: 5659: 5656: 5653: 5650: 5647: 5644: 5643: 5640: 5637: 5634: 5631: 5628: 5627: 5624: 5621: 5618: 5615: 5612: 5611: 5608: 5605: 5602: 5599: 5596: 5595: 5592: 5589: 5586: 5583: 5580: 5579: 5576: 5573: 5570: 5567: 5564: 5563: 5560: 5557: 5554: 5551: 5548: 5547: 5544: 5541: 5538: 5535: 5532: 5531: 5528: 5525: 5522: 5519: 5516: 5515: 5512: 5509: 5506: 5503: 5500: 5499: 5496: 5493: 5490: 5487: 5484: 5483: 5480: 5477: 5474: 5471: 5468: 5467: 5464: 5461: 5458: 5455: 5452: 5451: 5448: 5445: 5442: 5439: 5436: 5435: 5432: 5429: 5426: 5423: 5420: 5419: 5416: 5413: 5410: 5407: 5404: 5403: 5400: 5397: 5394: 5391: 5388: 5387: 5384: 5381: 5378: 5375: 5372: 5371: 5368: 5365: 5362: 5359: 5358: 5355: 5352: 5349: 5346: 5345: 5342: 5339: 5336: 5333: 5330: 5329: 5326: 5323: 5320: 5317: 5314: 5313: 5310: 5307: 5304: 5301: 5298: 5297: 5294: 5291: 5288: 5285: 5282: 5281: 5278: 5275: 5272: 5269: 5266: 5265: 5262: 5259: 5255: 5252: 5249: 5248: 5245: 5242: 5238: 5235: 5232: 5231: 5227: 5224: 5218: 5213: 5209:5 < | 5198: 5193: 5181: 5163: 5151: 5147: 5139: 5135: 5119: 5112: 5105: 5104: 5098: 5094: 5090: 5079: 5075: 5067: 5063: 5050: 5045: 5021: 5017: 5010: 5006: 4999: 4995: 4977: 4973: 4967: 4963: 4957: 4953: 4949: 4941: 4936: 4906: 4903: 4900: 4893: 4889: 4885: 4880: 4876: 4865: 4864: 4863: 4857: 4852: 4847: 4841: 4840: 4839: 4836: 4827: 4822: 4816: 4815: 4814: 4813:is prime are 4806: 4797: 4787: 4776: 4771: 4766: 4760: 4759: 4758: 4755: 4744: 4738: 4729: 4724: 4718: 4717: 4716: 4713: 4702: 4691: 4682: 4672: 4666: 4658: 4649: 4639: 4633: 4622: 4613: 4603: 4598: 4597:perfect power 4593: 4582: 4577: 4572: 4571: 4570: 4567: 4560: 4551: 4546: 4539: 4534: 4529: 4528: 4527: 4524: 4517: 4511: 4488: 4485: 4482: 4477: 4474: 4469: 4465: 4454: 4453: 4452: 4449: 4442: 4435: 4428: 4420: 4415: 4410: 4405: 4400: 4399: 4398: 4392: 4387: 4382: 4381: 4380: 4377: 4370: 4364: 4362: 4357: 4353: 4347: 4343: 4338: 4330: 4325: 4320: 4315: 4314: 4313: 4311: 4306: 4300: 4295: 4289: 4288: 4287: 4284: 4277: 4271: 4269: 4265: 4259: 4252: 4247: 4242: 4238: 4232: 4228: 4223: 4215: 4213: 4211: 4207: 4203: 4199: 4193: 4179: 4174: 4168: 4163: 4159: 4151: 4149: 4147: 4143: 4137: 4130: 4125: 4119: 4112: 4105: 4095: 4091: 4087: 4083: 4079: 4072: 4061: 4057: 4053: 4049: 4042: 4033: 4029: 4023: 4019: 4012: 4005: 3997: 3995: 3993: 3988: 3981: 3974: 3970: 3953: 3952: 3951: 3947: 3942: 3941:Fermat number 3936: 3929: 3924: 3921: 3917: 3909: 3903: 3886: 3877: 3869: 3867: 3857: 3845: 3837: 3833: 3830:, an integer 3829: 3824: 3822: 3818: 3817:31 Euphrosyne 3814: 3810: 3806: 3805:8191 Mersenne 3802: 3798: 3793: 3790: 3782: 3777: 3768: 3763: 3755: 3753: 3751: 3746: 3735: 3732: 3729: 3728: 3724: 3721: 3718: 3717: 3713: 3710: 3707: 3706: 3702: 3699: 3696: 3695: 3691: 3688: 3685: 3684: 3680: 3677: 3674: 3673: 3669: 3666: 3663: 3662: 3658: 3655: 3652: 3651: 3647: 3644: 3641: 3640: 3636: 3633: 3630: 3629: 3625: 3622: 3619: 3618: 3614: 3611: 3608: 3607: 3603: 3600: 3597: 3596: 3592: 3589: 3586: 3585: 3581: 3578: 3575: 3574: 3570: 3567: 3564: 3563: 3559: 3557:137438953471 3556: 3553: 3552: 3548: 3545: 3542: 3541: 3538:47 × 178,481 3537: 3534: 3531: 3530: 3526: 3523: 3520: 3519: 3515: 3507: 3504: 3497: 3494: 3490: 3489: 3486: 3484: 3479: 3473: 3468: 3453: 3449: 3444: 3436: 3428: 3423: 3418: 3412: 3411: 3410: 3408: 3402: 3394: 3384: 3374: 3366: 3362: 3356: 3352: 3347: 3343: 3336: 3329: 3325: 3320: 3313: 3295: 3289: 3285: 3282: 3278: 3264: 3247:. Also since 3220: 3212: 3204: 3196: 3188: 3178: 3175: 3164: 3161: 3160: 3152: 3142: 3134: 3124: 3114: 3111: 3099: 3079: 3069: 3061: 3032: 3026: 3022: 3015: 3011: 3004: 2996: 2992:: We show if 2991: 2988: 2987: 2985: 2981: 2972: 2967: 2955: 2949: 2946: 2945: 2936:that divides 2927: 2909: 2901: 2896: 2881: 2877: 2872: 2868: 2849: 2845: 2838: 2778:is prime and 2764: 2743: 2739: 2736: 2714:For example, 2713: 2712: 2705: 2696:that divides 2687: 2682: 2648: 2638: 2634: 2625: 2622: 2621: 2611: 2604: 2593: 2586: 2579: 2572: 2565: 2559: 2555: 2548: 2541: 2537: 2533:is prime, so 2530: 2523: 2519: 2512: 2509:− 1 ≡ 0 (mod 2508: 2501: 2497: 2490: 2487: 2483: 2478: 2475: 2474: 2470: 2463: 2456: 2446: 2441: 2440: 2439: 2437: 2432: 2423: 2421: 2419: 2414: 2412: 2403: 2397: 2392: 2386: 2380: 2373: 2367: 2363: 2362:Curtis Cooper 2358: 2351: 2349: 