Knowledge

Diamagnetism

Source 📝

684: 848: 31: 1227: 56: 697: 3218: 1155: 867:) are so much stronger such that, when different forms of magnetism are present in a material, the diamagnetic contribution is usually negligible. Substances where the diamagnetic behaviour is the strongest effect are termed diamagnetic materials, or diamagnets. Diamagnetic materials are those that some people generally think of as 1913: 1760: 1302:
The electrons in a material generally settle in orbitals, with effectively zero resistance and act like current loops. Thus it might be imagined that diamagnetism effects in general would be common, since any applied magnetic field would generate currents in these loops that would oppose the change,
1254:
seems to preclude the possibility of static magnetic levitation. However, Earnshaw's theorem applies only to objects with positive susceptibilities, such as ferromagnets (which have a permanent positive moment) and paramagnets (which induce a positive moment). These are attracted to field maxima,
838:
is used in chemistry to determine whether a particle (atom, ion, or molecule) is paramagnetic or diamagnetic: If all electrons in the particle are paired, then the substance made of this particle is diamagnetic; If it has unpaired electrons, then the substance is paramagnetic.
2577: 1802: 1649: 2603:
Suzuki, Motohiro; Kawamura, Naomi; Miyagawa, hayato; Garitaonandia, Jose S.; Yamamoto, Yoshiyuki; Hori, Hidenobu (24 January 2012). "Measurement of a Pauli and Orbital Paramagnetic State in Bulk Gold Using X-Ray Magnetic Circular Dichroism Spectroscopy".
1212:) is covered with a layer of water (that is thin compared to the diameter of the magnet) then the field of the magnet significantly repels the water. This causes a slight dimple in the water's surface that may be seen by a reflection in its surface. 938:. This means that diamagnetic materials are repelled by magnetic fields. However, since diamagnetism is such a weak property, its effects are not observable in everyday life. For example, the magnetic susceptibility of diamagnets such as water is 2053: 1314:
proves that there cannot be any diamagnetism or paramagnetism in a purely classical system. However, the classical theory of Langevin for diamagnetism gives the same prediction as the quantum theory. The classical theory is given below.
764:
effect that occurs in all materials; when it is the only contribution to the magnetism, the material is called diamagnetic. In paramagnetic and ferromagnetic substances, the weak diamagnetic force is overcome by the attractive force of
2195: 855:. On keeping diamagnetic materials in a magnetic field, the electron orbital motion changes in such a way that magnetic dipole moments are induced on the atoms / molecules in the direction opposite to the external magnetic field 1631: 1506: 1543: 1797: 2307: 1303:
in a similar way to superconductors, which are essentially perfect diamagnets. However, since the electrons are rigidly held in orbitals by the charge of the protons and are further constrained by the
2094:, an effect associated with the polarization of delocalized electrons' spins. For the bulk case of a 3D system and low magnetic fields, the (volume) diamagnetic susceptibility can be calculated using 1908:{\displaystyle \scriptstyle \left\langle \rho ^{2}\right\rangle \;=\;\left\langle x^{2}\right\rangle \;+\;\left\langle y^{2}\right\rangle \;=\;{\frac {2}{3}}\left\langle r^{2}\right\rangle } 1288:, an important step forward since mice are closer biologically to humans than frogs. JPL said it hopes to perform experiments regarding the effects of microgravity on bone and muscle mass. 1453: 2437:
of the charge carriers differing from the electron mass in vacuum, increasing the diamagnetic contribution. The formula presented here only applies for the bulk; in confined systems like
1755:{\displaystyle \scriptstyle \left\langle x^{2}\right\rangle \;=\;\left\langle y^{2}\right\rangle \;=\;\left\langle z^{2}\right\rangle \;=\;{\frac {1}{3}}\left\langle r^{2}\right\rangle } 807:
demonstrated that it was a property of matter and concluded that every material responded (in either a diamagnetic or paramagnetic way) to an applied magnetic field. On a suggestion by
2387: 859:
Diamagnetism is a property of all materials, and always makes a weak contribution to the material's response to a magnetic field. However, other forms of magnetism (such as
37:
has one of the largest diamagnetic constants of any room temperature material. Here a pyrolytic carbon sheet is levitated by its repulsion from the strong magnetic field of
1945: 728: 2227: 3400: 2753: 2420: 1291:
Recent experiments studying the growth of protein crystals have led to a technique using powerful magnets to allow growth in ways that counteract Earth's gravity.
2445:. Additionally, for strong magnetic fields, the susceptibility of delocalized electrons oscillates as a function of the field strength, a phenomenon known as the 1266:
permanent magnets. This can be done with all components at room temperature, making a visually effective and relatively convenient demonstration of diamagnetism.
2338: 1933: 2104: 1255:
which do not exist in free space. Diamagnets (which induce a negative moment) are attracted to field minima, and there can be a field minimum in free space.
3255: 1277:, has conducted experiments where water and other substances were successfully levitated. Most spectacularly, a live frog (see figure) was levitated. 917:
Diamagnetic materials, like water, or water-based materials, have a relative magnetic permeability that is less than or equal to 1, and therefore a
1643: 1294:
A simple homemade device for demonstration can be constructed out of bismuth plates and a few permanent magnets that levitate a permanent magnet.
997:
in one plane. Nevertheless, these values are orders of magnitude smaller than the magnetism exhibited by paramagnets and ferromagnets. Because
721: 683: 3074: 2965: 2434: 1561: 1471: 3028: 2952: 1511: 1011:, which has a magnetic susceptibility less than 0 (and is thus by definition a diamagnetic material), but when measured carefully with 3037: 2827:
Liu, Yuanming; Zhu, Da-Ming; Strayer, Donald M.; Israelsson, Ulf E. (2010). "Magnetic levitation of large water droplets and mice".
2685: 2426:(number of states per energy per volume). This formula takes into account the spin degeneracy of the carriers (spin-1/2 electrons). 1012: 714: 701: 1765: 2891: 2236: 770: 3160:
Richter, Klaus; Ullmo, Denis; Jalabert, Rodolfo A. (1996). "Orbital magnetism in the ballistic regime: geometrical effects".
