Knowledge (XXG)

Electrode

Source 📝

1686:, Si tubes as well as Si sheets. As a result, composite hierarchical Si anodes have become the major technology for future applications in lithium-ion batteries. In the early 2020s, technology is reaching commercial levels with factories being built for mass production of anodes in the United States. Furthermore, metallic lithium is another possible candidate for the anode. It boasts a higher specific capacity than silicon, however, does come with the drawback of working with the highly unstable metallic lithium. Similarly to graphite anodes, dendrite formation is another major limitation of metallic lithium, with the solid electrolyte interphase being a major design challenge. In the end, if stabilized, metallic lithium would be able to produce batteries that hold the most charge, while being the lightest. 1695:
environment. During standard operation, the incorporation of ions into electrodes leads to a change in volume. This is well exemplified by Si electrodes in lithium-ion batteries expanding around 300% during lithiation. Such change may lead to the deformations in the lattice and, therefore stresses in the material. The origin of stresses may be due to geometric constraints in the electrode or inhomogeneous plating of the ion. This phenomenon is very concerning as it may lead to electrode fracture and performance loss. Thus, mechanical properties are crucial to enable the development of new electrodes for long lasting batteries. A possible strategy for measuring the mechanical behavior of electrodes during operation is by using
38: 397: 462: 100: 1636:. Manganese has similar advantages and a lower cost, however there are some problems associated with using manganese. The main problem is that manganese tends to dissolve into the electrolyte over time. For this reason, cobalt is still the most common element which is used in the lithium compounds. There is much research being done into finding new materials which can be used to create cheaper and longer lasting Li-ion batteries 1577: 3638: 405: 2388: 1607:
in 1913. In the following century these electrodes were used to create and study the first Li-ion batteries. Li-ion batteries are very popular due to their great performance. Applications include mobile phones and electric cars. Due to their popularity, much research is being done to reduce the cost
1556:
These properties can be influenced in the production of the electrodes in a number of manners. The most important step in the manufacturing of the electrodes is creating the electrode slurry. As can be seen above, the important properties of the electrode all have to do with the even distribution of
1702:
More than just affecting the electrode's morphology, stresses are also able to impact electrochemical reactions. While the chemical driving forces are usually higher in magnitude than the mechanical energies, this is not true for Li-ion batteries. A study by Dr. Larché established a direct relation
1668:
has the second largest market share of anodes, due to its stability and good rate capability, but with challenges such as low capacity. During the early 2000s, silicon anode research began picking up pace, becoming one of the decade's most promising candidates for future lithium-ion battery anodes.
469:
The potential energy of the system is a function of the translational, rotational, and vibrational coordinates of the reacting species and the molecules of the surrounding medium, collectively called the reaction coordinates. The abscissa the figure to the right represents these. From the classical
208:
The cathode is in many ways the opposite of the anode. The name (also coined by Whewell) comes from the Greek words ÎșÎŹÏ„Ï‰ (kato), 'downwards' and ᜁΎός (hodĂłs), 'a way'. It is the positive electrode, meaning the electrons flow from the electrical circuit through the cathode into the non-metallic part
904:
of the system. It is possible to look at the overlap in the wavefunctions of both the reactants and the products (the right and the left side of the chemical reaction) and therefore when their energies are the same and allow for electron transfer. As touched on before this must happen because only
452:
and explains the rate at which an electron can move from one chemical species to another, for this article this can be seen as 'jumping' from the electrode to a species in the solvent or vice versa. We can represent the problem as calculating the transfer rate for the transfer of an electron from
1681:
as well as a high volumetric one. Furthermore, Silicon has the advantage of operating under a reasonable open circuit voltage without parasitic lithium reactions. However, silicon anodes have a major issue of volumetric expansion during lithiation of around 360%. This expansion may pulverize the
1310:
The physical properties of electrodes are mainly determined by the material of the electrode and the topology of the electrode. The properties required depend on the application and therefore there are many kinds of electrodes in circulation. The defining property for a material to be used as an
1551:
The density of the active material. A balance should be found between the amount of active material, the conductive agent and the binder. Since the active material is the important factor in the electrode, the slurry should be designed such that the density of the active material is as high as
1694:
A common failure mechanism of batteries is mechanical shock, which breaks either the electrode or the system's container, leading to poor conductivity and electrolyte leakage. However, the relevance of mechanical properties of electrodes goes beyond the resistance to collisions due to its
1824:
corresponds to the mean stress felt by the system. The result of this equation is that diffusion, which is dependent on chemical potential, gets impacted by the added stress and, therefore changes the battery's performance. Furthermore, mechanical stresses may also impact the electrode's
478:). One important thing to note, and was noted by Marcus when he came up with the theory, the electron transfer must abide by the law of conservation of energy and the Frank-Condon principle. Doing this and then rearranging this leads to the expression of the free energy activation ( 1656:). Graphite anodes have been successfully implemented in many modern commercially available batteries due to its cheap price, longevity and high energy density. However, it presents issues of dendrite growth, with risks of shorting the battery and posing a safety issue. Li 195:
surmised that the electrical flow moved from positive to negative. The electrons flow away from the anode and the conventional current towards it. From both can be concluded that the charge of the anode is negative. The electron entering the anode comes from the
1849:) the anode is the positive (+) electrode and the cathode the negative (−). The electrons enter the device through the cathode and exit the device through the anode. Many devices have other electrodes to control operation, e.g., base, gate, control grid. 1047: 1608:
and increase the safety of Li-ion batteries. An integral part of the Li-ion batteries are their anodes and cathodes, therefore much research is being done into increasing the efficiency, safety and reducing the costs of these electrodes specifically.
1703:
between the applied stress and the chemical potential of the electrode. Though it neglects multiple variables such as the variation of elastic constraints, it subtracts from the total chemical potential the elastic energy induced by the stress.
1892:. For a direct current system, the weld rod or stick may be a cathode for a filling type weld or an anode for other welding processes. For an alternating current arc welder, the welding electrode would not be considered an anode or cathode. 1825:
solid-electrolyte-interphase layer. The interface which regulates the ion and charge transfer and can be degraded by stress. Thus, more ions in the solution will be consumed to reform it, diminishing the overall efficiency of the system.
