Knowledge (XXG)

Anharmonicity

Source 📝

38: 489: 794:
between the center of mass of the nucleus and the electronic cloud when an electric field is present. The amount of that displacement, called the electric dipole moment, is related linearly to the applied field for small fields, but as the magnitude of the field is increased, the field-dipole moment relationship becomes nonlinear, just as in the mechanical system.
507: 817:. Studying vibrating anharmonic systems using quantum mechanics is a computationally demanding task because anharmonicity not only makes the potential experienced by each oscillator more complicated, but also introduces coupling between the oscillators. It is possible to use first-principles methods such as 533: 703:
As a result of the nonlinearity of anharmonic oscillators, the vibration frequency can change, depending upon the system's displacement. These changes in the vibration frequency result in energy being coupled from the fundamental vibration frequency to other frequencies through a process known as
793:
There are many systems throughout the physical world that can be modeled as anharmonic oscillators in addition to the nonlinear mass-spring system. For example, an atom, which consists of a positively charged nucleus surrounded by a negatively charged electronic cloud, experiences a displacement
797:
Further examples of anharmonic oscillators include the large-angle pendulum; nonequilibrium semiconductors that possess a large hot carrier population, which exhibit nonlinear behaviors of various types related to the effective mass of the carriers; and ionospheric plasmas, which also exhibit
813:. However, when the vibrational amplitudes are large, for example at high temperatures, anharmonicity becomes important. An example of the effects of anharmonicity is the thermal expansion of solids, which is usually studied within the 699:
Anharmonic oscillators, however, are characterized by the nonlinear dependence of the restorative force on the displacement x. Consequently, the anharmonic oscillator's period of oscillation may depend on its amplitude of oscillation.
979: 821:
to map the anharmonic potential experienced by the atoms in both molecules and solids. Accurate anharmonic vibrational energies can then be obtained by solving the anharmonic vibrational equations for the atoms within a
802:. In fact, virtually all oscillators become anharmonic when their pump amplitude increases beyond some threshold, and as a result it is necessary to use nonlinear equations of motion to describe their behavior. 463: 301: 363: 1089: 1025: 396: 423: 251: 180: 157: 224: 200: 890: 885: 856: 324: 1287:
Monserrat, B.; Drummond, N.D.; Needs, R.J. (2013), "Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress",
827: 809:. The atoms in a molecule or a solid vibrate about their equilibrium positions. When these vibrations have small amplitudes they can be described by 114:
is known as an anharmonic oscillator where the system can be approximated to a harmonic oscillator and the anharmonicity can be calculated using
67:
is a good approximation for small oscillations. The red approximation treats the molecule as a harmonic oscillator, because the restoring force,
1153: 1397: 665:
In harmonic oscillators, the restoring force is proportional in magnitude (and opposite in direction) to the displacement of
1339:
Amore, Paolo; Fernández, Francisco M. (2005). "Exact and approximate expressions for the period of anharmonic oscillators".
785:
is small. For this reason, anharmonic motion can be approximated as harmonic motion as long as the oscillations are small.
428: 59:. (Imagine a marble rolling back and forth in the depression.) The blue curve is close in shape to the molecule's actual 1431: 814: 662:
increases, so does the restoring force acting on the pendulums weight that pushes it back towards its resting position.