461: 2446: 847: 3248: 2918: 1311: 784:. In most materials, diamagnetism is a weak effect which can be detected only by sensitive laboratory instruments, but a 116: 3405: 3343: 636: 2086:, and instead considers the weak counteracting field that forms when the electrons' trajectories are curved due to the 2805: 2775: 1270: 1243: 1262:, which is an unusually strongly diamagnetic material, can be stably floated in a magnetic field, such as that from 2829: 1396: 641: 266: 1304: 1281: 1007:
In rare cases, the diamagnetic contribution can be stronger than paramagnetic contribution. This is the case for
531: 206: 3241: 2343: 526: 521: 47: 611: 3222: 3052:
Landau, L. D. "Diamagnetismus der metalle." Zeitschrift für Physik A Hadrons and Nuclei 64.9 (1930): 629-637.
904: 3300: 2059: 1936: 1462:
of a current loop is equal to the current times the area of the loop. Suppose the field is aligned with the
1159: 1004:
is derived from the ratio of the internal magnetic field to the applied field, it is a dimensionless value.
918: 621: 216: 1015:, has an extremely weak paramagnetic contribution that is overcome by a stronger diamagnetic contribution. 2473: 2430: 1285: 749: 606: 546: 516: 466: 186: 76: 646: 261: 246: 1251: 900: 2673: 3179: 3134: 2957: 2838: 2767: 2613: 2048:{\displaystyle \chi ={\frac {\mu _{0}n\mu }{B}}=-{\frac {\mu _{0}e^{2}Zn}{6m}}\langle r^{2}\rangle .} 236: 126: 3338: 2095: 1221: 774: 476: 286: 136: 30: 2865: 1250:
Diamagnets may be levitated in stable equilibrium in a magnetic field, with no power consumption.
3410: 3323: 3295: 3195: 3169: 2648: 2476: – Mathematical inequality relating the derivative of a function to its covariant derivative 2458: 2203: 1259: 872: 761: 656: 616: 591: 339: 330: 1636:
If the distribution of charge is spherically symmetric, we can suppose that the distribution of
788:
acts as a strong diamagnet because it entirely expels any magnetic field from its interior (the
3125:
Lévy, L. P.; Reich, D. H.; Pfeiffer, L.; West, K. (1993). "Aharonov-Bohm ballistic billiards".
3100: 1326:'s theory of diamagnetism (1905) applies to materials containing atoms with closed shells (see 1307:, many materials exhibit diamagnetism, but typically respond very little to the applied field. 3283: 3063: 3033: 3005: 2961: 2747: 2681: 2629: 2544: 2423: 1353: 1263: 1226: 1178: 1174: 1163: 1078: 888: 785: 666: 586: 431: 321: 241: 3370: 3187: 3142: 2997: 2846: 2621: 2534: 2526: 2463: 2074:
because there are also non-localized electrons. The theory that describes diamagnetism in a
1048: 977: 291: 256: 251: 211: 181: 151: 111: 71: 38: 34: 2396: 1459: 1235: 1192: 808: 804: 789: 766: 601: 551: 421: 176: 88: 2797: 2190:{\displaystyle \chi =-\mu _{0}{\frac {e^{2}}{12\pi ^{2}m\hbar }}{\sqrt {2mE_{\rm {F}}}},} 3183: 3138: 2842: 2617: 879:, most organic compounds such as petroleum and some plastics, and many metals including 3360: 3333: 3328: 3318: 3023: 3001: 2947: 2539: 2514: 2442: 1918: 1167: 884: 860: 852: 796: 745: 688: 651: 631: 626: 581: 501: 436: 334: 221: 66: 55: 2312: 1191:), because they expel all magnetic fields (except in a thin surface layer) due to the 3394: 3355: 3350: 3290: 3199: 3191: 3146: 2981: 2896: 2390: 2091: 2087: 1323: 864: 835: 757: 556: 362: 343: 325: 226: 146: 2625: 2468: 2230: 1284:(JPL) in Pasadena, California announced it had successfully levitated mice using a 1239: 753: 576: 566: 536: 496: 491: 471: 296: 156: 3228: 2728: 2702: 2530: 2438: 1327: 1274: 1209: 661: 596: 571: 541: 486: 481: 413: 2922: 909: 899:. The magnetic susceptibility values of various molecular fragments are called 3365: 2850: 2083: 506: 348: 141: 3009: 2495: 3264: 2075: 1546: 561: 511: 384: 231: 131: 2633: 2548: 752:
in them in the opposite direction, causing a repulsive force. In contrast,
17: 3217: 2433:
the ratio between Landau and Pauli susceptibilities may change due to the
1799:
is the mean square distance of the electrons from the nucleus. Therefore,
3375: 3174: 1387: 1337: 1234:
levitates inside a 32 mm (1.26 in) diameter vertical bore of a
1118: 121: 3229:
The Feynman Lectures on Physics Vol. II Ch. 34: The Magnetism of Matter
2058:
In atoms, Langevin susceptibility is of the same order of magnitude as
1098: 1058: 956: 896: 800: 441: 426: 389: 380: 375: 1154: 2071: 1626:{\displaystyle \mu =-{\frac {Ze^{2}B}{4m}}\langle \rho ^{2}\rangle .} 1501:{\displaystyle \scriptstyle \pi \left\langle \rho ^{2}\right\rangle } 1128: 1088: 880: 394: 370: 101: 2985: 1225: 1153: 1138: 846: 399: 96: 29: 1538:{\displaystyle \scriptstyle \left\langle \rho ^{2}\right\rangle } 1231: 1108: 1068: 1008: 892: 876: 3237: 2703:"Neodymium supermagnets: Some demonstrations—Diamagnetic water" 1170:
expels the magnetic field and then acts as a perfect diamagnet.