1537:
For a given selection of constituents of the electrode, the final efficiency is determined by the internal structure of the electrode. The important factors in the internal structure in determining the performance of the electrode are:
1332:
which improve the conductivity of the electrode and binders which are used to contain the active particles within the electrode. The efficiency of electrochemical cells is judged by a number of properties, important quantities are the
1278: 2476:
Konda, Kumari; Moodakare, Sahana B.; Kumar, P. Logesh; Battabyal, Manjusha; Seth, Jyoti R.; Juvekar, Vinay A.; Gopalan, Raghavan (2020). "Comprehensive effort on electrode slurry preparation for better electrochemical performance of
1557:
the components of the electrode. Therefore, it is very important that the electrode slurry be as homogeneous as possible. Multiple procedures have been developed to improve this mixing stage and current research is still being done.
222: 2610: 1784: 618: 1361:. Of course, for technological applications, the cost of the material is also an important factor. The values of these properties at room temperature (T = 293 K) for some commonly used materials are listed in the table below. 379:
The ZnO is prone to clumping and will give less efficient discharge if recharged again. It is possible to recharge these batteries but is due to safety concerns advised against by the manufacturer. Other primary cells include
1327:
can therefore be used as an electrode. Often electrodes consist of a combination of materials, each with a specific task. Typical constituents are the active materials which serve as the particles which oxidate or reduct,
719: 233:
is a battery designed to be used once and then discarded. This is due to the electrochemical reactions taking place at the electrodes in the cell not being reversible. An example of a primary cell is the discardable
1904:, the electrodes are the connections from the circuitry to the object to be acted upon by the electric current but are not designated anode or cathode because the direction of flow of the electrons changes 1699:. The method is able to analyze how the stresses evolve during the electrochemical reactions, being a valuable tool in evaluating possible pathways for coupling mechanical behavior and electrochemistry. 1525:
The electrode slurry above is coated onto a conductor which acts as the current collector in the electrochemical cell. Typical current collectors are copper for the cathode and aluminum for the anode.
910: 225:
Various disposable batteries: two 9-volt, two "AAA", two "AA", and one each of "C", "D", a cordless phone battery, a camcorder battery, a 2-meter handheld ham radio battery, and a button battery.
1628:. The best choice of compound usually depends on the application of the battery. Advantages for cobalt-based compounds over manganese-based compounds are their high specific heat capacity, high 1506:
The various constituents of the electrode are mixed into a solvent. This mixture is designed such that it improves the performance of the electrodes. Common components of this mixture are:
905:
then conservation of energy is abided by. Skipping over a few mathematical steps the probability of electron transfer can be calculated (albeit quite difficult) using the following formula
1542:
Clustering of the active material and the conductive agent. In order for all the components of the slurry to perform their task, they should all be spread out evenly within the electrode.
860: 1620:
lithium compound (a layered material consisting of layers of molecules composed of lithium and other elements). A common element which makes up part of the molecules in the compound is
1632:, low self-discharge rate, high discharge voltage and high cycle durability. There are however also drawbacks in using cobalt-based compounds such as their high cost and their low 1139: 1134: 506: 823:
With A being the pre-exponential factor which is usually experimentally determined, although a semi classical derivation provides more information as will be explained below.
135:-soaked paper disks. Due to fluctuation in the voltage provided by the voltaic cell, it was not very practical. The first practical battery was invented in 1839 and named the 819: 374: 286: 4098: 543: 536: 209:
of the electrochemical cell. At the cathode, the reduction reaction takes place with the electrons arriving from the wire connected to the cathode and are absorbed by the
2981: 1880:, an electrode is used to conduct current through a workpiece to fuse two pieces together. Depending upon the process, the electrode is either consumable, in the case of 862:. For a more extensive mathematical treatment one could read the paper by Newton. An interpretation of this result and what a closer look at the physical meaning of the 880: 640: 329: 1951:
Electrodes are used to provide current through nonmetal objects to alter them in numerous ways and to measure conductivity for numerous purposes. Examples include:
1490:
The surface topology of the electrode plays an important role in determining the efficiency of an electrode. The efficiency of the electrode can be reduced due to
1098: 4060: 1300: 1069: 650: 2884:
Li, Xiaolin; Gu, Meng; Hu, Shenyang; Kennard, Rhiannon; Yan, Pengfei; Chen, Xilin; Wang, Chongmin; Sailor, Michael J.; Zhang, Ji-Guang; Liu, Jun (2014-07-08).
1682:
anode, resulting in poor performance. To fix this problem, scientists looked into varying the dimensionality of the Si. Many studies have been developed in
1708: 474:(probability of reaction) can be calculated, if a non-adiabatic process and parabolic potential energy are assumed, by finding the point of intersection (Q 889:
is allowed. This is needed in order to explain why even at near-zero Kelvin there still are electron transfers, in contradiction to the classical theory.
3284:"Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge: Large Plastic Deformation in Lithium-Ion Batteries" 3567: 1345:. The physical properties of the electrodes play an important role in determining these quantities. Important properties of the electrodes are: the 1346: 4091: 3489: 1548:
The adherence of the electrode to the current collectors. The adherence makes sure that the electrode does not dissolve into the electrolyte.
1282:
The main difference is now the pre-exponential factor has now been described by more physical parameters instead of the experimental factor
3451: 1545:
An even distribution of the conductive agent over the active material. This makes sure that the conductivity of the electrode is optimal.
1302:. One is once again revered to the sources as listed below for a more in-depth and rigorous mathematical derivation and interpretation. 3838: 3725: 1644:
The anodes used in mass-produced Li-ion batteries are either carbon based (usually graphite) or made out of spinel lithium titanate (Li
2149: 4084: 4053: 2119: 3878: 3888: 2312:
Newton, Marshall D. (1991). "Quantum chemical probes of electron-transfer kinetics: The nature of donor-acceptor interactions".
3507:
Doeff, MM; Chen, G; Cabana, J; Richardson, TJ; Mehta, A; Shirpour, M; Duncan, H; Kim, C; Kam, KC; Conry, T (11 November 2013).