2348:Dell OptiPlex 2344: 2340: 2335: 2331: 2319: 2313: 2301: 2294: 2282: 2273: 2264: 2255: 2246: 2237: 2228: 2223: 2219: 2215: 2211: 2208: 2200: 2195: 2191: 2165: 2159: 2156: 2150: 2147: 2138: 2134: 2130: 2126: 2117: 2113: 2109: 2096: 2088: 2084: 2078: 2071: 2065: 2055: 2050: 2045: 2043: 2035: 2026: 2021: 2013: 2008: 2007:Édouard Lucas 2000: 1995: 1987: 1982: 1974: 1965: 1955: 1945: 1935: 1925: 1915: 1909: 1907: 1899: 1897: 1886: 1878: 1873: 1865: 1848: 1844: 1837: 1834: 1829: 1825: 1809: 1804: 1803:Édouard Lucas 1800: 1794: 1785: 1776: 1767: 1758: 1747: 1746: 1745: 1744: 1743: 1741: 1737: 1726: 1722: 1719: 1716: 1713: 1710: 1707: 1704: 1701: 1700: 1696: 1693: 1690: 1687: 1684: 1681: 1678: 1675: 1674: 1670: 1667: 1664: 1661: 1658: 1655: 1652: 1649: 1648: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1622: 1618: 1615: 1612: 1609: 1606: 1603: 1600: 1597: 1596: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1570: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1545: 1544: 1540: 1537: 1534: 1531: 1528: 1525: 1522: 1519: 1518: 1512: 1510: 1496: 1492: 1485: 1482: 1479: 1473: 1470: 1467: 1444: 1441: 1436: 1432: 1428: 1425: 1413: 1411: 1407: 1403: 1391: 1387: 1381: 1377: 1370: 1362: 1360: 1358: 1354: 1350: 1346: 1342: 1339:. To find a 1338: 1334: 1329: 1327: 1323: 1319: 1315: 1310: 1270: 1266: 1265: 1264: 1250: 1243: 1222: 1218: 1212: 1206: 1203: 1200: 1193: 1189: 1186: 1183: 1178: 1175: 1171: 1167: 1162: 1159: 1155: 1151: 1146: 1142: 1138: 1135: 1131: 1127: 1121: 1118: 1113: 1109: 1102: 1100: 1091: 1085: 1079: 1076: 1073: 1066: 1062: 1059: 1056: 1051: 1048: 1044: 1040: 1035: 1032: 1028: 1024: 1019: 1015: 1011: 1008: 1004: 1000: 994: 991: 986: 982: 975: 973: 968: 965: 960: 957: 953: 939: 927: 922: 916: 910: 901: 891: 882: 872: 862: 852: 842: 823: 819: 815: 812: 809: 804: 800: 779: 776: 771: 767: 763: 757: 749: 734: 724: 723:prime factors 721:and 1 has no 708: 705: 699: 691: 658: 655: 650: 646: 643: 637: 634: 631: 628: 612: 606: 600: 594: 588: 578: 573: 564: 554: 544: 534: 524: 514: 504: 494: 479: 469: 465: 462: 458: 453: 437: 433: 424: 405: 399: 394: 390: 386: 381: 377: 368: 364: 359: 354: 337: 335: 333: 329: 321: 316: 314: 310: 305: 299: 294: 289: 283: 274: 272: 267: 262: 258: 254: 250: 246: 242: 237: 231: 227: 222: 219: 212: 200: 195: 190: 186: 181: 177: 171: 164: 160: 156: 152: 148: 135: 131: 127: 125: 122: 121: 119: 116: 112: 105: 101: 97: 93: 89: 85: 82: 78: 74: 71: 67: 63: 55: 51: 44: 41: 38: 34: 19: 12239:Power of two 12229:Number names 11964:Ten thousand 11869: 11540:Transposable 11404:Narcissistic 11311:Digital root 11231:Super-Poulet 11191:Jordan–Pólya 11140:prime factor 11045:Noncototient 11012:Almost prime 10994:Superperfect 10969:Refactorable 10964:Quasiperfect 10939:Hyperperfect 10780:Pseudoprimes 10751:Wall–Sun–Sun 10686:Ordered Bell 10656:Fuss–Catalan 10568:non-centered 10518:Dodecahedral 10495:non-centered 10381:non-centered 10283:Wolstenholme 10052: 10028:× 2 ± 1 10025: 10024:Of the form 9991:Eighth power 9971:Fourth power 9497:Almost prime 9455:Euler–Jacobi 9363: 9359: 9355: 9351: 9349:Cunningham ( 9339: 9335: 9318: 9314: 9310: 9291: 9287: 9283: 9279: 9275: 9274:consecutive 9262: 9258: 9254: 9242: 9238: 9226: 9222: 9210: 9206: 9202: 9198: 9196:Quadruplet ( 9186: 9182: 9178: 9174: 9162: 9158: 9145: 9093:Full reptend 8951:Wolstenholme 8946:Wall–Sun–Sun 8877: 8862: 8858: 8837: 8833: 8822: 8818: 8814: 8810: 8798: 8786: 8766: 8762: 8741: 8725: 8710: 8698: 8686: 8657: 8634:Prime number 8592: 8573: 8525: 8521: 8506: 8497: 8415:. Retrieved 8411:the original 8402: 8386: 8382: 8378: 8373: 8369: 8357: 8353: 8348: 8344: 8314: 8292: 8288: 8222: 8212: 8208: 8142: 8127: 8120: 8105: 8101: 8094: 8079: 8075: 8068: 8053: 8049: 8042: 8027: 8020: 8005: 7998: 7983: 7975: 7968: 7947: 7930: 7903: 7897: 7889:the original 7879: 7865: 7854:. Retrieved 7843: 7832:. Retrieved 7828: 7818: 7799: 7793: 7781:. Retrieved 7777: 7768: 7757:. Retrieved 7748: 7736:. Retrieved 7732: 7723: 7712:. Retrieved 7702: 7675: 7669: 7658: 7648: 7630: 7618:. Retrieved 7614: 7605: 7594:. Retrieved 7585: 7571: 7562: 7553: 7542:. Retrieved 7538: 7529: 7521:the original 7517:"Milestones" 7511: 7499:. Retrieved 7493: 7483: 7471:. Retrieved 7465: 7455: 7443:. Retrieved 7439: 7429: 7418:. Retrieved 7412: 7402: 7391:. Retrieved 