Knowledge (XXG)

Cytometry

Source đź“ť

315: 190: 20: 908: 383:
built the first non microscopy-based cytophotometer. He did this by combining Crosland-Taylor's breakthrough with the fluorescent dyes originally developed for microscopy and a laser-based fluorescent detection system — the flow cytometer as we know it today. Fulwyler, at Los Alamos as well, combines
356:
in 1968. Kamentsky’s device was commercialized by Bio/Physics Systems Inc. as the Cytograph in 1970. These devices were able to count cells, like the earlier Coulter counter. But more importantly, they were also capable of measuring cellular characteristics. However, these early cytophotometers where
328:
The first attempts to automate cell counting were made around World War II. Gucker et al. builds a device to detect bacteria in aerosols. Lagercrantz builds an automated cell counter based on microscopy and identifies the difficulties in aligning cells to be individually counted using microscopy, as
305:
to quantify cellular nucleic acids and their relation to cell growth and function. Caspersson’s early apparatus now seems hopelessly primitive. But, even this primitive apparatus got results, and attracted the attention of other researchers. Many of the advances in analytical cytology from the 1940s
165:. The fluid stream is broken up into droplets by a mechanical vibration. The droplets are then electrically charged according to the characteristics of the cell contained within the droplet. Depending on their charge, the droplets are finally deflected by an electric field into different containers. 868: 147:. To detect specific molecules when optically characterized, cells are in most cases stained with the same type of fluorochromes that are used by image cytometers. Flow cytometers generally provide less data than image cytometers, but have a significantly higher throughput. 264:
in Jena constructed the first ultraviolet microscope. The intent of the microscope was to obtain higher optical resolution by using illumination with a shorter wavelength than visual light. However, they experienced difficulties with
117:, in the mid-1990s, the automation level of image cytometers has steadily increased. This has led to the commercial availability of automated image cytometers, ranging from simple cell counters to sophisticated 238:. However, the hemocytometer is still being used to count cells in cell culture laboratories. Successively the manual task of counting, using a microscope, is taken over by small automated image cytometers. 139:
has since the mid-1950s been the dominating cytometric device. Flow cytometers operate by aligning single cells using flow techniques. The cells are characterized optically or by the use of an
333:
circumnavigates these difficulties by inventing the principle of using electrical impedance to count and size microscopic particles suspended in a fluid. This principle is today known as the
1111:
Steinkamp, J. A.; Fulwyler, M. J.; Coulter, J. R.; Hiebert, R. D.; Horney, J. L.; Mullancy, P. F. (1973). "A new multiparameter separator for microscopic particles and biological cells".
77:. In a similar fashion, cytometry is also used in cell biology research and in medical diagnostics to characterize cells in a wide range of applications associated with diseases such as 293:
By the early 1930s various firms manufactured ultraviolet fluorescent microscopes. The stage was set for cytometry to now go beyond the now established hemocytometer. At this time,
611: 402:, a term which quickly became popular. At that point pulse cytophotometry had evolved into the modern form of flow cytometry, pioneered by Van Dilla ten years earlier. 161:
Cell sorters are flow cytometers capable of sorting cells according to their characteristics. The sorting is achieved by using technology similar to what is used in
269:
when observing biological material. Fortunately, Köhler saw the potential of fluorescence. A filtering technique for fluorescence excitation light was developed by
234:
Until the 1950s the hemocytometer was the standard method to count blood cells. In blood cell counting applications the hemocytometer has now been replaced by
371:
In 1953 Crosland-Taylor published an unsuccessful attempt to count red blood cells using microscopy in which he solved the problem of aligning cells by using
906:, Wolfgang Dittrich & Wolfgang Göhde, "Flow-through Chamber for Photometers to Measure and Count Particles in a Dispersion Medium" 1224: 973:
Van Dilla, M. A.; Trujillo, T. T.; Mullaney, P. F.; Coulter, J. R. (1969). "Cell microfluorometry: A method for rapid fluorescence measurement".