826:
This classically derived result qualitatively reproduced observations of a maximum electron transfer rate under the conditions
3235:"Operando Nanoindentation: A New Platform to Measure the Mechanical Properties of Electrodes during Electrochemical Reactions" 37: 3816: 461: 3898: 3009: 1920: 3509:"Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques" 1494:. To create an efficient electrode it is therefore important to design it such that it minimizes the contact resistance. 4236: 4046: 3560: 1136:, and making some substitution an expression is obtained very similar to the classically derived formula, as expected. 3863: 885:
the situation at hand can be more accurately described by using the displaced harmonic oscillator model, in this model
4181: 3730: 2049: 1071:
being the electronic coupling constant describing the interaction between the two states (reactants and products) and
3903: 3873: 3858: 3826: 1580:
A typical flow battery consists of two tanks of liquids which are pumped past a membrane held between two electrodes.
728: 429: 4158: 1885: 42: 3918: 3665: 829: 385: 4173: 1974: 1617: 3933: 433: 4148: 3831: 1889: 1629: 1584:
Furthermore, a Li-ion battery is an example of a secondary cell since it is rechargeable. It can both act as a
238:
commonly used in flashlights. Consisting of a zinc anode and a manganese oxide cathode in which ZnO is formed.
3938: 3883: 3868: 3801: 3760: 3735: 3715: 3695: 2886:"Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes" 1943:, and transportive properties. These electrodes are used for advanced purposes in research and investigation. 1042:{\displaystyle w_{ET}={\frac {|J|^{2}}{\hbar ^{2}}}\int _{-\infty }^{+\infty }dt\,e^{-i\Delta Et/\hbar -g(t)}} 381: 2377:
DeVault, D. (1984) Quantum Mechanical Tunneling in Biological Systems; Cambridge University Press: Cambridge.
2221: 4375: 4123: 3821: 3553: 2174:
Ross, S. (30 November 1961). "Faraday consults the scholars: the origins of the terms of electrochemistry".
2074: 4231: 4138: 4027: 3928: 1962: 1528:
After the slurry has been applied to the conductor it is dried and then pressed to the required thickness.
1350: 893: 471: 425: 420:. This type of battery is still the most widely used in among others automobiles. The cathode consists of 31: 3789: 1107: 481: 413: 4216: 4211: 4186: 4163: 4143: 3893: 3710: 2674:
Zhao, Qiang; Hao, Xiaoge; Su, Shiming; Ma, Jiabin; Hu, Yi; Liu, Yong; Kang, Feiyu; He, Yan-Bing (2019).
1881: 901: 396: 140: 3755: 3283: 1342: 1338: 2846: 2807: 2768: 2628: 2426:"Electrode manufacturing for lithium-ion batteries—Analysis of current and next generation processing" 99: 4406: 4282: 4226: 3771: 3740: 3576: 3326: 3155: 2537: 2490: 2352: 2033: 2016: 180: 176: 53: 2208:
Conventional Current Flow and Electron Flow. (2021, September 12). Mohawk Valley Community College.
360: 272: 4401: 4191: 3923: 3908: 3843: 3811: 3806: 3622: 2239: 2099: 2079: 2069: 2010: 1905: 1901: 1853: 1566: 1354: 1101: 897: 175:
words áŒ„ÎœÎż (ano), 'upwards' and ᜁΎός (hodĂłs), 'a way'. The anode is the electrode through which the
147:
have been developed using various materials. The basis of all these is still using two electrodes,
3144:"In situ measurement of mechanical property and stress evolution in a composite silicon electrode" 511: 4308: 4246: 4221: 4196: 4153: 4128: 3913: 3784: 3637: 3595: 3495: 3350: 3264: 3124: 2703: 2656: 2506: 2455: 2340: 2191: 1805: 1604: 1491: 643: 88: 57: 3448: 2676:"Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries" 1856:, is used only to make a connection to the electrolyte so that a current can be applied to the 1592:. Li-ion batteries use lithium ions as the solute in the electrolyte which are dissolved in an 4350: 4345: 3987: 3705: 3675: 3534: 3485: 3430: 3389: 3342: 3256: 3215: 3173: 3116: 3108: 3056: 2962: 2954: 2915: 2907: 2866: 2827: 2788: 2744: 2695: 2648: 2555: 2447: 2145: 2022: 1985: 1966: 1924: 1857: 1589: 886: 865: 625: 449: 192: 144: 440:. The last of which will be explained more thoroughly in this article due to its importance. 408:
Electric current and electrons directions for a secondary battery during discharge and charge
316: 4206: 4107: 3853: 3848: 3660: 3600: 3524: 3516: 3477: 3420: 3381: 3334: 3295: 3246: 3207: 3163: 3098: 3090: 3046: 2946: 2897: 2858: 2819: 2780: 2734: 2687: 2640: 2586: 2545: 2498: 2437: 2360: 2321: 2270: 2183: 1683: 1600: 1593: 1329: 1273:{\displaystyle w_{ET}={\frac {|J|^{2}}{\hbar }}{\sqrt {\frac {\pi }{\lambda kT}}}\exp \left} 417: 252: 235: 116: 112: 73: 2847:"Silicon-based materials as high capacity anodes for next generation lithium ion batteries" 404: 4318: 3720: 3647: 3455: 3142:
Li, Dawei; Wang, Yikai; Hu, Jiazhi; Lu, Bo; Cheng, Yang-Tse; Zhang, Junqian (2017-10-31).
2026: 1932: 1696: 1633: 1074: 210: 168: 164: 76:
that can consist of a variety of materials (chemicals) depending on the type of battery.
3330: 3282:
Zhao, Kejie; Pharr, Matt; Cai, Shengqiang; Vlassak, Joost J.; Suo, Zhigang (June 2011).
3159: 2541: 2494: 2356: 4313: 4277: 3956: 3610: 3529: 3508: 2808:"A review of the electrochemical performance of alloy anodes for lithium-ion batteries" 2164:
Bellis, Mary. Biography of Alessandro Volta – Stored Electricity and the First Battery.