7387: 7377: 7364: 7355: 7351: 7341: 7333:the original 7328: 7319: 7307: 7299: 7280: 7276: 7266: 7257: 7250:Hardy, G. H. 7244: 7231: 7219: 7204: 7192:. Retrieved 7188:Mersenne.org 7187: 7178: 7166:. Retrieved 7161: 7152: 7129: 7125: 7117: 7113: 7099: 7091: 7073: 7049: 7045: 7038: 7034: 7026: 7022: 7014: 7010: 7006: 7002: 6994: 6990: 6982: 6978: 6968: 6958: 6954: 6950: 6946: 6942: 6920: 6916: 6912: 6905: 6902:Lucas number 6896: 6856:Cullen prime 6804:Power of two 6763: 6759: 6751: 6729: 6725: 6717: 6711: 6707: 6700: 6690: 6686: 6676: 6672: 6664: 6660: 6657: 6642: 6639: 5216: 5215:| < 5211: 5196: 5191: 5179: 5149: 5145: 5137: 5133: 5092: 5088: 5077: 5073: 5065: 5061: 5049:fourth power 5043: 5019: 5015: 5008: 5004: 4997: 4993: 4975: 4971: 4965: 4961: 4955: 4951: 4947: 4939: 4924: 4861: 4834: 4831: 4804: 4795: 4785: 4782: 4774: 4753: 4742: 4736: 4733: 4711: 4700: 4689: 4680: 4670: 4667: 4656: 4647: 4637: 4631: 4620: 4611: 4601: 4591: 4588: 4565: 4558: 4555: 4522: 4515: 4509: 4506: 4447: 4440: 4433: 4430: 4396: 4375: 4368: 4365: 4360: 4355: 4351: 4345: 4341: 4336: 4334: 4307: 4304: 4282: 4275: 4272: 4267: 4257: 4250: 4248:) for which 4240: 4236: 4230: 4226: 4219: 4202:real numbers 4191: 4177: 4166: 4162:real numbers 4155: 4145: 4135: 4128: 4117: 4110: 4103: 4096: 4089: 4085: 4081: 4077: 4070: 4059: 4055: 4051: 4047: 4040: 4032:coefficients 4021: 4017: 4010: 4007: 3986: 3976: 3972: 3968: 3964: 3945: 3934: 3927: 3919: 3915: 3912: 3907: 3901: 3885: 3875: 3873: 3825: 3801:minor planet 3794: 3785: 3772: 3766: 3759: 3741: 3510: 3499: 3492: 3474: 3466: 3432: 3406: 3404: 3382: 3372: 3364: 3360: 3354: 3350: 3345: 3341: 3334: 3318: 3311: 3293: 3262: 3218: 3210: 3209:2 ≡ −1 (mod 3202: 3199:, so either 3194: 3186: 3176: 3162: 3150: 3122: 3067: 3059: 3035:, therefore 3030: 3024: 3020: 3013: 3009: 3002: 2994: 2989: 2965: 2953: 2947: 2907: 2899: 2870: 2866: 2847: 2843: 2836: 2762: 2737: 2703: 2680: 2646: 2636: 2632: 2623: 2602: 2591: 2584: 2577: 2570: 2563: 2557: 2553: 2546: 2539: 2535: 2528: 2521: 2517: 2510: 2506: 2499: 2495: 2488: 2481: 2476: 2468: 2461: 2454: 2444: 2427: 2415: 2404: 2393: 2384: 2381: 2374: 2359: 2352: 2336: 2326: 2316:denotes the 2311: 2299: 2289: 2280: 2271: 2262: 2253: 2244: 2235: 2226: 2218:D. H. Lehmer 2198: 2187: 2131: 2124: 2115: 2111: 2104: 2094: 2086: 2082: 2073: 2060: 2053: 2046: 2042:R. E. Powers 2033: 2024: 2011: 1998: 1985: 1972: 1963: 1953: 1943: 1933: 1923: 1913: 1910: 1903: 1876: 1863: 1807: 1801: 1792: 1783: 1774: 1765: 1756: 1753: 1733: 1414: 1379: 1375: 1372: 1347:are used in 1330: 1311: 1279: 1268: 1251: 1241: 937: 923: 914: 899: 889: 880: 870: 860: 850: 840: 732: 615:must divide 610: 598: 586: 562: 552: 542: 532: 522: 512: 502: 492: 477: 454: 422: 360: 357: 317: 306: 297: 292: 287: 278: 275: 229: 223: 217: 207: 193: 179: 166: 159:power of two 155:prime number 150: 144: 133: 129: 57:Conjectured 12249:Power of 10 12189:Busy beaver 11994:Quintillion 11989:Quadrillion 11561:Extravagant 11556:Equidigital 11511:permutation 11470:Palindromic 11444:Automorphic 11342:Sum-product 11321:Sum-product 11276:Persistence 11171:Erdős–Woods 11093:Untouchable 10974:Semiperfect 10924:Hemiperfect 10585:Tesseractic 10523:Icosahedral 10503:Tetrahedral 10434:Dodecagonal 10135:Recursively 10006:Prime power 9981:Sixth power 9976:Fifth power 9956:Power of 10 9914:Classes of 9480:Somer–Lucas 9435:Pseudoprime 9073:Truncatable 9045:Palindromic 8929:By property 8708:Primorial ( 8696:Factorial ( 8510:up to 1280) 8435:(in German) 8407:Brady Haran 8403:Numberphile 8391:math thesis 8285:, that is, 8205:, that is, 7940:Prime Pages 7738:5 September 7660:Prime Pages 7407:Tia Ghose. 7168:21 December 7058:must be in 6866:Proth prime 4838:, they are 4783:Least base 4751:if no such 4709:if no such 4569:values of: 4526:values of: 4254:the number 4200:instead of 3821:127 Johanna 3201:2 ≡ 1 (mod 3193:2 ≡ 1 (mod 3062:mod (2 − 1) 3001:2 ≡ 1 (mod 2952:2 ≡ 2 (mod 2596:, however, 2526:. However, 2190:Alan Turing 2005:, found by 457:conjectures 452:is prime. 