760:
materials are attracted by a magnetic field. Diamagnetism is a
106: 1792:{\displaystyle \scriptstyle \left\langle r^{2}\right\rangle } 3233: 921:
less than or equal to 0, since susceptibility is defined as
2302:{\displaystyle -\mu _{0}\mu _{\rm {B}}^{2}g(E_{\rm {F}})/3} 2090:. Landau diamagnetism, however, should be contrasted with 2680:(2nd ed.). Amsterdam: Academic Press. p. 23. 3026:(2005). "Chapter 14: Diamagnetism and Paramagnetism". 2315: 1806: 1769: 1653: 1515: 1475: 2496:"Diamagnetic Levitation – Historical Milestones" 2399: 2346: 2239: 2206: 2107: 1948: 1921: 1805: 1768: 1652: 1564: 1514: 1474: 1399: 2515:"John Tyndall and the Early History of Diamagnetism" 744:
is the property of materials that are repelled by a
3311: 3271: 1935:is the number of atoms per unit volume, the volume 2414: 2381: 2332: 2301: 2221: 2189: 2047: 1927: 1907: 1791: 1754: 1625: 1537: 1500: 1447: 3099:Drakos, Nikos; Moore, Ross; Young, Peter (2002). 1222:Magnetic levitation § Diamagnetic levitation 2449:, also first described theoretically by Landau. 2070:The Langevin theory is not the full picture for 2892:"Magnetic gravity trick grows perfect crystals" 2340:times Pauli paramagnetic susceptibility, where 811:, Faraday first referred to the phenomenon as 3249: 2921:. ForceField. 2 December 2008. Archived from 2500:Rev. Roum. Sci. Techn. Électrotechn. Et Énerg 1448:{\displaystyle I=-{\frac {Ze^{2}B}{4\pi m}}.} 722: 8: 2039: 2026: 1617: 1604: 1468:axis. The average loop area can be given as 1370:. The number of revolutions per unit time is 955:. The most strongly diamagnetic material is 2752:: CS1 maint: numeric names: authors list ( 3256: 3242: 3234: 2990:Journal de Physique Théorique et Appliquée 1875: 1871: 1852: 1848: 1829: 1825: 1722: 1718: 1699: 1695: 1676: 1672: 1020: 803:was repelled by magnetic fields. In 1845, 773:of diamagnetic materials is less than the 729: 715: 54: 43: 3173: 2942: 2940: 2538: 2398: 2382:{\displaystyle \mu _{\rm {B}}=e\hbar /2m} 2368: 2352: 2351: 2345: 2322: 2314: 2291: 2281: 2280: 2264: 2258: 2257: 2247: 2238: 2212: 2211: 2205: 2175: 2174: 2162: 2147: 2133: 2127: 2121: 2106: 2033: 2003: 1993: 1986: 1962: 1955: 1947: 1920: 1894: 1876: 1861: 1838: 1815: 1804: 1778: 1767: 1741: 1723: 1708: 1685: 1662: 1651: 1611: 1584: 1574: 1563: 1524: 1513: 1487: 1473: 1419: 1409: 1398: 883:, particularly the heavy ones with many 2486: 2365: 2156: 1644:independent and identically distributed 1555:axis. The magnetic moment is therefore 795:Diamagnetism was first discovered when 748:; an applied magnetic field creates an 46: 27:Magnetic property of ordinary materials 3401:Electric and magnetic fields in matter 2745: 3032:(8 ed.). John Wiley & Sons. 2864:Choi, Charles Q. (9 September 2009). 2566:. Oxford University Press. June 2017. 2060:Van Vleck paramagnetic susceptibility 1244:Nijmegen High Field Magnet Laboratory 7: 2441:, the description is altered due to 851:Diamagnetic material interaction in 3029:Introduction to Solid State Physics 2953:Introduction to Solid State Physics 1545:is the mean square distance of the 2353: 2282: 2259: 2213: 2176: 1380:, so the current for an atom with 25: 2919:"Fun with diamagnetic levitation" 1013:X-ray magnetic circular dichroism 3216: 3064:"Diamagnetism and paramagnetism" 3002:10.1051/jphystap:019050040067800 2890:Kleiner, Kurt (10 August 2007). 2513:Jackson, Roland (21 July 2014). 1238:in a magnetic field of about 16 1208:If a powerful magnet (such as a 1166:(right). At the transition, the 696: 695: 682: 3080:from the original on 4 May 2006 2649:"Magnetic Properties of Solids" 2986:"Sur la théorie du magnétisme" 2626:10.1103/PhysRevLett.108.047201 2409: 2403: 2288: 2273: 1022:Notable diamagnetic materials 1: 3105:Electrons in a magnetic field 980:may have a susceptibility of 3344:ferromagnetic superconductor 3192:10.1016/0370-1573(96)00010-5 3147:10.1016/0921-4526(93)90161-x 2531:10.1080/00033790.2014.929743 827:), then later changed it to 3127:Physica B: Condensed Matter 2806:Radboud University Nijmegen 2776:Radboud University Nijmegen 2562:"diamagnetic, adj. and n". 