2104: 1998: 1992: 1669:
Silicon has one of the highest gravimetric capacities when compared to graphite and Li
1502:
The production of electrodes for Li-ion batteries is done in various steps as follows:
1334: 1285: 1054: 172: 3369: 3078: 2982:"Ex-Tesla Engineer Building Silicon Anode Plant As U.S. Amps Up EV Battery Production" 1923:
are electrodes that have their surfaces chemically modified to change the electrode's
4395: 4292: 4287: 4251: 4201: 4133: 3590: 3499: 3385: 3354: 3299: 3268: 2707: 2660: 2510: 2459: 2195: 2094: 1978: 1970: 1838: 1779:{\displaystyle \mu =\mu ^{o}+k\cdot T\cdot \log(\gamma \cdot x)+\Omega \cdot \sigma } 1585: 1316: 613:{\displaystyle \Delta G^{\dagger }={\frac {1}{4\lambda }}(\Delta G^{0}+\lambda )^{2}} 104: 80: 61: 3128: 892:
Without going into too much detail on how the derivation is done, it rests on using
4272: 4241: 4069: 3794: 3750: 3685: 3627: 3605: 3168: 3143: 2862: 2823: 2502: 2389:"Electrodes and Electrode Materials Selection Guide: Types, Features, Applications" 2114: 2039: 1846: 1570: 421: 230: 136: 120: 84: 2723:"Li 4 Ti 5 O 12 spinel anode: Fundamentals and advances in rechargeable batteries" 2629:"Graphite as anode materials: Fundamental mechanism, recent progress and advances" 1816:
is the ratio of the ion to the total composition of the electrode. The novel term
1576: 412:
Contrary to the primary cell a secondary cell can be recharged. The first was the
2784: 2721:
Zhang, Hao; Yang, Yang; Xu, Hong; Wang, Li; Lu, Xia; He, Xiangming (April 2022).
4323: 4115: 4022: 4007: 3745: 3670: 3051: 3034: 2935:"Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes" 2109: 2004: 1877: 1861: 1834: 437: 65: 2644: 1552:
possible, without the conductive agent and the binder not functioning properly.
4370: 4365: 3966: 3700: 3680: 3425: 3408: 3338: 2627:
Zhang, Hao; Yang, Yang; Ren, Dongsheng; Wang, Li; He, Xiangming (2021-04-01).
2442: 2425: 2364: 2290: 1940: 1312: 3449:
Chemically modified electrodes: Recommended terminology and definitions (PDF)
3434: 3393: 3346: 3260: 3219: 3177: 3112: 3060: 2958: 2934: 2911: 2870: 2831: 2792: 2748: 2699: 2652: 2559: 642:
is the reorganisation energy. Filling this result in the classically derived
27:
Electrical conductor used to make contact with nonmetallic parts of a circuit
4360: 4355: 4012: 3992: 3961: 3617: 3314: 3094: 2767:
Zuo, Xiuxia; Zhu, Jin; MĂŒller-Buschbaum, Peter; Cheng, Ya-Jun (2017-01-01).
2209: 1956: 1625: 1379: 3538: 3120: 2966: 2919: 2187: 3481: 2769:"Silicon based lithium-ion battery anodes: A chronicle perspective review" 714:{\displaystyle k=A\,\exp \left({\frac {-\Delta G^{\dagger }}{kT}}\right),} 143:. It still made use of the zinc–copper electrode combination. Since then, 17: 3690: 3251: 3234: 2526:"Review Article: Flow battery systems with solid electroactive materials" 2043: 1928: 1865: 1397: 1358: 1320: 188: 3545: 3409:"Understanding the role of mechanics in energy materials: A perspective" 3103: 2590: 2325: 1860:. The counter electrode is usually made of an inert material, such as a 4380: 4340: 3997: 2902: 2885: 2739: 2722: 2691: 2675: 1936: 1596: 1373: 1324: 152: 3370:"A linear theory of thermochemical equilibrium of solids under stress" 3211: 2950: 2550: 2525: 2451: 221: 2275: 1621: 1515:
A conductive agent used to improve the conductivity of the electrode.
1385: 124: 69: 3195: 2574: 3447:
Durst, R., Baumner, A., Murray, R., Buck, R., & Andrieux, C., "
3196:"Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review" 2142:
Brain, Mind and Medicine: Essays in eighteenth-century neuroscience
3982: 3520: 2084: 2055: 1909: 1842: 1575: 460: 403: 395: 220: 197: 184: 148: 132: 98: 36: 2615:
Sigma-Aldrich Technical Documents: Lab & Production Materials
2341:"Electron transfer reactions in chemistry. Theory and experiment" 2240:"Electron Transfer Reactions in Chemistry: Theory and Experiment" 448:
Marcus theory is a theory originally developed by Nobel laureate
1391: 128: 4080: 4042: 4038: 3549: 1852:
In a three-electrode cell, a counter electrode, also called an
4017: 3476:(First ed.). Boca Raton: CRC Press/Taylor & Francis. 2266: 2088: 3233:
de Vasconcelos, Luize Scalco; Xu, Rong; Zhao, Kejie (2017).
3010:"In the battery materials world, the anode's time has come" 465:
Potential energy surface for the donor and the acceptor as
2406: 1104:. Taking the classical limit of this expression, meaning 3200:
Journal of Electrochemical Energy Conversion and Storage
3072: 3070: 1512:
A binder used to contain the active electrode particles.
424:(PbO2) and the anode of solid lead. Other commonly used 1820:
is the partial molar volume of the ion in the host and
508:) in terms of the overall free energy of the reaction ( 1520:
The mixture created is known as an ‘electrode slurry’.