431: 223:
and others blood cell concentration could by the late 19th century be accurately measured using a blood cell counting chamber, the
348:
During the 1960s Dittrich, Göhde and Kamentsky improves the design pioneered by Caspersson 30 years earlier. Dittrich and Göhde’s
297:, working at the Karolinska Institute in Stockholm, developed a series of progressively more sophisticated instruments called 98:
Image cytometry is the oldest form of cytometry. Image cytometers operate by statically imaging a large number of cells using
1214: 380: 277:. However, the "Lumineszenzmikroskop" he developed was only second on the market, after the one independently developed by 102:. Prior to analysis, cells are commonly stained to enhance contrast or to detect specific molecules by labeling these with 1219: 734:
Gucker, F. T.; O’Konski, C. T.; Pickard, H. B.; Pitts, J. N. (1947). "A photoelectronic counter for colloidal particles".
211:
The early history of cytometry is closely associated with the development of the blood cell counting. Through the work of
1045:
Robinson, J. P. (2009). "Cytometry – a Definitive History of the Early Days". In Sack, U.; Tárnok, A.; Rothe, G. (eds.).
1204: 922:
Kamentsky, L. A.; Melamed, M. R.; Derman, H (1965). "Spectrophotometer: New instrument for ultrarapid cell analysis".
314: 235: 1209: 459:
Crosland-Taylor, P. J. (1953). "A device for counting small particles suspended in a fluid through a tube".
247: 1024: 294: 216: 181:
to facilitate continuous observation of cellular processes without heat building up inside the incubator.
118: 1199: 863: 376: 173:
A key characteristic of time-lapse cytometers is their use of non heat-generating light sources such as
903: 270: 1194: 1120: 1069: 982: 931: 829: 778: 468: 278: 174: 140: 74: 866:, Coulter W. H., "Means for Counting Particles Suspended in a Fluid.", issued 1953-10-20 769:
Lagercrantz, C. (1948). "Photo-electric Counting of Individual Microscopic Plant and Animal Cells".
633: 394:
In 1978, at the Conference of the American Engineering Foundation in Pensacola, Florida, the name
372: 189: 1093: 1006: 955: 802: 716: 492: 330: 282: 228: 220: 99: 1136: 1085: 998: 947: 845: 794: 751: 708: 590: 541: 484: 391:
In 1973 Steinkamp and the team at Los Alamos follow up with a fluorescence-based cell sorter.
334: 302: 212: 144: 1128: 1077: 990: 939: 837: 786: 743: 698: 580: 572: 531: 523: 476: 435: 266: 257: 385: 342: 338: 320: 253: 162: 820:
Moldavan, A. (1934). "Photo-Electric Technique for the Counting of Microscopical Cells".
352:
was built around a Zeiss fluorescent microscope and commercialized as the ICP 11 by
1124: 1073: 986: 935: 833: 782: 472: 585: 560: 536: 511: 411: 366: 274: 178: 156: 136: 130: 114: 38: 1188: 261: 224: 206: 107: 46: 1010: 959: 806: 496: 103: 1097: 994: 720: 1154: 1081: 943: 882: 841: 281:
who worked at C Reichert, Optische Werke AG in Vienna, which today is a part of
34: 1060:
Fulwyler, M. J. (1965). "Electronic separation of biological cells by volume".
576: 527: 70: 66: 50: 1178: 62: 42: 849: 798: 755: 712: 545: 488: 1140: 1089: 1002: 951: 594: 703: 686: 26:
are the instruments which count the blood cells in the common blood test.
747: 177:. This allows a time-lapse cytometer to be placed inside a conventional 1047:
Cellular Diagnostics. Basics, Methods and Clinical Applications of Flow
306:
and on-wards were made by people who made the pilgrimage to Stockholm.