201:then so is 189:Minim friar 187:, a French 163:of the form 147:mathematics 136:is a prime) 80:First terms 70:Subsequence 36:Named after 12287:Categories 12254:Sagan Unit 12088:Expression 12039:Googolplex 12004:Septillion 11999:Sextillion 11945:numerical 11773:Graphemics 11646:Pernicious 11500:Undulating 11475:Pandigital 11449:Trimorphic 11050:Nontotient 10899:Arithmetic 10513:Octahedral 10414:Heptagonal 10404:Pentagonal 10389:Triangular 10230:Sierpiński 10152:Jacobsthal 9951:Power of 3 9946:Power of 2 9517:Pernicious 9512:Interprime 9272:Balanced ( 9063:Permutable 9038:-dependent 8855:Williams ( 8751:Pierpont ( 8676:Wagstaff 8658:Mersenne ( 8642:By formula 8440:GIMPS wiki 8417:2013-04-06 8136:= 2 to 200 8114:= 1 to 107 8062:= 1 to 160 8036:= 2 to 160 8014:= 2 to 160 7959:1503.07688 7856:2011-05-21 7834:2023-02-11 7759:2021-07-21 7714:2022-09-05 7596:2019-01-01 7544:2018-01-03 7501:22 January 7473:19 January 7445:22 January 7420:2013-02-07 7393:2011-05-21 7358:: 122–131. 7194:5 December 7145:References 6756:such that 6722:such that 5183:| ≤ 5 5126:such that 5055:such that 5024:such that 4937:integers, 4789:such that 4674:such that 4665:is prime) 4605:such that 4028:polynomial 3939:, it is a 3856:hypotenuse 3546:536870911 3110:pernicious 2975:±1 (mod 8) 2942:±1 (mod 8) 2869:≡ 1 (mod 2 2794:such that 2716:2 − 1 = 31 2711:is prime. 2620:is prime. 2388:37,156,667 603:, and the 569:(sequence 261:2147483647 132:− 1 where 12145:Pentation 12140:Tetration 12128:Operators 12097:Notations 12019:Decillion 12014:Nonillion 12009:Octillion 11941:Examples 11530:Parasitic 11379:Factorion 11306:Digit sum 11298:Digit sum 11116:Fortunate 11103:Primorial 11017:Semiprime 10954:Practical 10919:Descartes 10914:Deficient 10904:Betrothed 10746:Wieferich 10575:Pentatope 10538:pyramidal 10429:Decagonal 10424:Nonagonal 10419:Octagonal 10409:Hexagonal 10268:Practical 10215:Congruent 10147:Fibonacci 10111:Loeschian 9553:Prime gap 9502:Semiprime 9465:Frobenius 9172:Triplet ( 8971:Ramanujan 8966:Fortunate 8936:Wieferich 8900:Fibonacci 8831:Leyland ( 8796:Woodall ( 8775:Solinas ( 8760:Quartan ( 8594:MathWorld 8575:MathWorld 8321:EMS Press 8170:− 8088:= 1 to 40 7992:= 2 to 50 6640:Note: if 5228:sequence 5195:| = 4959:. (Since 4904:− 4886:− 4563:, we get 4520:, we get 4486:− 4475:− 4066:2 − 2 − 1 4036:2 − 2 + 1 3965:In fact, 3959:MF(59, 2) 3840:≥ 4 3836:primitive 3253:3 (mod 4) 3241:7 (mod 8) 3233:3 (mod 4) 3145:3 (mod 4) 3141:congruent 2846:≡ 1 (mod 2683:is prime. 2662:= (2 − 1) 2659:= (2) − 1 2498:≡ 1 (mod 2284:6,972,593 2160:⁡ 2151:⁡ 2068:is prime 1442:− 1204:− 1187:⋯ 1128:⋅ 1119:− 1077:− 1060:⋯ 1001:⋅ 992:− 966:− 810:− 777:− 746:Φ 729:. Hence, 688:Φ 644:− 607:of 2 mod 464:congruent 400:⁡ 387:⋅ 382:γ 226:exponents 174:for some 12177:articles 12175:Related 12079:Infinity 11984:Trillion 11959:Thousand 11602:Friedman 11535:Primeval 11480:Repdigit 11437:-related 11384:Kaprekar 11358:Meertens 11281:Additive 11268:dynamics 11176:Friendly 11088:Sociable 11078:Amicable 10889:Abundant 10869:dynamics 10691:Schröder 10681:Narayana 10651:Eulerian 10641:Delannoy 10636:Dedekind 10457:centered 10323:centered 10210:Amenable 10167:Narayana 10157:Leonardo 10053:Mersenne 10001:Powerful 9941:Achilles 9445:Elliptic 9220:Cousin ( 9137:Patterns 9128:Tetradic 9123:Dihedral 9088:Primeval 9083:Delicate 9068:Circular 9055:Repunit 8846:Thabit ( 8784:Cullen ( 8723:Euclid ( 8649:Fermat ( 8549:Archived 8537:Archived 8481:Archived 8469:Archived 8110:for odd 7638:Archived 7329:BBC News 7256:(1959). 7096:or when 7031:must be 6933:are the 6925:, since 6831:/ MPrime 6787:See also 6698:must be 6669:, it is 5164:, these 5158:is prime 5120:numbers 4757:exists) 4715:exists) 4015:, where 3984:, where 3844:inradius 3834:that is 3828:geometry 3797:asteroid 3535:8388607 3527:23 × 89 3461:, where 3330:. It is 3292:2 − 1 = 3267:divides 3155:divides 3064:. Hence 2774:. Since 2752:. Since 2726:, where 2561:, hence 2549:− 1 = ±1 2308:, where 2092:, where 2080:divides 1738:scholar 924:A basic 913:≥ 737:divides 671:. Since 64:Infinite 61:of terms 12272:History 12090:methods 12064:SSCG(3) 12059:TREE(3) 11979:Billion 11974:Million 11954:Hundred 11775:related 11739:related 11703:related 11701:Sorting 11586:Vampire 11571:Harshad 11513:related 11485:Repunit 11399:Lychrel 11374:Dudeney 11226:Størmer 11221:Sphenic 11206:Regular 11144:divisor 11083:Perfect 10979:Sublime 10949:Perfect 10676:Motzkin 10631:Catalan 10172:Padovan 10106:Leyland 10101:Idoneal 10096:Hilbert 10068:Woodall 9440:Catalan 9377:By size 9148:-tuples 9078:Minimal 8981:Regular 8872:Mills ( 8808:Cuban ( 8684:Proth ( 8636:classes 8323:, 2001 8283:⁠ 8229:⁠ 8203:⁠ 8149:⁠ 7783:24 June 7620:29 June 7314:p. 228. 