264: 606:
An oscillator is a physical system characterized by periodic motion, such as a pendulum, tuning fork, or vibrating
818: 332: 554:
back towards the middle. This oscillator is anharmonic because the restoring force is not proportional to
111: 95: 1030: 984: 512:
The "block-on-a-spring" is a classic example of harmonic oscillation. Depending on the block's location,
203: 76: 374: 1200: 401: 1358: 1306: 1262: 1212: 1171: 810: 596: 1403: 1115: 1105: 473: 123: 115: 103: 87: 1374: 1348: 1322: 1296: 518:, it will experience a restoring force toward the middle. The restoring force is proportional to 229: 119: 805:
Anharmonicity plays a role in lattice and molecular vibrations, in quantum oscillations, and in
1149: 1110: 823: 610:. Mathematically speaking, the essential feature of an oscillator is that for some coordinate 607: 162: 139: 1162:
Filipponi, A.; Cavicchia, D. R. (2011), "Anharmonic dynamics of a mass O-spring oscillator",
209: 185: 122:
have to be used. In reality all oscillating systems are anharmonic, but most approximate the
1366: 1314: 1270: 1220: 1179: 258: 41: 1407: 1137: 861: 506: 254: 49: 1362: 1310: 1266: 1239:
Jung, J. O.; Benny Gerber, R. (1996), "Vibrational wave functions and spectroscopy of (H
1216: 1175: 37: 841: 799: 469: 309: 60: 45: 1425: 1378: 1370: 1326: 1100: 798:
nonlinear behavior based on the anharmonicity of the plasma, transversal oscillating
477: 31: 27: 532: 687: 369: 134: 20: 1318: 974:{\displaystyle T={\sqrt {2m}}\int _{x_{-}}^{x_{+}}{\frac {dx}{\sqrt {E-U(x)}}}} 1142: 1133: 763:
is linear, so it will describe simple harmonic motion. Further, this function
488: 107: 1201:"The Effect of Anharmonicity on Diatomic Vibration: A Spreadsheet Simulation" 806: 304: 127: 19:
This article is about anharmonic oscillators. For the anharmonic ratio, see
1253:=2,3,4,5: Vibrational self-consistent field with correlation corrections", 1225: 1120: 64: 1353: 696:
may oscillate with any amplitude, but will always have the same period.
690:
over time, with a period of oscillation that is inherent to the system.
425:, ... anharmonicity results in additional oscillations with frequencies 649:
may represent the displacement of a pendulum from its resting position
1183: 48:. When the molecules are too close or too far away, they experience a 1274: 472:
of the resonance curve, leading to interesting phenomena such as the
99: 72: 725:
of the displacement of x from its natural position, we may replace
1301: 36: 16:
Deviation of a physical system from being a harmonic oscillator
542:
harmonic oscillator. Depending on the mass's angular position
628:
away from extreme values and back toward some central value
707:
Treating the nonlinear restorative force as a function
492:
2 DOF elastic pendulum exhibiting anharmonic behavior.
206:
of the oscillator, appear. Furthermore, the frequency
1033: 987: 893: 864: 844: 458:{\displaystyle \omega _{\alpha }\pm \omega _{\beta }} 431: 404: 377: 335: 312: 267: 232: 212: 188: 165: 142: 1199:Lim, Kieran F.; Coleman, William F. (August 2005), 680:. The resulting differential equation implies that 1141: 1083: 1019: 973: 879: 850: 616:of the system, a force whose magnitude depends on 457: 417: 390: 357: 318: 296:{\displaystyle \Delta \omega =\omega -\omega _{0}} 295: 245: 218: 194: 174: 151: 756:at zero displacement. The approximating function 303:is proportional to the square of the oscillation 599:as a harmonic oscillator for small oscillations. 