3474:
Electrode materials for energy storage and conversion
1711: 1288: 1142: 1110: 1077: 1057: 913: 868: 832: 731: 653: 628: 546: 514: 484: 363: 319: 275: 87:, was an early version of an electrode used to study 4301: 4260: 4172: 4114: 3975: 3947: 3769: 3645: 3583: 115:. The first electrochemical battery was devised by 3472:Kebede, Mesfin A.; Ezema, Fabian I., eds. (2022). 2845:Liang, Bo; Liu, Yanping; Xu, Yunhua (2014-12-01). 2471: 2469: 2032:Nanoelectrodes for high-precision measurements in 1778: 1569:(Li-ion batteries). A Li-ion battery is a kind of 1294: 1272: 1128: 1092: 1063: 1041: 874: 854: 813: 713: 634: 612: 530: 500: 368: 323: 280: 56:used to make contact with a nonmetallic part of a 2222:"The 4 Types of Rechargeable Batteries Explained" 3033:Liu, Bin; Zhang, Ji-Guang; Xu, Wu (2018-05-16). 2176:Notes and Records of the Royal Society of London 470:electron transfer theory, the expression of the 2611:"Electrode Materials for Lithium Ion Batteries" 2573:Lewis, Gilbert N.; Keyes, Frederick G. (1913). 1616:In Li-ion batteries, the cathode consists of a 3003: 3001: 2267:"The IUPAC Compendium of Chemical Terminology" 1981:(recording and delivering cardiac stimulation) 4092: 4054: 3561: 3077:PalacĂ­n, M. R.; de Guibert, A. (2016-02-05). 2933:Zhang, Huigang; Braun, Paul V. (2012-06-13). 2524:Qi, Zhaoxiang; Koenig, Gary M. (2017-05-12). 1573:which can be seen in the image on the right. 8: 2530:Journal of Vacuum Science & Technology B 855:{\displaystyle \Delta G^{\dagger }=\lambda } 191:then flow to the other side of the battery. 3315:"A survey of energies in materials science" 1599:. Lithium electrodes were first studied by 72:or air). Electrodes are essential parts of 4099: 4085: 4077: 4061: 4047: 4039: 3568: 3554: 3546: 3189: 3187: 1315:. Any conducting material such as metals, 443: 95:Anode and cathode in electrochemical cells 3528: 3424: 3250: 3167: 3102: 3050: 2901: 2738: 2549: 2441: 2274: 2210:https://eng.libretexts.org/@go/page/25106 1961:Electrodes for medical purposes, such as 1812:inside the logarithm is the activity and 1722: 1710: 1565:A modern application of electrodes is in 1287: 1243: 1218: 1188: 1176: 1171: 1162: 1159: 1147: 1141: 1109: 1076: 1056: 1014: 998: 993: 978: 970: 958: 947: 942: 933: 930: 918: 912: 867: 840: 831: 784: 768: 752: 741: 730: 687: 674: 663: 652: 627: 604: 588: 563: 554: 545: 522: 513: 492: 483: 362: 318: 274: 179:enters from the electrical circuit of an 2604: 2602: 2600: 2579:Journal of the American Chemical Society 2575:"The Potential of the Lithium Electrode" 1792:represents the chemical potential, with 1363: 111:Electrodes are an essential part of any 3288:Journal of the American Ceramic Society 2407:"Online Materials Information Resource" 2144:. New York, NY: Springer. p. 140. 2132: 1183: 1111: 1019: 955: 416:, invented in 1859 by French physicist 123:. This battery consisted of a stack of 3239:Journal of the Electrochemical Society 2424:Hawley, W. Blake; Li, Jianlin (2019). 200:reaction that takes place next to it. 2762: 2760: 2758: 2291:"Marcus Theory for Electron Transfer" 1624:. Another frequently used element is 7: 3368:LarchĂ©, F; Cahn, J. W (1973-08-01). 3194:Xu, Rong; Zhao, Kejie (2016-12-12). 3407:Zhao, Kejie; Cui, Yi (2016-12-01). 3035:"Advancing Lithium Metal Batteries" 1561:Electrodes in lithium ion batteries 1129:{\displaystyle \hbar \omega \ll kT} 501:{\displaystyle \Delta G^{\dagger }} 444:Marcus' theory of electron transfer 1767: 1227: 1005: 982: 974: 882:one can read the paper by Marcus. 833: 761: 680: 581: 547: 515: 485: 25: 3513:Journal of Visualized Experiments 3415:. Mechanics of Energy Materials. 2609:Kam, Kinson C.; Doeff, Marca M., 2120:Reversible charge injection limit 1988:techniques in biomedical research 1900:For electrical systems which use 3636: 3300:10.1111/j.1551-2916.2011.04432.x 2680:Journal of Materials Chemistry A 1991:Electrodes for execution by the 1977:(electrical brain stimulation), 1965:(for recording brain activity), 1888:, or non-consumable, such as in 4159:Shielded metal (Stick/MMA/SMAW) 4149:Gas tungsten (Heliarc/TIG/GTAW) 1800:stands for the temperature and 1509:The active electrode particles. 1464:Specific heat capacity (J/(gK)) 814:{\displaystyle k=A\,\exp \left} 365: 364: 320: 277: 276: 4144:Gas metal (Microwire/MIG/GMAW) 3169:10.1016/j.jpowsour.2017.09.004 2863:10.1016/j.jpowsour.2014.05.096 2824:10.1016/j.jpowsour.2010.07.020 2503:10.1016/j.jpowsour.2020.228837 1921:Chemically modified electrodes 1916:Chemically modified electrodes 1896:Alternating current electrodes 1868:, to keep it from dissolving. 1761: 1749: 1240: 1224: 1172: 1163: 1087: 1081: 1034: 1028: 943: 934: 781: 758: 601: 578: 388:, and lithium iron disulfide. 369:{\displaystyle \qquad \qquad } 281:{\displaystyle \qquad \qquad } 1: 3458:", IUPAC, 1997, pp 1317–1323. 2806:Zhang, Wei-Jun (2011-01-01). 