7134:⁠ 7110:⁠ 7065:A027861 7063::  6999:⁠ 6975:⁠ 6937:of the 6837:(GIMPS) 6829:Prime95 6794:Repunit 6778:in the 6775:A222119 6762:+ 1) − 6744:in the 6741:A058013 6728:+ 1) − 6675:+ 1) − 6633:A213216 6604:A128341 6588:A057178 6572:A004064 6556:A128348 6540:A273814 6524:A062578 6508:A185239 6440:A128340 6424:A224501 6408:A128070 6392:A125957 6376:A057177 6360:A005808 6344:A210506 6328:A128027 6312:A216181 6296:A128347 6280:A273598 6264:A273599 6248:A273600 6232:A273601 6216:A062577 6200:A217095 6171:A128069 6155:A001562 6139:A004023 6123:A128026 6107:A273403 6091:A062576 6075:A187819 6059:A301369 6043:A128339 6027:A211409 6011:A125956 5995:A057175 5978:(none) 5966:A173718 5937:A128346 5921:A273010 5905:A059803 5889:A181141 5873:A128338 5857:A128068 5815:A128025 5799:A128345 5783:A062574 5767:A187805 5751:A128337 5735:A218373 5719:A128067 5703:A125955 5687:A057173 5671:A004063 5655:A215487 5639:A128024 5623:A213073 5607:A128344 5591:A062573 5575:A128336 5559:A057172 5543:A004062 5527:A062572 5511:A128335 5495:A122853 5479:A082387 5463:A057171 5447:A004061 5431:A082182 5415:A121877 5399:A059802 5383:A128066 5341:A059801 5325:A057469 5309:A007658 5293:A028491 5277:A057468 5261:A000978 5244:A000043 5154:⁠ 5130:⁠ 5082:⁠ 5058:⁠ 4935:coprime 4849:in the 4846:A103795 4824:in the 4821:A066180 4810:⁠ 4792:⁠ 4768:in the 4765:A084742 4726:in the 4723:A084740 4695:⁠ 4677:⁠ 4662:⁠ 4644:⁠ 4626:⁠ 4608:⁠ 4579:in the 4576:A057178 4548:in the 4545:A004022 4536:in the 4533:A004023 4427:Repunit 4407:in the 4404:A066413 4389:in the 4386:A066408 4322:in the 4319:A182300 4297:in the 4294:A057429 4204:, like 4175:, then 4156:In the 3990:is the 3925:. When 3905:prime, 3896:⁠ 3881:⁠ 3748:in the 3745:A046800 3481:in the 3478:A244453 3420:in the 3417:A000043 3163:Example 3147:, then 3135:), and 3098:coprime 3051:⁠ 3039:⁠ 3033:| 2 − 1 2997:= 2 − 1 2656:= 2 − 1 2651:. Then 2515:. Thus 2493:. Then 2434:in the 2431:A000225 2296:equals 2066:= 2 − 1 1513:History 1398:2(2 − 1 926:theorem 575:in the 572:A002515 284:= 2 − 1 269:in the 266:A000668 239:in the 236:A000043 213:= 2 − 1 176:integer 172:= 2 − 1 124:A000668 12181:order) 12029:Googol 11641:Odious 11566:Frugal 11520:Cyclic 11509:Digit- 11216:Smooth 11201:Pronic 11161:Cyclic 11138:Other 11111:Euclid 10761:Wilson 10735:Primes 10394:Square 10263:Polite 10225:Riesel 10220:Knödel 10182:Perrin 10063:Thabit 10048:Fermat 10038:Cullen 9961:Square 9929:Powers 9485:Strong 9475:Perrin 9460:Fermat 9236:Sexy ( 9156:Twin ( 9098:Unique 9026:Unique 8986:Strong 8976:Pillai 8956:Wilson 8920:Perrin 8356:) − (3 8078:+ 1, − 7918:  7806:  7690:  7094:> 1 7037:+ 1, − 6972:Since 6752:Least 6718:Least 6645:< 0 5189:| 5177:| 5172:100000 4942:> 1 4668:Least 4354:= 1 − 4344:= 1 + 4239:= 1 − 4229:= 1 + 4194:> 0 4164:), if 4120:> 1 4075:, and 4045:, and 3948:> 1 3858:to be 3854:, the 3813:7 Iris 3809:3 Juno 3321:> 1 3314:> 1 3305:, and 3179:: Let 3023:− 1 = 2969:. By 2964:2 mod 2902:> 2 2649:> 1 2566:= 0, 1 2538:− 1 = 2520:− 1 | 2306:2⌋ + 1 2275:44,497 2251:, and 2127:> 0 2056:> 2 1959:= 8191 1790:, and 1736:French 1390:Euclid 561:503 | 559:, and 551:479 | 541:383 | 531:359 | 521:263 | 511:167 | 466:to 3 ( 311:: the 98:, 8191 12267:Names 12069:BH(3) 11947:order 11682:Prime 11677:Lucky 11666:sieve 11595:Other 11581:Smith 11461:Digit 11419:Happy 11394:Keith 11367:Other 11211:Rough 11181:Giuga 10646:Euler 10508:Cubic 10162:Lucas 10058:Proth 9470:Lucas 9450:Euler 9103:Happy 9050:Emirp 9016:Higgs 9011:Super 8991:Stern 8961:Lucky 8905:Lucas 8524:± 1, 8365:(PDF) 8130:, −1) 8104:+ 2, 8052:+ 1, 8030:, −1) 7986:, −1) 7954:arXiv 7077:When 6935:roots 6888:Notes 6658:When 5204:20000 4954:< 4950:< 4925:with 4561:= −12 4451:make 4371:) − 1 4367:(1 + 4310:norms 4278:) − 1 4274:(1 + 4262:is a 4260:) − 1 4256:(1 + 4187:0 − 1 4183:2 − 1 4171:is a 4108:(for 4099:2 − 1 3899:with 3893:2 − 1 3799:with 3524:2047 3439:2 − 1 3370:with 3177:Proof 3171:2 − 1 3157:2 − 1 3131:is a 3106:2 − 1 3102:2 − 1 3048:2 − 1 3042:2 − 1 2990:Proof 2958:, so 2948:Proof 2938:2 − 1 2888:2 − 1 2858:2 − 1 2828:2 − 1 2812:2 − 1 2800:2 − 1 2784:2 − 1 2772:2 − 1 2758:2 − 1 2750:2 − 1 2740:: By 2738:Proof 2709:2 − 1 2698:2 − 1 2677:2 − 1 2673:2 − 1 2653:2 − 1 2640:with 2624:Proof 2614:2 − 1 2589:. If 2504:, so 2484:≡ 1 ( 2477:Proof 2407:2 − 1 2400:2 − 1 2377:2 − 1 2370:2 − 1 2355:2 − 1 2332:⌋ + 1 2302:× log 2266:4,423 2120:) − 2 1949:= 127 1394:2 − 1 876:= 127 501:47 | 491:23 | 468:mod 4 324:2 − 1 203:2 − 1 197:is a 153:is a 117:index 107:2 − 1 11885:List 11636:Evil 11316:Self 11266:and 11156:Blum 10867:and 10671:Lobb 10626:Cake 10621:Bell 10371:Star 10278:Ulam 10177:Pell 9966:Cube 9393:list 9328:Chen 9108:Self 9036:Base 9006:Good 8940:pair 8910:Pell 8861:−1)· 8490:OEIS 8393:(PS) 8352:= (8 8132:for 8084:for 8058:for 8032:for 8010:for 8008:, 1) 7988:for 7980:and 7978:, 1) 7916:ISBN 7804:ISBN 7785:2022 7740:2022 7688:ISBN 7622:2021 7503:2016 7475:2016 7447:2016 7196:2020 7170:2018 7081:and 7061:OEIS 7052:+ 1) 7043:and 6929:and 6780:OEIS 6746:OEIS 6647:and 6626:−11 6501:−10 5226:OEIS 5206:for 5174:for 5040:and 5028:and 5002:and 4944:and 4933:any 4851:OEIS 4826:OEIS 4770:OEIS 4745:= −2 4728:OEIS 4581:OEIS 4550:OEIS 4538:OEIS 4518:= 10 4409:OEIS 4391:OEIS 4349:and 4324:OEIS 4299:OEIS 4246:WLOG 4234:and 4208:and 4173:unit 4158:ring 4142:unit 4115:and 4084:) = 4073:= 64 4054:) = 4043:= 32 3975:) = 3957:and 3950:are 3819:and 3795:The 3750:OEIS 3730:131 3719:113 3708:109 3697:103 3686:101 3483:OEIS 3470:1277 3422:OEIS 3380:and 3316:and 3119:and 3104:and 3096:are 3092:and 3084:and 3066:p | 3037:0 ≡ 2730:and 2644:and 2573:= 1. 2513:− 1) 2502:− 1) 2491:− 1) 2448:and 2436:OEIS 2322:⌊log 2257:2281 2248:2203 2239:1279 2122:for 2102:and 2031:and 1970:and 1941:and 1939:= 31 1763:and 1723:311 1720:307 1717:293 1714:283 1711:281 1708:277 1705:271 1702:269 1697:263 1694:257 1691:251 1688:241 1685:239 1682:233 1679:229 1676:227 1671:223 1668:211 1665:199 1662:197 1659:193 1656:191 1653:181 1650:179 1645:173 1642:167 1639:163 1636:157 1633:151 1630:149 1627:139 1624:137 1619:131 1616:127 1613:113 1610:109 1607:107 1604:103 1601:101 897:and 868:and 866:= 31 792:and 595:mod 577:OEIS 361:The 330:, a 271:OEIS 241:OEIS 224:The 149:, a 115:OEIS 11754:Ban 11142:or 10661:Lah 9864:281 9859:277 9854:271 9849:269 9844:263 9839:257 9834:251 9829:241 9824:239 9819:233 9814:229 9809:227 9804:223 9799:211 9794:199 9789:197 9784:193 9779:191 9774:181 9769:179 9764:173 9759:167 9754:163 9749:157 9744:151 9739:149 9734:139 9729:137 9724:131 9719:127 9714:113 9709:109 9704:107 9699:103 9694:101 9354:, 2 9338:, 2 9259:a·n 8817:)/( 8291:, − 7908:doi 7680:doi 7285:doi 7048:+ ( 7001:= ( 6961:= 0 6945:− ( 6703:+ 1 6667:+ 1 6623:12 6613:−7 6610:12 6597:−5 6594:12 6581:−1 6578:12 6562:12 6546:12 6530:12 6517:11 6514:12 6498:11 6488:−9 6485:11 6475:−8 6472:11 6462:−7 6459:11 6449:−6 6446:11 6433:−5 6430:11 6417:−4 6414:11 6401:−3 6398:11 6385:−2 6382:11 6369:−1 6366:11 6350:11 6334:11 6318:11 6302:11 6286:11 6270:11 6254:11 6238:11 6222:11 6209:10 6206:11 6193:−9 6190:10 6180:−7 6177:10 6164:−3 6161:10 6148:−1 6145:10 6129:10 6113:10 6097:10 6081:10 6068:−8 6052:−7 6036:−5 6020:−4 6004:−2 5988:−1 5882:−7 5866:−5 5850:−3 5837:−1 5760:−6 5744:−5 5728:−4 5712:−3 5696:−2 5680:−1 5568:−5 5552:−1 5504:−4 5488:−3 5472:−2 5456:−1 5376:−3 5363:−1 5318:−2 5302:−1 5253:−1 5219:− 1 5199:− 1 5186:or 5000:= 1 4807:− 1 4798:− 1 4777:= 2 4703:= 2 4692:− 1 4683:− 1 4659:− 1 4650:− 1 4623:− 1 4614:− 1 4443:− 1 4436:− 1 4169:− 1 4138:− 1 4131:− 1 4126:), 4113:≠ 2 4106:− 1 4092:− 1 4062:+ 1 4013:(2) 3982:(2) 3967:MF( 3937:= 2 3930:= 1 3914:MF( 3887:− 1 3826:In 3783:is 3752:). 3675:97 3664:83 3653:79 3642:73 3631:71 3620:67 3609:59 3598:53 3587:47 3576:43 3565:41 3554:37 3543:29 3532:23 3521:11 3485:). 3388:= 1 3378:= 0 3359:- 2 3349:= 3 3265:+ 1 3207:or 3189:+ 1 3183:be 3153:+ 1 3143:to 3139:is 3125:+ 1 3115:If 3080:If 3016:− 1 2928:If 2841:so 2839:− 1 2688:If 2671:so 2612:If 2605:= 2 2594:= 0 2587:= 0 2582:or 2580:= 2 2544:or 2542:− 1 2531:− 1 2524:− 1 2486:mod 2471:= 1 2466:or 2464:= 2 2457:− 1 2442:If 2438:). 2334:). 2230:607 2202:521 2157:log 2148:log 2118:− 1 2110:= ( 2100:= 4 2089:− 2 2037:107 2018:by 2002:127 1929:= 7 1919:= 3 1830:148 1811:127 1796:107 1769:257 1598:97 1593:89 1590:83 1587:79 1584:73 1581:71 1578:67 1575:61 1572:59 1567:53 1564:47 1561:43 1558:41 1555:37 1552:31 1549:29 1546:23 1541:19 1538:17 1535:13 1532:11 905:= 1 895:= 0 856:= 7 846:= 3 735:+ 1 613:+ 1 601:+ 1 589:+ 1 566:251 556:239 546:191 536:179 526:131 480:+ 1 391:log 300:is 273:). 