58: 1132: 19: 790: 480: 78: 313: 188: 18: 82: 41:. Variables that can be measured by cytometric methods include 54: 337:
and was used in the automated blood cell counter released by
301:. These instruments combined a fluorescent microscope with a 135:
Due to the early difficulties of automating microscopy, the
353: 432:"International Society for Advancement of Cytometry" 57:content, and the existence or absence of specific 16:Measurement of number and characteristics of cells 651:Heimstädt O. (1911). "Das Fluoreszenzmikroskop". 561:"Some nineteenth-century pioneers of haematology" 674:. Cambridge University Press. pp. 183–187. 65:. Cytometry is used to characterize and count 8: 512:"The Evolution of Blood-Counting Techniques" 1181:by Purdue University Cytometry Laboratories 379:the cells. In the late 1960s, Van Dilla at 345:” was the first commercial flow cytometer. 106:. Traditionally, cells are viewed within a 1027:. Purdue University Cytometry Laboratories 454: 452: 329:Moldavan had proposed in 1934. Joseph and 702: 606: 604: 584: 535: 388:to create the first cell sorter in 1965. 49:, cell morphology (shape and structure), 423: 324:— The first commercial flow cytometer 7: 386:continuous inkjet printer technology 273:at Zeiss in 1910, based on work by 1025:"Cytometry Volume 10 – Los Alamos" 14: 672:Fluorescent microscopy, volume II 37:of number and characteristics of 1113:Review of Scientific Instruments 1225:Biological techniques and tools 612:"The History of Flow Cytometry" 638:Milestones in Light Microscopy 381:Los Alamos National Laboratory 113:Since the introduction of the 61:on the cell surface or in the 1: 995:10.1126/science.163.3872.1213 687:"The Evolution of Cytometers" 634:"The fluorescence microscope" 1082:10.1126/science.150.3698.910 944:10.1126/science.150.3696.630 842:10.1126/science.80.2069.188 384:the Coulter principle with 1241: 640:. Nature Publishing Group. 364: 245: 204: 154: 128: 577:10.1017/s0025727300016124 528:10.1017/s0025727300029392 1049:. Karger. pp. 1–28. 236:electronic cell counters 110:to aid manual counting. 864:U.S. patent 2656508 670:Rost, F. W. D. (1995). 248:Fluorescence microscope 242:Fluorescence microscope 377:hydrodynamically focus 325: 217:Louis-Charles Malassez 197: 179:cell culture incubator 119:high-content screening 27: 1215:Laboratory techniques 614:. Beckman-Coulter Inc 559:Verso, M. L. (1971). 510:Verso, M. L. (1964). 317: 192: 175:light-emitting diodes 169:Time-lapse cytometers 22: 1220:Laboratory equipment 1155:"Partec Flow Museum" 704:10.1002/cyto.a.10111 396:pulse cytophotometry 350:pulse cytophotometer 310:Pulse cytophotometry 141:electrical impedance 75:complete blood count 1179:Cytometry Volume 10 1125:1973RScI...44.1301S 1074:1965Sci...150..910F 987:1969Sci...163.1213V 981:(3872): 1213–1214. 936:1965Sci...150..630K 834:1934Sci....80..188M 783:1948Natur.161...25L 748:10.1021/ja01202a053 685:Shapiro H. (2004). 473:1953Natur.171...37C 339:Coulter Electronics 295:Torbjörn Caspersson 1205:Clinical pathology 357:microscopy-based. 326: 283:Leica Microsystems 229:optical microscope 198: 143:method called the 100:optical microscopy 89:Cytometric devices 28: 1133:10.1063/1.1686375 828:(2069): 188–189. 742:(10): 2422–2431. 632:Rusk, N. (2009). 335:Coulter principle 303:spectrophotometer 213:Karl von Vierordt 145:Coulter principle 1232: 1166: 1165: 1163: 1162: 1151: 1145: 1144: 1119:(9): 1301–1310. 