171:'s request, derived from the 4124:Atomic hydrogen (Athydo/AHW) 3386:10.1016/0001-6160(73)90021-7 3313:Spaepen *, F. (2005-09-11). 3008:Alex Scott (April 7, 2019). 2785:10.1016/j.nanoen.2016.11.013 1365:Common electrode properties 531:{\displaystyle \Delta G^{0}} 3052:10.1016/j.joule.2018.03.008 2339:Marcus, Rudolph A. (1993). 2050:Membrane electrode assembly 1796:being its reference value. 4423: 2645:10.1016/j.ensm.2020.12.027 2265:Gold, Victor, ed. (2019). 1886:shielded metal arc welding 1533:Structure of the electrode 43:shielded metal arc welding 29: 4336: 4182:Electric resistance (ERW) 4076: 3726:Metal–air electrochemical 3634: 3426:10.1016/j.eml.2016.10.003 3413:Extreme Mechanics Letters 3339:10.1080/14786430500155080 2443:10.1016/j.est.2019.100862 2430:Journal of Energy Storage 2365:10.1103/RevModPhys.65.599 2345:Reviews of Modern Physics 1829:Other anodes and cathodes 3148:Journal of Power Sources 3079:"Why do batteries fail?" 2851:Journal of Power Sources 2812:Journal of Power Sources 2633:Energy Storage Materials 2483:Journal of Power Sources 2140:Whitaker, Harry (2007). 1890:gas tungsten arc welding 1630:volumetric heat capacity 1311:electrode is that it be 875:{\displaystyle \lambda } 635:{\displaystyle \lambda } 241:The half-reactions are: 131:electrodes separated by 119:and was aptly named the 103:Schematic of a voltaic ( 3095:10.1126/science.1253292 2075:Gas diffusion electrode 1847:electrolytic capacitors 1424:Electrode potential (V) 324:{\displaystyle \qquad } 183:(battery) into the non- 4028:Semipermeable membrane 3817:Lithium–iron–phosphate 3319:Philosophical Magazine 2188:10.1098/rsnr.1961.0038 1780: 1581: 1351:specific heat capacity 1347:electrical resistivity 1296: 1274: 1130: 1094: 1065: 1043: 876: 856: 815: 715: 636: 614: 532: 502: 472:reaction rate constant 466: 453:donor to an acceptor 426:rechargeable batteries 409: 401: 400:Rechargeable Batteries 370: 325: 282: 226: 163:'Anode' was coined by 108: 45: 4376:Tools and terminology 3899:Rechargeable alkaline 3577:Electrochemical cells 3482:10.1201/9781003145585 2890:Nature Communications 2038:Inert electrodes for 1882:gas metal arc welding 1781: 1690:Mechanical properties 1579: 1567:lithium-ion batteries 1297: 1275: 1131: 1095: 1066: 1044: 877: 857: 816: 716: 637: 615: 533: 503: 464: 407: 399: 371: 326: 283: 224: 141:John Frederic Daniell 102: 40: 30:For the PokĂ©mon, see 3879:Nickel–metal hydride 3325:(26–27): 2979–2987. 3252:10.1149/2.1411714jes 2034:nanoelectrochemistry 1709: 1286: 1140: 1108: 1093:{\displaystyle g(t)} 1075: 1055: 911: 896:from time-dependent 866: 830: 729: 651: 626: 544: 512: 482: 434:nickel–metal hydride 361: 317: 273: 181:electrochemical cell 177:conventional current 54:electrical conductor 4212:Friction stir (FSW) 4187:Electron-beam (EBW) 3889:Polysulfide–bromide 3731:Nickel oxyhydroxide 3623:Thermogalvanic cell 3331:2005PMag...85.2979S 3245:(14): A3840–A3847. 3160:2017JPS...366...80L 2686:(26): 15871–15879. 2591:10.1021/ja02193a004 2542:2017JVSTB..35d0801Q 2495:2020JPS...48028837K 2357:1993RvMP...65..599M 2326:10.1021/cr00005a007 2100:Electron microscope 2080:Cellulose electrode 2070:Reference electrode 2058:electroshock weapon 2011:cathodic protection 1902:alternating current 1854:auxiliary electrode 1366: 1355:electrode potential 1102:line shape function 986: 898:perturbation theory 894:Fermi's golden rule 145:many more batteries 41:Electrodes used in 32:Electrode (PokĂ©mon) 4309:Heat-affected zone 4237:Oxyacetylene (OAW) 3652:(non-rechargeable) 3596:Concentration cell 3454:2014-02-01 at the 2903:10.1038/ncomms5105 2740:10.1002/inf2.12228 2692:10.1039/C9TA04240G 2393:www.globalspec.com 2293:. 12 December 2020 1872:Welding electrodes 1806:Boltzmann constant 1788:In this equation, 1776: 1605:Frederick G. Keyes 1582: 1492:contact resistance 1364: 1292: 1270: 1126: 1090: 1061: 1039: 966: 872: 852: 811: 711: 644:Arrhenius equation 632: 610: 528: 498: 467: 410: 402: 366: 334:Overall reaction: 321: 278: 227: 109: 89:static electricity 46: 4389: 4388: 4332: 4331: 4192:Electroslag (ESW) 4139:Flux-cored (FCAW) 4036: 4035: 3491:978-0-367-70304-2 3374:Acta Metallurgica 3212:10.1115/1.4035310 3089:(6273): 1253292. 2951:10.1021/nl204551m 2551:10.1116/1.4983210 2246:. 8 December 1992 2023:chemical analysis 1986:electrophysiology 1858:working electrode 1841:having polarity ( 1590:electrolytic cell 1483: 1482: 1343:cycle performance 1339:discharge voltage 1330:conductive agents 1295:{\displaystyle A} 1264: 1206: 1205: 1186: 1064:{\displaystyle J} 964: 887:quantum tunneling 805: 702: 576: 450:Rudolph A. Marcus 414:lead–acid battery 193:Benjamin Franklin 16:(Redirected from 4414: 4222:Laser beam (LBW) 4129:Electrogas (EGW) 4101: 4094: 4087: 4078: 4063: 4056: 4049: 4040: 3832:Lithium–titanate 3777: 3653: 3640: 3601:Electric battery 3570: 3563: 3556: 3547: 3542: 3532: 3503: 3459: 3445: 3439: 3438: 3428: 3404: 3398: 3397: 3380:(8): 1051–1063. 