257:127 145:In 96:127 59:no. 47:No. 12289:: 11943:in 9689:97 9684:89 9679:83 9674:79 9669:73 9664:71 9659:67 9654:61 9649:59 9644:53 9639:47 9634:43 9629:41 9624:37 9619:31 9614:29 9609:23 9604:19 9599:17 9594:13 9589:11 9286:, 9282:, 9261:, 9241:, 9225:, 9201:, 9177:, 9161:, 8591:. 8572:. 8405:. 8401:. 8381:+ 8377:= 8358:qy 8319:, 8313:, 8211:, 7914:. 7827:. 7776:. 7731:. 7686:. 7657:. 7613:. 7561:. 7537:. 7492:. 7464:. 7438:. 7411:. 7386:. 7356:18 7354:. 7350:. 7327:. 7281:10 7279:. 7275:. 7252:; 7186:. 7160:. 7128:− 7116:− 7100:ab 7098:−4 7025:, 7013:+ 7009:)( 7005:+ 6993:− 6981:− 6959:ab 6957:+ 6949:+ 6921:ab 6919:, 6915:+ 6715:. 6710:− 6689:− 6663:= 6565:1 6549:5 6533:7 6353:1 6337:2 6321:3 6305:4 6289:5 6273:6 6257:7 6241:8 6225:9 6132:1 6116:3 6100:7 6084:9 6065:9 6049:9 6033:9 6017:9 6001:9 5985:9 5975:1 5972:9 5959:2 5956:9 5946:4 5943:9 5930:5 5927:9 5914:7 5911:9 5898:8 5895:9 5879:8 5863:8 5847:8 5834:8 5824:1 5821:8 5808:3 5805:8 5792:5 5789:8 5776:7 5773:8 5757:7 5741:7 5725:7 5709:7 5693:7 5677:7 5664:1 5661:7 5648:2 5645:7 5632:3 5629:7 5616:4 5613:7 5600:5 5597:7 5584:6 5581:7 5565:6 5549:6 5536:1 5533:6 5520:5 5517:6 5501:5 5485:5 5469:5 5453:5 5440:1 5437:5 5424:2 5421:5 5408:3 5405:5 5392:4 5389:5 5373:4 5360:4 5350:1 5347:4 5334:3 5331:4 5315:3 5299:3 5286:1 5283:3 5270:2 5267:3 5250:2 5236:1 5233:2 5222:) 5202:, 5148:− 5136:− 5097:. 5091:, 5076:− 5064:− 5044:ab 5042:−4 5018:, 5007:+ 4996:+ 4974:− 4964:− 4929:, 4747:, 4705:, 4583:), 4552:). 4540:), 4379:: 4363:. 4326:). 4286:: 4270:. 4212:. 4094:. 4088:− 4058:− 3994:. 3971:, 3918:, 3874:A 3866:. 3815:, 3811:, 3792:. 3788:64 3409:: 3367:-2 3357:-1 3301:, 3235:, 3159:. 3058:≡ 3025:mλ 3012:| 2986:. 2950:: 2944:. 2910:+1 2908:kp 2830:, 2806:, 2786:, 2766:, 2744:, 2637:ab 2635:= 2556:= 2479:: 2473:. 2324:10 2304:10 2242:, 2129:. 2058:, 2028:89 2015:61 1989:31 1976:19 1967:17 1957:13 1931:, 1921:, 1880:67 1867:61 1849:17 1787:89 1781:, 1778:61 1760:67 1529:7 1526:5 1523:3 1520:2 1412:. 1359:. 1328:. 1272:11 1249:. 858:, 848:, 583:, 549:, 539:, 529:, 519:, 516:83 509:, 506:23 499:, 496:11 474:, 406:10 322:, 304:. 255:, 253:31 251:, 247:, 221:. 94:, 92:31 90:, 86:, 72:of 52:51 11926:e 11919:t 11912:v 11841:e 11834:t 11827:v 10026:a 9907:e 9900:t 9893:v 9584:7 9579:5 9574:3 9569:2 9368:) 9364:p 9360:p 9356:p 9352:p 9344:) 9340:p 9336:p 9323:) 9319:n 9315:n 9311:n 9295:) 9292:n 9288:p 9284:p 9280:n 9276:p 9267:) 9263:n 9255:p 9247:) 9243:p 9239:p 9231:) 9227:p 9223:p 9215:) 9211:p 9207:p 9203:p 9199:p 9191:) 9187:p 9183:p 9179:p 9175:p 9167:) 9163:p 9159:p 9146:k 8942:) 8938:( 8884:) 8881:⌋ 8878:A 8875:⌊ 8867:) 8863:b 8859:b 8857:( 8850:) 8841:) 8838:y 8834:x 8826:) 8823:y 8819:x 8815:y 8811:x 8803:) 8799:n 8791:) 8787:n 8779:) 8770:) 8767:y 8763:x 8755:) 8746:) 8742:n 8740:4 8733:) 8728:n 8726:p 8718:) 8713:n 8711:p 8703:) 8699:n 8691:) 8687:k 8671:) 8662:) 8653:) 8626:e 8619:t 8612:v 8597:. 8578:. 8526:b 8522:b 8507:n 8504:( 8500:n 8498:M 8420:. 8387:y 8385:· 8383:d 8379:x 8374:q 8370:M 8360:) 8354:x 8349:q 8345:M 8295:) 8293:b 8289:a 8287:( 8271:c 8267:/ 8263:) 8258:n 8254:b 8250:+ 8245:n 8241:a 8237:( 8215:) 8213:b 8209:a 8207:( 8191:c 8187:/ 8183:) 8178:n 8174:b 8165:n 8161:a 8157:( 8134:x 8128:x 8126:( 8112:x 8108:) 8106:x 8102:x 8100:( 8086:x 8082:) 8080:x 8076:x 8074:( 8060:x 8056:) 8054:x 8050:x 8048:( 8034:x 8028:x 8026:( 8012:x 8006:x 8004:( 7990:x 7984:x 7982:( 7976:x 7974:( 7962:. 7956:: 7942:) 7924:. 7910:: 7859:. 7837:. 7812:. 7787:. 7762:. 7742:. 7717:. 7696:. 7682:: 7663:. 7624:. 7599:. 7547:. 7505:. 7477:. 7449:. 7423:. 7396:. 7372:. 7293:. 7287:: 7239:. 7213:. 7198:. 7172:. 7130:b 7126:a 7122:/ 7118:b 7114:a 7105:n 7092:r 7087:r 7083:b 7079:a 7068:. 7056:x 7050:x 7046:x 7041:) 7039:x 7035:x 7033:( 7029:) 7027:b 7023:a 7021:( 7017:) 7015:b 7011:a 7007:b 7003:a 6995:b 6991:a 6987:/ 6983:b 6979:a 6963:. 