1108: 1102: 1101: 1068:(698): 910–911. 1057: 1051: 1050: 1042: 1036: 1035: 1033: 1032: 1021: 1015: 1014: 970: 964: 963: 919: 913: 912: 911: 907: 900: 894: 893: 891: 890: 879: 873: 872: 871: 867: 860: 854: 853: 817: 811: 810: 791:10.1038/161025b0 766: 760: 759: 731: 725: 724: 706: 691:Cytometry Part A 682: 676: 675: 667: 661: 660: 653:Z. Wiss. Mikrosk 648: 642: 641: 629: 623: 622: 620: 619: 608: 599: 598: 588: 556: 550: 549: 539: 507: 501: 500: 481:10.1038/171037b0 456: 447: 446: 444: 443: 434:. Archived from 428: 271:Heinrich Lehmann 267:autofluorescence 94:Image cytometers 1240: 1239: 1235: 1234: 1233: 1231: 1230: 1229: 1185: 1184: 1175: 1170: 1169: 1160: 1158: 1153: 1152: 1148: 1110: 1109: 1105: 1059: 1058: 1054: 1044: 1043: 1039: 1030: 1028: 1023: 1022: 1018: 972: 971: 967: 930:(3696): 630–1. 921: 920: 916: 909: 902: 901: 897: 888: 886: 881: 880: 876: 869: 862: 861: 857: 819: 818: 814: 777:(4079): 25–26. 768: 767: 763: 733: 732: 728: 684: 683: 679: 669: 668: 664: 650: 649: 645: 631: 630: 626: 617: 615: 610: 609: 602: 558: 557: 553: 509: 508: 504: 467:(4340): 37–38. 458: 457: 450: 441: 439: 430: 429: 425: 420: 408: 398:was changed to 369: 363: 343:Coulter counter 331:Wallace Coulter 321:Coulter Counter 312: 299:cytophotometers 291: 279:Oskar Heimstädt 254:Moritz von Rohr 250: 244: 209: 203: 187: 171: 163:inkjet printers 159: 153: 133: 127: 125:Flow cytometers 96: 91: 17: 12: 11: 5: 1238: 1236: 1228: 1227: 1222: 1217: 1212: 1210:Flow cytometry 1207: 1202: 1197: 1187: 1186: 1183: 1182: 1174: 1173:External links 1171: 1168: 1167: 1146: 1103: 1052: 1037: 1016: 965: 914: 895: 874: 855: 812: 761: 726: 677: 662: 643: 624: 600: 551: 522:(2): 149–158. 502: 448: 422: 421: 419: 416: 415: 414: 412:Mass cytometry 407: 404: 400:flow cytometry 367:Flow cytometry 365:Main article: 362: 361:Flow cytometry 359: 341:in 1954. The “ 311: 308: 290: 289:Cytophotometry 287: 246:Main article: 243: 240: 205:Main article: 202: 199: 186: 183: 170: 167: 157:Flow cytometry 155:Main article: 152: 149: 137:flow cytometer 131:Flow cytometry 129:Main article: 126: 123: 115:digital camera 95: 92: 90: 87: 15: 13: 10: 9: 6: 4: 3: 2: 1237: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1192: 1190: 1180: 1177: 1176: 1172: 1157:. Partec GmbH 1156: 1150: 1147: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1107: 1104: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1056: 1053: 1048: 1041: 1038: 1026: 1020: 1017: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 969: 966: 961: 957: 953: 949: 945: 941: 937: 933: 929: 925: 918: 915: 905: 899: 896: 885:. Partec GmbH 884: 883:"Flow Museum" 878: 875: 865: 859: 856: 851: 847: 843: 839: 835: 831: 827: 823: 816: 813: 808: 804: 800: 796: 792: 788: 784: 780: 776: 772: 765: 762: 757: 753: 749: 745: 741: 737: 736:J Am Chem Soc 730: 727: 722: 718: 714: 710: 705: 700: 696: 692: 688: 681: 678: 673: 666: 663: 658: 654: 647: 644: 639: 635: 628: 625: 613: 607: 605: 601: 596: 592: 587: 582: 578: 574: 570: 566: 562: 555: 552: 547: 543: 538: 533: 529: 525: 521: 517: 513: 506: 503: 498: 494: 490: 486: 482: 478: 474: 470: 466: 462: 455: 453: 449: 438:on 2013-03-28 437: 433: 427: 424: 417: 413: 410: 409: 405: 403: 401: 397: 392: 389: 387: 382: 378: 374: 368: 360: 358: 355: 351: 346: 344: 340: 336: 332: 323: 322: 316: 309: 307: 304: 300: 296: 288: 286: 284: 280: 276: 272: 268: 263: 