2222:{\displaystyle E_{\rm {F}}} 1271:Radboud University Nijmegen 3427: 2830:Advances in Space Research 1937:diamagnetic susceptibility 1330:). A field with intensity 1280:In September 2009, NASA's 1219: 267:Spin gapless semiconductor 2851:10.1016/j.asr.2009.08.033 2447:De Haas–Van Alphen effect 1305:Pauli exclusion principle 1282:Jet Propulsion Laboratory 1158:Transition from ordinary 207:Electronic band structure 2768:"Diamagnetic Levitation" 2494:Küstler, Gerald (2007). 2233:. This is equivalent to 1312:Bohr–Van Leeuwen theorem 117:Bose–Einstein condensate 48:Condensed matter physics 3301:Van Vleck paramagnetism 2866:"Mice levitated in lab" 2606:Physical Review Letters 2098:, which in SI units is 919:magnetic susceptibility 2729:"Diamagnetism Gallery" 2474:Diamagnetic inequality 2416: 2383: 2334: 2303: 2223: 2191: 2049: 1929: 1909: 1793: 1756: 1627: 1539: 1502: 1449: 1286:superconducting magnet 1247: 1204:Curving water surfaces 1171: 856: 799:observed in 1778 that 775:permeability of vacuum 750:induced magnetic field 41: 3101:"Landau diamagnetism" 2958:John Wiley & Sons 2802:High Field Laboratory 2798:"The Real Levitation" 2772:High Field Laboratory 2701:Beatty, Bill (2005). 2674:Poole, Charles P. Jr. 2578:"Magnetic Properties" 2417: 2384: 2335: 2304: 2224: 2192: 2050: 1930: 1910: 1794: 1757: 1628: 1549:perpendicular to the 1540: 1503: 1450: 1319:Langevin diamagnetism 1229: 1157: 850: 771:magnetic permeability 769:in the material. The 262:Topological insulator 33: 3225:at Wikimedia Commons 2960:. pp. 299–302. 2582:Chemistry LibreTexts 2431:doped semiconductors 2415:{\displaystyle g(E)} 2397: 2344: 2313: 2237: 2204: 2105: 1946: 1919: 1803: 1766: 1650: 1562: 1512: 1472: 1397: 280:Electronic phenomena 127:Fermionic condensate 3406:Magnetic levitation 3371:amorphous magnetism 3339:superferromagnetism 3184:1996PhR...276....1R 3139:1993PhyB..189..204L 2925:on 12 February 2008 2843:2010AdSpR..45..208L 2618:2012PhRvL.108d7201S 2443:quantum confinement 2269: 2096:Landau quantization 2092:Pauli paramagnetism 2080:Landau diamagnetism 1023: 287:Quantum Hall effect 3324:antiferromagnetism 3296:superparamagnetism 3071:NTNU lecture notes 2459:Antiferromagnetism 2412: 2379: 2330: 2299: 2253: 2219: 2187: 2045: 1925: 1905: 1904: 1789: 1788: 1752: 1751: 1623: 1535: 1534: 1498: 1497: 1445: 1260:pyrolytic graphite 1252:Earnshaw's theorem 1248: 1179:perfect diamagnets 1177:may be considered 1172: 1021: 901:Pascal's constants 857: 762:quantum mechanical 689:Physics portal 42: 3386: 3385: 3284:superdiamagnetism 3272:Magnetic response 3221:Media related to 2967:978-0-471-87474-4 2678:Superconductivity 2519:Annals of Science 2502:. 52, 3: 265–282. 2424:density of states 2333:{\textstyle -1/3} 2182: 2160: 2076:free electron gas 2024: 1978: 1928:{\displaystyle n} 1884: 1731: 1602: 1440: 1386:electrons is (in 1354:Larmor precession 1164:superconductivity 1147: 1146: 1119:Carbon (graphite) 739: 738: 432:Granular material 200:Electronic phases 39:neodymium magnets 16:(Redirected from 3418: 3258: 3251: 3244: 3235: 3220: 3204: 3203: 3177: 3175:cond-mat/9609201 3157: 3151: 3150: 3133:(1–4): 204–209. 3122: 3116: 3115: 3113: 3111: 3096: 3090: 3089: 3087: 3085: 3079: 3068: 3059: 3053: 3050: 3044: 3043: 3020: 3014: 3013: 2978: 2972: 2971: 2956:(6th ed.). 2944: 2935: 2934: 2932: 2930: 2915: 2909: 2908: 2906: 2904: 2887: 2881: 2880: 2878: 2876: 2861: 2855: 2854: 2824: 2818: 2817: 2815: 2813: 2794: 2788: 2787: 2785: 2783: 2764: 2758: 2757: 2751: 2743: 2741: 2739: 2727:Quit007 (2011). 2724: 2718: 2717: 2715: 2713: 2707:Science Hobbyist 2698: 2692: 2691: 2670: 2664: 2663: 2661: 2659: 2644: 2638: 2637: 2600: 2594: 2593: 2591: 2589: 2584:. 