6955:x 6953:) 6951:b 6947:a 6943:x 6931:b 6927:a 6923:) 6917:b 6913:a 6911:( 6908:n 6906:U 6782:) 6764:b 6760:b 6758:( 6754:b 6748:) 6730:b 6726:b 6724:( 6720:n 6712:b 6708:a 6701:b 6696:a 6691:b 6687:a 6682:n 6677:b 6673:b 6671:( 6665:b 6661:a 6653:n 6649:n 6643:b 5217:a 5212:b 5197:a 5192:b 5180:b 5167:n 5150:b 5146:a 5142:/ 5138:b 5134:a 5123:n 5115:b 5108:a 5095:) 5093:b 5089:a 5087:( 5078:b 5074:a 5070:/ 5066:b 5062:a 5053:n 5038:r 5034:r 5030:b 5026:a 5022:) 5020:b 5016:a 5014:( 5009:b 5005:a 4998:b 4994:a 4989:n 4985:n 4981:n 4976:b 4972:a 4966:b 4962:a 4956:a 4952:b 4948:a 4946:− 4940:a 4931:b 4927:a 4907:b 4901:a 4894:n 4890:b 4881:n 4877:a 4853:) 4835:b 4828:) 4805:b 4801:/ 4796:b 4786:b 4779:) 4775:n 4754:n 4749:0 4743:b 4737:b 4730:) 4712:n 4707:0 4701:b 4690:b 4686:/ 4681:b 4671:n 4657:b 4653:/ 4648:b 4638:n 4632:b 4621:b 4617:/ 4612:b 4602:n 4592:b 4566:n 4559:b 4523:n 4516:b 4510:b 4489:1 4483:b 4478:1 4470:n 4466:b 4448:n 4441:b 4434:b 4411:) 4393:) 4376:n 4369:ω 4356:ω 4352:b 4346:ω 4342:b 4301:) 4283:n 4276:i 4258:i 4251:n 4241:i 4237:b 4231:i 4227:b 4192:n 4178:b 4167:b 4146:b 4136:b 4129:b 4118:n 4111:b 4104:b 4090:x 4086:x 4082:x 4080:( 4078:f 4071:n 4060:x 4056:x 4052:x 4050:( 4048:f 4041:n 4024:) 4022:x 4020:( 4018:f 4011:f 3987:Φ 3979:p 3977:Φ 3973:r 3969:p 3961:. 3946:r 3935:p 3928:r 3922:) 3920:r 3916:p 3908:r 3902:p 3890:/ 3884:2 3848:2 3786:M 3775:n 3773:M 3767:n 3513:p 3511:M 3502:p 3500:M 3493:p 3467:M 3463:q 3458:q 3424:) 3407:p 3390:. 3386:1 3383:m 3376:0 3373:m 3365:n 3361:m 3355:n 3351:m 3346:n 3342:m 3335:n 3332:U 3323:. 3319:k 3312:m 3307:k 3303:n 3299:m 3294:n 3274:. 3271:p 3269:M 3263:p 3261:2 3257:q 3249:q 3245:q 3237:q 3229:p 3225:q 3221:) 3219:q 3213:) 3211:q 3205:) 3203:q 3197:) 3195:q 3187:p 3185:2 3181:q 3173:. 3151:p 3149:2 3137:p 3129:p 3123:p 3121:2 3117:p 3094:n 3090:m 3086:n 3082:m 3068:λ 3060:λ 3045:/ 3031:p 3021:p 3014:p 3010:m 3005:) 3003:p 2995:p 2977:. 2966:q 2960:2 2956:) 2954:q 2934:q 2930:p 2923:. 2921:k 2916:p 2914:M 2906:2 2900:p 2892:p 2884:p 2875:. 2873:) 2871:p 2867:q 2862:q 2854:q 2850:) 2848:p 2844:q 2837:q 2832:p 2824:q 2820:x 2816:p 2808:q 2804:x 2796:q 2792:x 2788:p 2780:q 2776:p 2768:q 2763:c 2754:q 2746:q 2734:. 2704:p 2702:2 2694:q 2690:p 2681:p 2668:) 2664:( 2647:b 2642:a 2633:p 2628:p 2618:p 2607:. 2603:a 2592:a 2585:a 2578:a 2571:p 2564:a 2558:a 2554:a 2547:a 2540:a 2536:a 2529:a 2522:a 2518:a 2511:a 2507:a 2500:a 2496:a 2489:a 2482:a 2469:p 2462:a 2455:a 2450:p 2445:a 2385:M 2329:n 2327:M 2314:⌋ 2312:x 2310:⌊ 2300:n 2298:⌊ 2292:n 2290:M 2281:M 2272:M 2263:M 2254:M 2245:M 2236:M 2227:M 2199:M 2172:) 2169:) 2166:y 2163:( 2154:( 2125:k 2116:k 2112:S 2107:k 2105:S 2098:0 2095:S 2087:p 2083:S 2076:p 2074:M 2063:p 2061:M 2054:p 2034:M 2025:M 2012:M 1999:M 1986:M 1973:M 1964:M 1954:M 1947:7 1944:M 1937:5 1934:M 1927:3 1924:M 1917:2 1914:M 1877:M 1864:M 1845:/ 1841:) 1838:1 1835:+ 1826:2 1822:( 1808:M 1793:M 1784:M 1775:M 1766:M 1757:M 1497:2 1493:/ 1489:) 1486:1 1483:+ 1480:M 1477:( 1474:M 1471:= 1468:P 1448:) 1445:1 1437:n 1433:2 1429:= 1426:M 1423:( 1380:p 1376:M 1306:p 1304:M 1299:p 1297:M 1293:p 1289:p 1284:p 1282:M 1276:. 1269:M 1261:p 1256:p 1254:M 1245:4 1242:M 1223:. 1219:) 1213:b 1210:) 1207:1 1201:a 1198:( 1194:2 1190:+ 1184:+ 1179:b 1176:3 1172:2 1168:+ 1163:b 1160:2 1156:2 1152:+ 1147:b 1143:2 1139:+ 1136:1 1132:( 1125:) 1122:1 1114:b 1110:2 1106:( 1103:= 1092:) 1086:a 1083:) 1080:1 1074:b 1071:( 1067:2 1063:+ 1057:+ 1052:a 1049:3 1045:2 1041:+ 1036:a 1033:2 1029:2 1025:+ 1020:a 1016:2 1012:+ 1009:1 1005:( 998:) 995:1 987:a 983:2 979:( 976:= 969:1 961:b 958:a 954:2 938:p 932:p 930:M 918:2 915:M 903:1 900:M 893:0 890:M 884:2 881:M 874:7 871:M 864:5 861:M 854:3 851:M 844:2 841:M 824:p 820:M 816:= 813:1 805:p 801:2 780:1 772:p 768:2 764:= 761:) 758:2 755:( 750:p 733:p 731:2 727:p 709:1 706:= 703:) 700:2 697:( 692:1 677:p 673:p 659:p 656:= 651:2 647:1 641:) 638:1 635:+ 632:p 629:2 626:( 611:p 609:2 599:p 597:2 587:p 585:2 581:p 563:M 553:M 543:M 533:M 523:M 513:M 503:M 493:M 486:p 484:M 478:p 476:2 472:p 438:p 434:M 423:p 409:) 403:( 395:2 378:e 346:: 298:n 293:n 281:n 279:M 249:7 245:3 230:n 218:p 210:p 208:M 194:n 180:n 169:n 167:M 134:p 130:p 88:7 84:3 20:)

Index

524287 (number)
Marin Mersenne
Subsequence
3
7
31
127
OEIS
A000668
mathematics
prime number
power of two
of the form
integer
Marin Mersenne
Minim friar
composite number
exponents
A000043
OEIS
3
7
31
127
2147483647
A000668
OEIS
connection to perfect numbers
Euclid–Euler theorem
largest known prime number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.