259: 258:August Köhler 255: 249: 241: 239: 237: 232: 230: 226: 225:hemocytometer 222: 218: 214: 208: 207:Hemocytometer 201:Hemocytometer 200: 196: 195:hemocytometer 191: 184: 182: 180: 176: 168: 166: 164: 158: 150: 148: 146: 142: 138: 132: 124: 122: 120: 116: 111: 109: 108:hemocytometer 105: 104:fluorochromes 101: 93: 88: 86: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 32: 25: 21: 1200:Cell biology 1159:. Retrieved 1149: 1116: 1112: 1106: 1065: 1061: 1055: 1046: 1040: 1029:. Retrieved 1019: 978: 974: 968: 927: 923: 917: 898: 887:. Retrieved 877: 858: 825: 821: 815: 774: 770: 764: 739: 735: 729: 697:(1): 13–20. 694: 690: 680: 671: 665: 656: 652: 646: 637: 627: 616:. Retrieved 571:(1): 55–67. 568: 564: 554: 519: 515: 505: 464: 460: 440:. Retrieved 436:the original 426: 399: 395: 393: 390: 373:sheath fluid 370: 349: 347: 327: 318: 298: 292: 251: 233: 210: 194: 172: 160: 151:Cell sorters 134: 112: 97: 73:such as the 30: 29: 23: 1195:Blood tests 354:Partec GmbH 275:Robert Wood 221:Karl BĂĽrker 71:blood tests 67:blood cells 35:measurement 1189:Categories 1161:2013-08-25 1031:2013-08-24 904:DE 1815352 889:2013-08-24 659:: 330–337. 618:2013-03-31 442:2013-03-31 418:References 262:Carl Zeiss 69:in common 51:cell cycle 47:cell count 24:Cytometers 565:Med. Hist 516:Med. Hist 252:In 1904, 227:, and an 121:systems. 63:cytoplasm 43:cell size 31:Cytometry 1011:13190489 960:34776930 850:17817054 799:18933853 756:20268300 713:14994215 546:14139094 489:13025472 406:See also 319:Model A 59:proteins 1141:4279087 1121:Bibcode 1090:5891056 1070:Bibcode 1062:Science 1003:5812751 983:Bibcode 975:Science 952:5837105 932:Bibcode 924:Science 830:Bibcode 822:Science 807:4132780 779:Bibcode 595:4929622 586:1034115 537:1033366 497:4273373 469:Bibcode 185:History 53:phase, 33:is the 1139:  1098:459342 1096:  1088:  1009:  1001:  958:  950:  910:  870:  848:  805:  797:  771:Nature 754:  721:836749 719:  711:  593:  583:  544:  534:  495:  487:  461:Nature 79:cancer 1094:S2CID 1007:S2CID 956:S2CID 803:S2CID 717:S2CID 493:S2CID 39:cells 1137:PMID 1086:PMID 999:PMID 948:PMID 846:PMID 795:PMID 752:PMID 709:PMID 591:PMID 542:PMID 485:PMID 256:and 83:AIDS 81:and 1129:doi 1078:doi 1066:150 991:doi 979:163 940:doi 928:150 838:doi 787:doi 775:161 744:doi 699:doi 695:58A 581:PMC 573:doi 532:PMC 524:doi 477:doi 465:171 375:to 260:at 55:DNA 1191:: 1135:. 1127:. 1117:44 1115:. 1092:. 1084:. 1076:. 1064:. 1005:. 997:. 989:. 977:. 954:. 946:. 938:. 926:. 844:. 836:. 826:80 824:. 801:. 793:. 785:. 773:. 750:. 740:69 738:. 715:. 707:. 693:. 689:. 657:28 655:. 636:. 603:^ 589:. 579:. 569:15 567:. 563:. 540:. 530:. 518:. 514:. 491:. 483:. 475:. 463:. 451:^ 285:. 231:. 219:, 215:, 193:A 85:. 45:, 1164:. 1143:. 1131:: 1123:: 1100:. 1080:: 1072:: 1034:. 1013:. 993:: 985:: 962:. 942:: 934:: 892:. 852:. 840:: 832:: 809:. 789:: 781:: 758:. 746:: 723:. 701:: 621:. 597:. 575:: 548:. 526:: 520:8 499:. 479:: 471:: 445:.

Index


measurement
cells
cell size
cell count
cell cycle
DNA
proteins
cytoplasm
blood cells
blood tests
complete blood count
cancer
AIDS
optical microscopy
fluorochromes
hemocytometer
digital camera
high-content screening
Flow cytometry
flow cytometer
electrical impedance
Coulter principle
Flow cytometry
inkjet printers
light-emitting diodes
cell culture incubator

Hemocytometer
Karl von Vierordt

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