2 October 2013 2574: 2568: 2567: 2559: 2553: 2552: 2542: 2510: 2504: 2503: 2491: 2464:Magnetochemistry 2421: 2419: 2418: 2413: 2388: 2386: 2385: 2380: 2372: 2358: 2357: 2356: 2339: 2337: 2336: 2331: 2326: 2308: 2306: 2305: 2300: 2295: 2287: 2286: 2285: 2268: 2263: 2262: 2252: 2251: 2228: 2226: 2225: 2220: 2218: 2217: 2216: 2196: 2194: 2193: 2188: 2183: 2181: 2180: 2179: 2163: 2161: 2159: 2152: 2151: 2138: 2137: 2128: 2126: 2125: 2054: 2052: 2051: 2046: 2038: 2037: 2025: 2023: 2015: 2008: 2007: 1998: 1997: 1987: 1979: 1974: 1967: 1966: 1956: 1934: 1932: 1931: 1926: 1914: 1912: 1911: 1906: 1903: 1899: 1898: 1885: 1877: 1870: 1866: 1865: 1847: 1843: 1842: 1824: 1820: 1819: 1798: 1796: 1795: 1790: 1787: 1783: 1782: 1761: 1759: 1758: 1753: 1750: 1746: 1745: 1732: 1724: 1717: 1713: 1712: 1694: 1690: 1689: 1671: 1667: 1666: 1642:coordinates are 1641: 1632: 1630: 1629: 1624: 1616: 1615: 1603: 1601: 1593: 1589: 1588: 1575: 1554: 1544: 1542: 1541: 1536: 1533: 1529: 1528: 1507: 1505: 1504: 1499: 1496: 1492: 1491: 1467: 1454: 1452: 1451: 1446: 1441: 1439: 1428: 1424: 1423: 1410: 1385: 1379: 1378: 1369: 1352:, gives rise to 1351: 1345: 1336:, applied to an 1335: 1258:A thin slice of 1190: 1099:Carbon (diamond) 1049:Pyrolytic carbon 1024: 996: 995: 993: 978:pyrolytic carbon 975: 974: 972: 954: 953: 951: 937: 913: 767:magnetic dipoles 731: 724: 717: 704: 699: 698: 691: 687: 686: 292:Spin Hall effect 182:Phase transition 152:Luttinger liquid 89:States of matter 72:Phase transition 58: 44: 35:Pyrolytic carbon 21: 3426: 3425: 3421: 3420: 3419: 3417: 3416: 3415: 3391: 3390: 3387: 3382: 3312:Magnetic states 3307: 3267: 3262: 3213: 3208: 3207: 3162:Physics Reports 3159: 3158: 3154: 3124: 3123: 3119: 3109: 3107: 3098: 3097: 3093: 3083: 3081: 3077: 3066: 3061: 3060: 3056: 3051: 3047: 3040: 3024:Kittel, Charles 3022: 3021: 3017: 2980: 2979: 2975: 2968: 2948:Kittel, Charles 2946: 2945: 2938: 2928: 2926: 2917: 2916: 2912: 2902: 2900: 2889: 2888: 2884: 2874: 2872: 2863: 2862: 2858: 2826: 2825: 2821: 2811: 2809: 2796: 2795: 2791: 2781: 2779: 2766: 2765: 2761: 2744: 2737: 2735: 2726: 2725: 2721: 2711: 2709: 2700: 2699: 2695: 2688: 2672: 2671: 2667: 2657: 2655: 2646: 2645: 2641: 2602: 2601: 2597: 2587: 2585: 2576: 2575: 2571: 2561: 2560: 2556: 2512: 2511: 2507: 2493: 2492: 2488: 2483: 2455: 2395: 2394: 2347: 2342: 2341: 2311: 2310: 2276: 2243: 2235: 2234: 2207: 2202: 2201: 2170: 2143: 2139: 2129: 2117: 2103: 2102: 2068: 2029: 2016: 1999: 1989: 1988: 1958: 1957: 1944: 1943: 1939:in SI units is 1917: 1916: 1890: 1886: 1857: 1853: 1834: 1830: 1811: 1807: 1801: 1800: 1774: 1770: 1764: 1763: 1737: 1733: 1704: 1700: 1681: 1677: 1658: 1654: 1648: 1647: 1640: 1637: 1607: 1594: 1580: 1576: 1560: 1559: 1553: 1550: 1520: 1516: 1510: 1509: 1483: 1479: 1470: 1469: 1466: 1463: 1460:magnetic moment 1429: 1415: 1411: 1395: 1394: 1384: 1381: 1376: 1374: 1371: 1368: 1364: 1360: 1357: 1356:with frequency 1350: 1347: 1344: 1341: 1334: 1331: 1321: 1300: 1236:Bitter solenoid 1224: 1218: 1206: 1201: 1193:Meissner effect 1188: 1182: 1175:Superconductors 1152: 1150:Superconductors 1040:Superconductor 1035: 1018: 1003: 991: 989: 987: 981: 970: 968: 966: 960: 949: 947: 945: 939: 935: 928: 922: 907: 845: 809:William Whewell 805:Michael Faraday 790:Meissner effect 783: 735: 694: 681: 680: 673: 672: 671: 456: 448: 447: 446: 422:Amorphous solid 416: 406: 405: 404: 383: 365: 355: 354: 353: 342: 340:Antiferromagnet 333: 331:Superparamagnet 324: 311: 310:Magnetic phases 303: 302: 301: 281: 273: 272: 271: 201: 193: 192: 191: 177:Order parameter 171: 170:Phase phenomena 163: 162: 161: 91: 81: 28: 23: 22: 15: 12: 11: 5: 3424: 3422: 3414: 3413: 3408: 3403: 3393: 3392: 3384: 3383: 3381: 3380: 3379: 3378: 3373: 3363: 3361:mictomagnetism 3358: 3353: 3348: 3347: 3346: 3341: 3334:ferromagnetism 3331: 3329:ferrimagnetism 3326: 3321: 3319:altermagnetism 3315: 3313: 3309: 3308: 3306: 3305: 3304: 3303: 3298: 3288: 3287: 3286: 3275: 3273: 3269: 3268: 3263: 3261: 3260: 3253: 3246: 3238: 3232: 3231: 3226: 3212: 3211:External links 3209: 3206: 3205: 3152: 3117: 3091: 3054: 3045: 3039:978-0471415268 3038: 3015: 2996:(1): 678–693. 2982:Langevin, Paul 2973: 2966: 2936: 2910: 2882: 2856: 2837:(1): 208–213. 2819: 2789: 2759: 2719: 2693: 2686: 2665: 2647:Nave, Carl L. 2639: 2595: 2569: 2554: 2525:(4): 435–489. 