3365: 3359: 3358: 3310: 3304: 3303: 3279: 3273: 3272: 3254: 3230: 3224: 3223: 3191: 3182: 3181: 3171: 3139: 3133: 3132: 3106: 3074: 3065: 3064: 3054: 3030: 3024: 3023: 3021: 3020: 3005: 2996: 2995: 2993: 2992: 2977: 2971: 2970: 2945:(6): 2778–2783. 2930: 2924: 2923: 2905: 2881: 2875: 2874: 2842: 2836: 2835: 2803: 2797: 2796: 2764: 2753: 2752: 2742: 2718: 2712: 2711: 2671: 2665: 2664: 2624: 2618: 2617: 2606: 2595: 2594: 2570: 2564: 2563: 2553: 2521: 2515: 2514: 2473: 2464: 2463: 2445: 2421: 2415: 2414: 2403: 2397: 2396: 2387:Engineering360. 2384: 2378: 2375: 2369: 2368: 2336: 2330: 2329: 2314:Chemical Reviews 2309: 2303: 2302: 2300: 2298: 2287: 2281: 2280: 2278: 2276:10.1351/goldbook 2262: 2256: 2255: 2253: 2251: 2236: 2230: 2229: 2218: 2212: 2206: 2200: 2199: 2171: 2165: 2162: 2156: 2155: 2137: 2093:Electron versus 1910:times per second 1785: 1783: 1782: 1777: 1727: 1726: 1601:Gilbert N. Lewis 1404:Resistivity (Ωm) 1367: 1301: 1299: 1298: 1293: 1279: 1277: 1276: 1271: 1269: 1265: 1263: 1249: 1248: 1247: 1219: 1207: 1204: 1190: 1189: 1187: 1182: 1181: 1180: 1175: 1166: 1160: 1155: 1154: 1135: 1133: 1132: 1127: 1099: 1097: 1096: 1091: 1070: 1068: 1067: 1062: 1048: 1046: 1045: 1040: 1038: 1037: 1018: 985: 977: 965: 963: 962: 953: 952: 951: 946: 937: 931: 926: 925: 881: 879: 878: 873: 861: 859: 858: 853: 845: 844: 820: 818: 817: 812: 810: 806: 804: 790: 789: 788: 773: 772: 753: 720: 718: 717: 712: 707: 703: 701: 693: 692: 691: 675: 641: 639: 638: 633: 619: 617: 616: 611: 609: 608: 593: 592: 577: 575: 564: 559: 558: 537: 535: 534: 529: 527: 526: 507: 505: 504: 499: 497: 496: 375: 373: 372: 367: 330: 328: 327: 322: 287: 285: 284: 279: 236:alkaline battery 117:Alessandro Volta 21: 4422: 4421: 4417: 4416: 4415: 4413: 4412: 4411: 4392: 4391: 4390: 4385: 4328: 4319:Residual stress 4297: 4256: 4174:Other processes 4168: 4164:Submerged (SAW) 4110: 4105: 4072: 4067: 4037: 4032: 3971: 3950: 3943: 3864:Nickel–hydrogen 3822:Lithium–polymer 3778: 3775: 3774: 3765: 3654: 3651: 3650: 3641: 3632: 3579: 3574: 3506: 3492: 3471: 3468: 3466:Further reading 3463: 3462: 3456:Wayback Machine 3446: 3442: 3406: 3405: 3401: 3367: 3366: 3362: 3312: 3311: 3307: 3281: 3280: 3276: 3232: 3231: 3227: 3193: 3192: 3185: 3141: 3140: 3136: 3076: 3075: 3068: 3032: 3031: 3027: 3018: 3016: 3007: 3006: 2999: 2990: 2988: 2980:Ohnsman, Alan. 2979: 2978: 2974: 2932: 2931: 2927: 2883: 2882: 2878: 2844: 2843: 2839: 2805: 2804: 2800: 2766: 2765: 2756: 2720: 2719: 2715: 2673: 2672: 2668: 2626: 2625: 2621: 2608: 2607: 2598: 2572: 2571: 2567: 2523: 2522: 2518: 2480: 2475: 2474: 2467: 2423: 2422: 2418: 2405: 2404: 2400: 2386: 2385: 2381: 2376: 2372: 2338: 2337: 2333: 2311: 2310: 2306: 2296: 2294: 2289: 2288: 2284: 2264: 2263: 2259: 2249: 2247: 2238: 2237: 2233: 2220: 2219: 2215: 2207: 2203: 2173: 2172: 2168: 2163: 2159: 2152: 2139: 2138: 2134: 2129: 2124: 2065: 2054:Electrodes for 2027:electrochemical 2021:Electrodes for 2015:Electrodes for 2009:Electrodes for 2003:Electrodes for 1997:Electrodes for 1984:Electrodes for 1955:Electrodes for 1949: 1933:electrochemical 1918: 1908:, usually many 1898: 1874: 1831: 1718: 1707: 1706: 1697:nanoindentation 1692: 1680: 1676: 1672: 1667: 1663: 1659: 1655: 1651: 1647: 1642: 1634:thermostability 1614: 1563: 1535: 1500: 1488: 1486:Surface effects 1308: 1284: 1283: 1250: 1239: 1220: 1214: 1194: 1170: 1161: 1143: 1138: 1137: 1106: 1105: 1073: 1072: 1053: 1052: 994: 954: 941: 932: 914: 909: 908: 864: 863: 836: 828: 827: 791: 780: 764: 754: 748: 727: 726: 694: 683: 676: 670: 649: 648: 624: 623: 600: 584: 568: 550: 542: 541: 518: 510: 509: 488: 480: 479: 477: 446: 394: 359: 358: 357: 353: 349: 345: 341: 315: 314: 313: 309: 305: 301: 297: 293: 271: 270: 268: 264: 260: 256: 248: 219: 211:oxidizing agent 206: 169:Michael Faraday 165:William Whewell 161: 97: 35: 28: 23: 22: 15: 12: 11: 5: 4420: 4418: 4410: 4409: 4404: 4394: 4393: 4387: 4386: 4384: 4383: 4378: 4373: 4368: 4363: 4358: 4353: 4348: 4343: 4337: 4334: 4333: 4330: 4329: 4327: 4326: 4321: 4316: 4314:Photokeratitis 4311: 4305: 4303: 4299: 4298: 4296: 4295: 4290: 4285: 4280: 4275: 4270: 4264: 4262: 4258: 4257: 4255: 4254: 4249: 4244: 4239: 4234: 4232:Magnetic pulse 4229: 4224: 4219: 4214: 4209: 4204: 4199: 4194: 4189: 4184: 4178: 4176: 4170: 4169: 4167: 4166: 4161: 4156: 4151: 4146: 4141: 4136: 4131: 4126: 4120: 4118: 4112: 4111: 4106: 4104: 4103: 4096: 4089: 4081: 4074: 4073: 4068: 4066: 4065: 4058: 4051: 4043: 4034: 4033: 4031: 4030: 4025: 4020: 4015: 4010: 4005: 4000: 3995: 3990: 3985: 3979: 3977: 3973: 3972: 3970: 3969: 3964: 3959: 3957:Atomic battery 3953: 3951: 3948: 3945: 3944: 3942: 3941: 3936: 3931: 3929:Vanadium redox 3926: 3921: 3916: 3911: 3906: 3904:Silver–cadmium 3901: 3896: 3891: 3886: 3881: 3876: 3874:Nickel–lithium 3871: 3866: 3861: 3859:Nickel–cadmium 3856: 3851: 3846: 3841: 3836: 3835: 3834: 3829: 3827:Lithium–sulfur 3824: 3819: 3814: 3804: 3799: 3798: 3797: 3787: 3781: 3779: 3776:(rechargeable) 3772:Secondary cell 3770: 3767: 3766: 3764: 3763: 3758: 3753: 3748: 3743: 3738: 3733: 3728: 3723: 3718: 3713: 3708: 3703: 3698: 3696:Edison–Lalande 3693: 3688: 3683: 3678: 3673: 3668: 3663: 3657: 3655: 3646: 3643: 3642: 3635: 3633: 3631: 3630: 3625: 3620: 3615: 3614: 3613: 3611:Trough battery 3608: 3598: 3593: 3587: 3585: 3581: 3580: 3575: 3573: 3572: 3565: 3558: 3550: 3544: 3543: 3515:(81): e50594. 