524:, so the system exhibits simple harmonic motion. 261:. As a first approximation, the frequency shift 981:where the extremes of the motion are given by 118:. If the anharmonicity is large, then other 8: 643:to oscillate between extremes. For example, 358:{\displaystyle \Delta \omega \propto A^{2}} 887:. The oscillation period may be derived 1352: 1300: 1224: 1066: 1044: 1032: 1011: 992: 986: 939: 931: 926: 919: 914: 900: 892: 863: 843: 449: 436: 430: 409: 403: 382: 376: 349: 334: 311: 287: 266: 237: 231: 211: 187: 164: 141: 487: 44:of a diatomic molecule as a function of 1191: 830:to go beyond the mean-field formalism. 253:of the harmonic oscillations. See also 548:, a restoring force pushes coordinate 7: 1396:Elmer, Franz-Josef (July 20, 1998), 578:approximates the nonlinear function 1084:{\displaystyle U(x_{-})=U(x_{+})=E} 1020:{\displaystyle x_{-}<x<x_{+}} 499:Harmonic vs. Anharmonic Oscillators 828:Møller–Plesset perturbation theory 336: 268: 14: 826:. Finally, it is possible to use 391:{\displaystyle \omega _{\alpha }} 1148:(3rd ed.), Pergamon Press, 531: 505: 468:Anharmonicity also modifies the 418:{\displaystyle \omega _{\beta }} 368:In a system of oscillators with 133:As a result, oscillations with 1072: 1059: 1050: 1037: 965: 959: 874: 868: 568:. Because the linear function 1: 815:quasi-harmonic approximation 731:by its linear approximation 595:is small, the system can be 226:deviates from the frequency 1341:European Journal of Physics 1164:American Journal of Physics 858:moving in a potential well 656:. As the absolute value of 246:{\displaystyle \omega _{0}} 110:that is not oscillating in 1448: 1371:10.1088/0143-0807/26/4/004 1319:10.1103/PhysRevB.87.144302 671:from its natural position 25: 18: 819:density-functional theory 175:{\displaystyle 3\omega } 152:{\displaystyle 2\omega } 26:Not to be confused with 538:A pendulum is a simple 219:{\displaystyle \omega } 195:{\displaystyle \omega } 130:of the oscillation is. 1085: 1021: 975: 881: 852: 834:Period of oscillations 493: 459: 419: 392: 359: 320: 297: 247: 220: 196: 176: 153: 83: 1086: 1022: 976: 882: 853: 704:parametric coupling. 491: 460: 420: 393: 360: 321: 298: 248: 221: 204:fundamental frequency 197: 177: 154: 40: 1226:10.1021/ed082p1263.1 1031: 985: 891: 880:{\displaystyle U(x)} 862: 842: 811:harmonic oscillators 429: 402: 375: 333: 310: 265: 230: 210: 186: 163: 140: 120:numerical techniques 75:with respect to the 1432:Classical mechanics 1404:University of Basel 1399:Nonlinear Resonance 1363:2005EJPh...26..589A 1311:2013PhRvB..87n4302M 1267:1996JChPh.10510332J 1217:2005JChEd..82.1263F 1176:2011AmJPh..79..730F 1116:Nonlinear resonance 1106:Harmonic oscillator 938: 789:Examples in physics 370:natural frequencies 124:harmonic oscillator 116:perturbation theory 104:harmonic oscillator 88:classical mechanics 1081: 1017: 971: 910: 877: 848: 494: 455: 415: 388: 355: 316: 293: 243: 216: 192: 172: 149: 84: 1184:10.1119/1.3579129 1155:978-0-08-021022-3 1111:Musical acoustics 969: 968: 908: 851:{\displaystyle m} 824:mean-field theory 772:is accurate when 608:diatomic molecule 484:General principle 319:{\displaystyle A} 259:combination tones 1439: 1418: 1417: 1415: 1410:on June 13, 2011 1406:, archived from 1383: 1382: 1356: 1336: 1330: 1329: 1304: 1284: 1278: 1277: 1275:10.1063/1.472960 1236: 1230: 1229: 1228: 1196: 1186: 