2505: 2485: 2484: 2482: 2479: 2478: 2477: 2471: 2466: 2461: 2454: 2451: 2435:effective mass 2411: 2408: 2405: 2402: 2378: 2375: 2371: 2367: 2364: 2361: 2355: 2350: 2329: 2325: 2321: 2318: 2298: 2294: 2290: 2284: 2279: 2275: 2272: 2267: 2261: 2256: 2250: 2246: 2242: 2215: 2210: 2198: 2197: 2186: 2178: 2173: 2169: 2166: 2158: 2155: 2150: 2146: 2142: 2136: 2132: 2124: 2120: 2116: 2113: 2110: 2082:, named after 2067: 2064: 2056: 2055: 2044: 2041: 2036: 2032: 2028: 2022: 2019: 2014: 2011: 2006: 2002: 1996: 1992: 1985: 1982: 1977: 1973: 1970: 1965: 1961: 1954: 1951: 1924: 1902: 1897: 1893: 1889: 1883: 1880: 1874: 1869: 1864: 1860: 1856: 1851: 1846: 1841: 1837: 1833: 1828: 1823: 1818: 1814: 1810: 1786: 1781: 1777: 1773: 1749: 1744: 1740: 1736: 1730: 1727: 1721: 1716: 1711: 1707: 1703: 1698: 1693: 1688: 1684: 1680: 1675: 1670: 1665: 1661: 1657: 1638: 1634: 1633: 1622: 1619: 1614: 1610: 1606: 1600: 1597: 1592: 1587: 1583: 1579: 1573: 1570: 1567: 1551: 1532: 1527: 1523: 1519: 1495: 1490: 1486: 1482: 1478: 1464: 1456: 1455: 1444: 1438: 1435: 1432: 1427: 1422: 1418: 1414: 1408: 1405: 1402: 1382: 1372: 1366: 1362: 1358: 1348: 1342: 1332: 1320: 1317: 1299: 1296: 1220:Main article: 1217: 1214: 1205: 1202: 1200: 1199:Demonstrations 1197: 1186: 1168:superconductor 1151: 1148: 1145: 1144: 1141: 1135: 1134: 1131: 1125: 1124: 1121: 1115: 1114: 1111: 1105: 1104: 1101: 1095: 1094: 1091: 1085: 1084: 1081: 1075: 1074: 1071: 1065: 1064: 1061: 1055: 1054: 1051: 1045: 1044: 1041: 1037: 1036: 1033: 1028: 1001: 985: 964: 943: 933: 926: 885:core electrons 871:, and include 861:ferromagnetism 853:magnetic field 844: 841: 797:Anton Brugmans 786:superconductor 781: 746:magnetic field 737: 736: 734: 733: 726: 719: 711: 708: 707: 706: 705: 692: 675: 674: 670: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 458: 457: 454: 453: 450: 449: 445: 444: 439: 437:Liquid crystal 434: 429: 424: 418: 417: 412: 411: 408: 407: 403: 402: 397: 392: 387: 378: 373: 367: 366: 363:Quasiparticles 361: 360: 357: 356: 352: 351: 346: 337: 328: 322:Superdiamagnet 319: 313: 312: 309: 308: 305: 304: 300: 299: 294: 289: 283: 282: 279: 278: 275: 274: 270: 269: 264: 259: 254: 249: 247:Thermoelectric 244: 242:Superconductor 239: 234: 229: 224: 222:Mott insulator 219: 214: 209: 203: 202: 199: 198: 195: 194: 190: 189: 184: 179: 173: 172: 169: 168: 165: 164: 160: 159: 154: 149: 144: 139: 134: 129: 124: 119: 114: 109: 104: 99: 93: 92: 87: 86: 83: 82: 80: 79: 74: 69: 63: 60: 59: 51: 50: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3423: 3412: 3409: 3407: 3404: 3402: 3399: 3398: 3396: 3389: 3377: 3374: 3372: 3369: 3368: 3367: 3364: 3362: 3359: 3357: 3356:metamagnetism 3354: 3352: 3351:helimagnetism 3349: 3345: 3342: 3340: 3337: 3336: 3335: 3332: 3330: 3327: 3325: 3322: 3320: 3317: 3316: 3314: 3310: 3302: 3299: 3297: 3294: 3293: 3292: 3291:paramagnetism 3289: 3285: 3282: 3281: 3280: 3277: 3276: 3274: 3270: 3266: 3259: 3254: 3252: 3247: 3245: 3240: 3239: 3236: 3230: 3227: 3224: 3219: 3215: 3214: 3210: 3201: 3197: 3193: 3189: 3185: 3181: 3176: 3171: 3167: 3163: 3156: 3153: 3148: 3144: 3140: 3136: 3132: 3128: 3121: 3118: 3106: 3102: 3095: 3092: 3076: 3072: 3065: 3062:Chang, M. C. 3058: 3055: 3049: 3046: 3041: 3035: 3031: 3030: 3025: 3019: 3016: 3011: 3007: 3003: 2999: 2995: 2992:(in French). 2991: 2987: 2983: 2977: 2974: 2969: 2963: 2959: 2955: 2954: 2949: 2943: 2941: 2937: 2924: 2920: 2914: 2911: 2899: 2898: 2897:New Scientist 2893: 2886: 2883: 2871: 2867: 2860: 2857: 2852: 2848: 2844: 2840: 2836: 2832: 2831: 2823: 2820: 2807: 2803: 2799: 2793: 2790: 2777: 2773: 2769: 2763: 2760: 2755: 2749: 2734: 2730: 2723: 2720: 2708: 2704: 2697: 2694: 2689: 2687:9780080550480 2683: 2679: 2675: 2669: 2666: 2654: 2653:Hyper Physics 2650: 2643: 2640: 2635: 2631: 2627: 2623: 2619: 2615: 2612:(4): 047201. 2611: 2607: 2599: 2596: 2583: 2579: 2573: 2570: 2565: 2558: 2555: 2550: 2546: 2541: 2536: 2532: 2528: 2524: 2520: 2516: 2509: 2506: 2501: 2497: 2490: 2487: 2480: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2457: 2456: 2452: 2450: 2448: 2444: 2440: 2436: 2432: 2427: 2425: 2406: 2400: 2392: 2391:Bohr magneton 2376: 2373: 2369: 2362: 2359: 2348: 2327: 2323: 2319: 2316: 2296: 2292: 2277: 2270: 2265: 2254: 2248: 2244: 2240: 2232: 2208: 2184: 2171: 2167: 2164: 2153: 2148: 2144: 2140: 2134: 2130: 2122: 2118: 2114: 2111: 2108: 2101: 2100: 2099: 2097: 2093: 2089: 2088:Lorentz force 2085: 2081: 2077: 2073: 2065: 2063: 2061: 2042: 2034: 2030: 2020: 2017: 2012: 2009: 2004: 2000: 1994: 1990: 1983: 1980: 1975: 1971: 1968: 1963: 1959: 1952: 1949: 1942: 1941: 1940: 1938: 1922: 1900: 1895: 1891: 1887: 1881: 1878: 1872: 1867: 1862: 1858: 1854: 1849: 1844: 1839: 1835: 1831: 1826: 1821: 1816: 1812: 1808: 1784: 1779: 1775: 1771: 1747: 1742: 1738: 1734: 1728: 1725: 1719: 1714: 1709: 1705: 1701: 1696: 1691: 1686: 1682: 1678: 1673: 1668: 1663: 1659: 1655: 1645: 1620: 1612: 1608: 1598: 1595: 1590: 1585: 1581: 1577: 1571: 1568: 1565: 1558: 1557: 1556: 1548: 1530: 1525: 1521: 1517: 1493: 1488: 1484: 1480: 1476: 1461: 1442: 1436: 1433: 1430: 1425: 1420: 1416: 1412: 1406: 1403: 1400: 1393: 1392: 1391: 1389: 1355: 1339: 1329: 1325: 1324:Paul Langevin 1318: 1316: 1313: 1308: 1306: 1297: 1295: 1292: 1289: 1287: 1283: 1278: 1276: 1272: 1267: 1265: 1261: 1256: 1253: 1245: 1241: 1237: 1233: 1228: 1223: 1215: 1213: 1211: 1203: 1198: 1196: 1194: 1185: 1180: 1176: 1169: 1165: 1161: 1156: 1149: 1142: 1140: 1137: 1136: 1132: 1130: 1127: 1126: 1122: 1120: 1117: 1116: 1112: 1110: 1107: 1106: 1102: 1100: 1097: 1096: 1092: 1090: 1087: 1086: 1082: 1080: 1077: 1076: 1072: 1070: 1067: 1066: 1062: 1060: 1057: 1056: 1052: 1050: 1047: 1046: 1042: 1039: 1038: 1032: 1029: 1026: 1025: 1019: 1016: 1014: 1010: 1005: 1000: 984: 979: 963: 958: 942: 932: 925: 920: 915: 911: 906: 903:(named after 902: 898: 894: 890: 886: 882: 878: 874: 870: 866: 865:paramagnetism 862: 854: 849: 842: 840: 837: 836:rule of thumb 832: 830: 826: 822: 818: 814: 810: 806: 802: 798: 793: 791: 787: 780: 776: 772: 768: 763: 759: 758:ferromagnetic 755: 751: 747: 743: 732: 727: 725: 720: 718: 713: 712: 710: 709: 703: 693: 690: 685: 679: 678: 677: 676: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 462:Van der Waals 460: 459: 452: 451: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 419: 415: 410: 409: 401: 398: 396: 393: 391: 388: 386: 382: 379: 377: 374: 372: 369: 368: 364: 359: 358: 350: 347: 345: 341: 338: 336: 332: 329: 327: 323: 320: 318: 315: 314: 307: 306: 298: 295: 293: 290: 288: 285: 284: 277: 276: 268: 265: 263: 260: 258: 257:Ferroelectric 255: 253: 252:Piezoelectric 250: 248: 245: 243: 240: 238: 235: 233: 230: 228: 227:Semiconductor 225: 223: 220: 218: 215: 213: 210: 208: 205: 204: 197: 196: 188: 185: 183: 180: 178: 175: 174: 167: 166: 158: 155: 153: 150: 148: 147:Superfluidity 145: 143: 140: 138: 135: 133: 130: 128: 125: 123: 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 94: 90: 85: 84: 78: 75: 73: 70: 68: 65: 64: 62: 61: 57: 53: 52: 49: 45: 40: 36: 32: 19: 3388: 3279:diamagnetism 3278: 3223:Diamagnetism 3165: 3161: 3155: 3130: 3126: 3120: 3108:. Retrieved 3104: 3094: 3082:. Retrieved 3070: 3057: 3048: 3027: 3018: 2993: 2989: 2976: 2951: 2929:26 September 2927:. Retrieved 2923:the original 2913: 2903:26 September 2901:. Retrieved 2895: 2885: 2875:26 September 2873:. Retrieved 2870:Live Science 2869: 2859: 2834: 2828: 2822: 2812:26 September 2810:. Retrieved 2801: 2792: 2782:26 September 2780:. Retrieved 2771: 2762: 2738:26 September 2736:. Retrieved 2732: 2722: 2712:26 September 2710:. Retrieved 2706: 2696: 2677: 2668: 2656:. Retrieved 2652: 2642: 2609: 2605: 2598: 2586:. Retrieved 2581: 2572: 2563: 2557: 2522: 2518: 2508: 2499: 2489: 2469:Moses effect 2439:quantum dots 2428: 2231:Fermi energy 2199: 2079: 2069: 2057: 1635: 1457: 1340:with charge 1322: 1309: 1301: 1293: 1290: 1279: 1268: 1257: 1249: 1207: 1183: 1173: 1160:conductivity 1030: 1017: 1006: 998: 982: 961: 940: 930: 923: 916: 869:non-magnetic 868: 858: 833: 829:diamagnetism 828: 824: 820: 816: 815:(the prefix 812: 794: 778: 754:paramagnetic 742:Diamagnetism 741: 740: 592:von Klitzing 316: 297:Kondo effect 157:Time crystal 137:Fermi liquid 3168:(1): 1–83. 3110:27 November 3084:24 February 1328:dielectrics 1275:Netherlands 1210:supermagnet 976:, although 908: [ 905:Paul Pascal 813:diamagnetic 414:Soft matter 335:Ferromagnet 18:Diamagnetic 3395:Categories 3366:spin glass 2733:DeviantART 2658:9 November 2588:21 January 2564:OED Online 2481:References 2309:, exactly 2084:Lev Landau 2078:is called 1264:rare earth 1216:Levitation 1162:(left) to 887:, such as 667:Polchinski 557:Louis Néel 547:Schrieffer 455:Scientists 349:Spin glass 344:Metamagnet 326:Paramagnet 142:Supersolid 3411:Magnetism 3265:Magnetism 3200:119330207 3010:0368-3893 2366:ℏ 2349:μ 2317:− 2255:μ 2245:μ 2241:− 2157:ℏ 2145:π 2119:μ 2115:− 2109:χ 2066:In metals 2040:⟩ 2027:⟨ 1991:μ 1984:− 1972:μ 1960:μ 1950:χ 1813:ρ 1618:⟩ 1609:ρ 1605:⟨ 1572:− 1566:μ 1547:electrons 1522:ρ 1485:ρ 1477:π 1434:π 1407:− 1346:and mass 843:Materials 834:A simple 657:Wetterich 637:Abrikosov 552:Josephson 522:Van Vleck 512:Luttinger 385:Polariton 317:Diamagnet 237:Conductor 232:Semimetal 217:Insulator 132:Fermi gas 3376:spin ice 3075:Archived 2984:(1905). 