1158: 1147: 1090: 1088: 1087: 1082: 1071: 1070: 1049: 1048: 1026: 1024: 1023: 1018: 1016: 1015: 997: 996: 980: 978: 977: 972: 970: 949: 948: 940: 937: 936: 935: 925: 924: 923: 909: 901: 886: 884: 883: 878: 857: 855: 854: 849: 838:Consider a mass 784: 771: 755: 730: 724: 695: 685: 679: 670: 661: 655: 648: 642: 636: 627: 621: 615: 594: 588: 577: 567: 559: 553: 547: 535: 523: 517: 509: 464: 462: 461: 456: 454: 453: 441: 440: 424: 422: 421: 416: 414: 413: 397: 395: 394: 389: 387: 386: 364: 362: 361: 356: 354: 353: 325: 323: 322: 317: 302: 300: 299: 294: 292: 291: 252: 250: 249: 244: 242: 241: 225: 223: 222: 217: 201: 199: 198: 193: 181: 179: 178: 173: 158: 156: 155: 150: 126:the smaller the 63:, while the red 42:Potential energy 1447: 1446: 1442: 1441: 1440: 1438: 1437: 1436: 1422: 1421: 1413: 1411: 1395: 1392: 1387: 1386: 1354:math-ph/0409034 1338: 1337: 1333: 1286: 1285: 1281: 1248: 1242: 1238: 1237: 1233: 1198: 1197: 1193: 1161: 1156: 1138:Lifshitz, E. M. 1132: 1129: 1097: 1062: 1040: 1029: 1028: 1007: 988: 983: 982: 941: 927: 915: 889: 888: 860: 859: 840: 839: 836: 791: 783: 773: 770: 764: 761: 753: 738: 732: 726: 722: 708: 691: 686:must oscillate 681: 678: 672: 666: 657: 650: 644: 638: 635: 629: 623: 617: 611: 604: 603: 602: 601: 600: 590: 579: 569: 561: 555: 549: 543: 536: 527: 526: 525: 519: 513: 510: 501: 500: 486: 474:foldover effect 445: 432: 427: 426: 405: 400: 399: 378: 373: 372: 345: 331: 330: 308: 307: 283: 263: 262: 255:intermodulation 233: 228: 227: 208: 207: 184: 183: 161: 160: 138: 137: 112:harmonic motion 57: 50:restoring force 35: 24: 17: 12: 11: 5: 1445: 1443: 1435: 1434: 1424: 1423: 1420: 1419: 1391: 1390:External links 1388: 1385: 1384: 1347:(4): 589–601. 1331: 1295:(14): 144302, 1279: 1255:J. Chem. Phys. 1244: 1240: 1231: 1205:J. Chem. Educ. 1190: 1189: 1188: 1187: 1170:(7): 730–735, 1159: 1154: 1128: 1125: 1124: 1123: 1118: 1113: 1108: 1103: 1096: 1093: 1080: 1077: 1074: 1069: 1065: 1061: 1058: 1055: 1052: 1047: 1043: 1039: 1036: 1014: 1010: 1006: 1003: 1000: 995: 991: 967: 964: 961: 958: 955: 952: 947: 944: 934: 930: 922: 918: 913: 907: 904: 899: 896: 876: 873: 870: 867: 847: 835: 832: 790: 787: 781: 768: 759: 751: 736: 720: 676: 633: 537: 530: 529: 528: 511: 504: 503: 502: 498: 497: 496: 495: 485: 482: 470:energy profile 452: 448: 444: 439: 435: 412: 408: 385: 381: 366: 365: 352: 348: 344: 341: 338: 315: 290: 286: 282: 279: 276: 273: 270: 240: 236: 215: 191: 171: 168: 148: 145: 61:potential well 55: 46:atomic spacing 15: 13: 10: 9: 6: 4: 3: 2: 1444: 1433: 1430: 1429: 1427: 1409: 1405: 1401: 1400: 1394: 1393: 1389: 1380: 1376: 1372: 1368: 1364: 1360: 1355: 1350: 1346: 1342: 1335: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1303: 1298: 1294: 1290: 1283: 1280: 1276: 1272: 1268: 1264: 1261:(23): 10332, 1260: 1256: 1252: 1247: 1235: 1232: 1227: 1222: 1218: 1214: 1210: 1206: 1202: 1195: 1192: 1185: 1181: 1177: 1173: 1169: 1165: 1160: 1157: 1151: 1146: 1145: 1139: 1135: 1134:Landau, L. D. 1131: 1130: 1126: 1122: 1119: 1117: 1114: 1112: 1109: 1107: 1104: 1102: 1101:Inharmonicity 1099: 1098: 1094: 1092: 1078: 1075: 1067: 1063: 1056: 1053: 1045: 1041: 1034: 1012: 1008: 1004: 1001: 998: 993: 989: 962: 956: 953: 950: 945: 942: 932: 928: 920: 916: 911: 905: 902: 897: 894: 871: 865: 845: 833: 831: 829: 825: 820: 816: 812: 808: 803: 801: 795: 788: 786: 780: 776: 767: 762: 750: 746: 743:(0) ⋅ ( 742: 735: 729: 719: 715: 711: 