2950:(1986). 2748:cite web 2676:(2007). 2634:22400883 2549:26221835 2453:See also 1901:⟩ 1888:⟨ 1868:⟩ 1855:⟨ 1845:⟩ 1832:⟨ 1822:⟩ 1809:⟨ 1785:⟩ 1772:⟨ 1762:, where 1748:⟩ 1735:⟨ 1715:⟩ 1702:⟨ 1692:⟩ 1679:⟨ 1669:⟩ 1656:⟨ 1531:⟩ 1518:⟨ 1508:, where 1494:⟩ 1481:⟨ 1388:SI units 1338:electron 1027:Material 819:meaning 702:Category 642:Ginzburg 617:Laughlin 577:Kadanoff 532:Shockley 517:Anderson 472:von Laue 122:Bose gas 3180:Bibcode 3135:Bibcode 2839:Bibcode 2614:Bibcode 2540:4524391 2422:is the 2389:is the 2229:is the 1646:. Then 1242:at the 1230:A live 1079:Mercury 1059:Bismuth 957:bismuth 897:bismuth 889:mercury 821:through 801:bismuth 647:Leggett 622:Störmer 607:Bednorz 567:Giaever 537:Bardeen 527:Hubbard 502:Peierls 492:Onsager 442:Polymer 427:Colloid 390:Polaron 381:Plasmon 376:Exciton 3198:  3036:  3008:  2964:  2808:. 2011 2778:. 2011 2684:  2632:  2547:  2537:  2200:where 2072:metals 1298:Theory 1273:, the 1240:teslas 1143:−0.91 1129:Copper 1089:Silver 1073:−6.74 1063:−16.6 1053:−40.9 881:copper 825:across 700:  662:Perdew 652:Parisi 612:Müller 602:Rohrer 597:Binnig 587:Wilson 582:Fisher 542:Cooper 507:Landau 395:Magnon 371:Phonon 212:Plasma 112:Plasma 102:Liquid 67:Phases 3196:S2CID 3170:arXiv 3078:(PDF) 3067:(PDF) 1915:. If 1639:x,y,z 1139:Water 1133:−1.0 1123:−1.6 1113:−1.8 1103:−2.1 1093:−2.6 1083:−2.9 990:−4.00 969:−1.66 948:−9.05 912:] 873:water 562:Esaki 487:Bloch 482:Debye 477:Bragg 467:Onnes 400:Roton 97:Solid 3112:2012 3086:2011 3034:ISBN 3006:ISSN 2962:ISBN 2931:2011 2905:2011 2877:2011 2814:2011 2784:2020 2754:link 2740:2011 2714:2011 2682:ISBN 2660:2008 2630:PMID 2590:2020 2545:PMID 2393:and 1458:The 1310:The 1269:The 1232:frog 1189:= −1 1109:Lead 1069:Neon 1043:−10 1009:gold 895:and 893:gold 877:wood 817:dia- 756:and 632:Tsui 627:Yang 572:Kohn 497:Mott 3188:doi 3166:276 3143:doi 3131:189 2998:doi 2847:doi 2622:doi 2610:108 2535:PMC 2527:doi 2429:In 1375:/ 2 1365:/ 2 936:− 1 914:). 863:or 823:or 792:). 187:QCP 107:Gas 77:QCP 3397:: 3194:. 3186:. 3178:. 3164:. 3141:. 3129:. 3103:. 3073:. 3069:. 3004:. 2988:. 2939:^ 2894:. 2868:. 2845:. 2835:45 2833:. 2804:. 2800:. 2774:. 2770:. 2750:}} 2746:{{ 2731:. 2705:. 2651:. 2628:. 2620:. 2608:. 2580:. 2543:. 2533:. 2523:72 2521:. 2517:. 2498:. 2141:12 2062:. 1390:) 1363:eB 1361:= 1246:. 1195:. 994:10 988:= 973:10 967:= 959:, 952:10 946:= 929:= 910:fr 891:, 875:, 831:. 777:, 3257:e 3250:t 3243:v 3202:. 3190:: 3182:: 3172:: 3149:. 3145:: 3137:: 3114:. 3088:. 3042:. 3012:. 3000:: 2994:4 2970:. 2933:. 2907:. 2879:. 2853:. 2849:: 2841:: 2816:. 2786:. 2756:) 2742:. 2716:. 2690:. 2662:. 2636:. 2624:: 2616:: 2592:. 2551:. 2529:: 2410:) 2407:E 2404:( 2401:g 2377:m 2374:2 2370:/ 2363:e 2360:= 2354:B 2328:3 2324:/ 2320:1 2297:3 2293:/ 2289:) 2283:F 2278:E 2274:( 2271:g 2266:2 2260:B 2249:0 2214:F 2209:E 2185:, 2177:F 2172:E 2168:m 2165:2 2154:m 2149:2 2135:2 2131:e 2123:0 2112:= 2043:. 2035:2 2031:r 2021:m 2018:6 2013:n 2010:Z 2005:2 2001:e 1995:0 1981:= 1976:B 1969:n 1964:0 1953:= 1923:n 1896:2 1892:r 1882:3 1879:2 1873:= 1863:2 1859:y 1850:+ 1840:2 1836:x 1827:= 1817:2 1780:2 1776:r 1743:2 1739:r 1729:3 1726:1 1720:= 1710:2 1706:z 1697:= 1687:2 1683:y 1674:= 1664:2 1660:x 1621:. 1613:2 1599:m 1596:4 1591:B 1586:2 1582:e 1578:Z 1569:= 1552:z 1526:2 1489:2 1465:z 1443:. 1437:m 1431:4 1426:B 1421:2 1417:e 1413:Z 1404:= 1401:I 1383:Z 1377:π 1373:ω 1367:m 1359:ω 1349:m 1343:e 1333:B 1187:v 1184:χ 1181:( 1034:v 1031:χ 1002:v 999:χ 992:× 986:v 983:χ 971:× 965:v 962:χ 950:× 944:v 941:χ 934:v 931:μ 927:v 924:χ 782:0 779:μ 730:e 723:t 716:v 20:)

Index

Diamagnetic

Pyrolytic carbon
neodymium magnets
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.