705: 701: 697: 694: 689: 684: 675: 669: 663: 660: 653: 647: 641: 632: 626: 620: 614: 609: 598: 593: 586: 582: 576: 572: 565: 558: 552: 546: 541: 534: 522: 516: 508: 490: 483: 481: 479: 478:superharmonic 475: 471: 466: 450: 446: 442: 437: 433: 410: 406: 383: 379: 371: 350: 346: 342: 339: 329: 328: 327: 313: 306: 288: 284: 280: 277: 274: 271: 260: 256: 238: 234: 213: 205: 189: 169: 166: 146: 143: 136: 131: 129: 125: 121: 117: 113: 109: 105: 102:from being a 101: 97: 93: 92:anharmonicity 89: 81: 78: 74: 70: 66: 62: 58: 52:back towards 51: 47: 43: 39: 33: 32:Inharmonicity 29: 28:Enharmonicity 22: 1412:, retrieved 1408:the original 1398: 1344: 1340: 1334: 1292: 1289:Phys. Rev. B 1288: 1282: 1258: 1254: 1250: 1245: 1234: 1208: 1204: 1194: 1167: 1163: 1143: 837: 804: 796: 792: 778: 774: 765: 757: 748: 744: 740: 733: 727: 717: 713: 709: 706: 702: 698: 692: 688:sinusoidally 682: 673: 667: 664: 658: 651: 645: 639: 630: 624: 618: 612: 605: 591: 584: 580: 574: 570: 563: 556: 550: 544: 539: 520: 514: 467: 367: 182:etc., where 132: 91: 85: 79: 77:displacement 68: 53: 1414:October 28, 1211:(8): 1263, 480:resonance. 135:frequencies 21:Cross-ratio 1127:References 637:, causing 622:will push 108:oscillator 1379:119615357 1327:118687212 1302:1303.0745 1144:Mechanics 1046:− 994:− 954:− 921:− 912:∫ 807:acoustics 560:, but to 451:β 447:ω 443:± 438:α 434:ω 411:β 407:ω 384:α 380:ω 343:∝ 340:ω 337:Δ 305:amplitude 285:ω 281:− 278:ω 272:ω 269:Δ 235:ω 214:ω 190:ω 170:ω 147:ω 128:amplitude 96:deviation 1426:Category 1140:(1976), 1121:Transmon 1095:See also 741:F′ 65:parabola 1359:Bibcode 1307:Bibcode 1263:Bibcode 1213:Bibcode 1172:Bibcode 800:strings 597:modeled 202:is the 94:is the 1377:  1325:  1152:  583:= sin( 100:system 73:linear 69:-V'(u) 1375:S2CID 1349:arXiv 1323:S2CID 1297:arXiv 589:when 106:. An 98:of a 71:, is 1416:2010 1150:ISBN 1027:and 1005:< 999:< 562:sin( 476:and 257:and 159:and 1367:doi 1315:doi 1271:doi 1259:105 1221:doi 1180:doi 86:In 30:or 1428:: 1402:, 1373:. 1365:. 1357:. 1345:26 1343:. 1321:, 1313:, 1305:, 1293:87 1291:, 1269:, 1257:, 1249:, 1243:O) 1219:, 1209:82 1207:, 1203:, 1178:, 1168:79 1166:, 1136:; 1091:. 777:− 739:= 716:− 654:=0 573:= 540:an 465:. 398:, 326:: 90:, 82:. 1381:. 1369:: 1361:: 1351:: 1317:: 1309:: 1299:: 1273:: 1265:: 1251:n 1246:n 1241:2 1223:: 1215:: 1182:: 1174:: 1079:E 1076:= 1073:) 1068:+ 1064:x 1060:( 1057:U 1054:= 1051:) 1042:x 1038:( 1035:U 1013:+ 1009:x 1002:x 990:x 966:) 963:x 960:( 957:U 951:E 946:x 943:d 933:+ 929:x 917:x 906:m 903:2 898:= 895:T 875:) 872:x 869:( 866:U 846:m 782:0 779:x 775:x 769:1 766:F 760:1 758:F 754:) 752:0 749:x 747:− 745:x 737:1 734:F 728:F 723:) 721:0 718:x 714:x 712:( 710:F 693:x 683:x 677:0 674:x 668:x 659:x 652:x 646:x 640:x 634:0 631:x 625:x 619:x 613:x 592:θ 587:) 585:θ 581:y 575:θ 571:y 566:) 564:θ 557:θ 551:θ 545:θ 521:x 515:x 351:2 347:A 314:A 289:0 275:= 239:0 167:3 144:2 80:u 56:0 54:u 34:. 23:.

Index

Cross-ratio
Enharmonicity
Inharmonicity

Potential energy
atomic spacing
restoring force
potential well
parabola
linear
displacement
classical mechanics
deviation
system
harmonic oscillator
oscillator
harmonic motion
perturbation theory
numerical techniques
harmonic oscillator
amplitude
frequencies
fundamental frequency
intermodulation
combination tones
amplitude
natural frequencies
energy profile
foldover effect
superharmonic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.