3504: 3490: 3467: 3464: 3461: 3460: 3440: 3399: 3360: 3305: 3274: 3225: 3183: 3134: 3066: 3045:(5): 833–845. 3025: 2997: 2972: 2925: 2876: 2837: 2798: 2754: 2713: 2666: 2619: 2596: 2585:(4): 340–344. 2565: 2516: 2478: 2465: 2416: 2411:www.matweb.com 2398: 2379: 2370: 2351:(3): 599–610. 2331: 2320:(5): 767–792. 2304: 2282: 2257: 2231: 2228:. 2 June 2020. 2213: 2201: 2182:(2): 187–220. 2166: 2157: 2151:978-0387709673 2150: 2131: 2130: 2128: 2125: 2123: 2122: 2117: 2112: 2107: 2105:Tafel equation 2102: 2097: 2091: 2082: 2077: 2072: 2066: 2064: 2061: 2060: 2059: 2052: 2047: 2036: 2030: 2019: 2013: 2007: 2001: 1999:electroplating 1995: 1993:electric chair 1989: 1982: 1959: 1948: 1945: 1917: 1914: 1897: 1894: 1873: 1870: 1830: 1827: 1775: 1772: 1769: 1766: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1725: 1721: 1717: 1714: 1691: 1688: 1678: 1674: 1670: 1665: 1661: 1657: 1653: 1649: 1645: 1641: 1638: 1613: 1610: 1562: 1559: 1554: 1553: 1549: 1546: 1543: 1534: 1531: 1530: 1529: 1526: 1523: 1522: 1521: 1517: 1516: 1513: 1510: 1499: 1496: 1487: 1484: 1481: 1480: 1477: 1474: 1471: 1468: 1465: 1461: 1460: 1457: 1454: 1451: 1448: 1445: 1441: 1440: 1437: 1434: 1431: 1428: 1425: 1421: 1420: 1417: 1414: 1411: 1408: 1405: 1401: 1400: 1395: 1389: 1383: 1377: 1371: 1335:self-discharge 1323:or conductive 1317:semiconductors 1307: 1304: 1291: 1268: 1262: 1259: 1256: 1253: 1246: 1242: 1238: 1235: 1232: 1229: 1226: 1223: 1217: 1213: 1210: 1203: 1200: 1197: 1193: 1185: 1179: 1174: 1169: 1165: 1158: 1153: 1150: 1146: 1125: 1122: 1119: 1116: 1113: 1089: 1086: 1083: 1080: 1060: 1036: 1033: 1030: 1027: 1024: 1021: 1017: 1013: 1010: 1007: 1004: 1001: 997: 992: 989: 984: 981: 976: 973: 969: 961: 957: 950: 945: 940: 936: 929: 924: 921: 917: 900:with the full 871: 851: 848: 843: 839: 835: 809: 803: 800: 797: 794: 787: 783: 779: 776: 771: 767: 763: 760: 757: 751: 747: 744: 740: 737: 734: 710: 706: 700: 697: 690: 686: 682: 679: 673: 669: 666: 662: 659: 656: 631: 607: 603: 599: 596: 591: 587: 583: 580: 574: 571: 567: 562: 557: 553: 549: 525: 521: 517: 495: 491: 487: 475: 459: 458: 445: 442: 430:nickel–cadmium 393: 392:Secondary cell 390: 377: 376: 355: 351: 347: 343: 339: 332: 331: 311: 307: 303: 299: 295: 291: 288: 266: 262: 258: 250: 246: 218: 215: 205: 202: 160: 157: 96: 93: 83:, invented by 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4419: 4408: 4405: 4403: 4400: 4399: 4397: 4382: 4379: 4377: 4374: 4372: 4369: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4347: 4344: 4342: 4339: 4338: 4335: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4306: 4304: 4302:Related terms 4300: 4294: 4293:Shielding gas 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4269: 4266: 4265: 4263: 4259: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4217:Friction stud 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4179: 4177: 4175: 4171: 4165: 4162: 4160: 4157: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4122: 4121: 4119: 4117: 4113: 4109: 4102: 4097: 4095: 4090: 4088: 4083: 4082: 4079: 4075: 4071: 4064: 4059: 4057: 4052: 4050: 4045: 4044: 4041: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3980: 3978: 3974: 3968: 3965: 3963: 3960: 3958: 3955: 3954: 3952: 3946: 3940: 3937: 3935: 3932: 3930: 3927: 3925: 3922: 3920: 3919:Sodium–sulfur 3917: 3915: 3912: 3910: 3907: 3905: 3902: 3900: 3897: 3895: 3894:Potassium ion 3892: 3890: 3887: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3809: 3808: 3805: 3803: 3800: 3796: 3793: 3792: 3791: 3788: 3786: 3783: 3782: 3780: 3773: 3768: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3737: 3734: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3711:Lithium metal 3709: 3707: 3704: 3702: 3699: 3697: 3694: 3692: 3689: 3687: 3684: 3682: 3679: 3677: 3674: 3672: 3669: 3667: 3666:Aluminium–air 3664: 3662: 3659: 3658: 3656: 3649: 3644: 3639: 3629: 3626: 3624: 3621: 3619: 3616: 3612: 3609: 3607: 3604: 3603: 3602: 3599: 3597: 3594: 3592: 3591:Galvanic cell 3589: 3588: 3586: 3582: 3578: 3571: 3566: 3564: 3559: 3557: 3552: 3551: 3548: 3540: 3536: 3531: 3526: 3522: 3521:10.3791/50594 3518: 3514: 3510: 3505: 3501: 3497: 3493: 3487: 3483: 3479: 3475: 3470: 3469: 3465: 3457: 3453: 3450: 3444: 3441: 3436: 3432: 3427: 3422: 3418: 3414: 3410: 3403: 3400: 3395: 3391: 3387: 3383: 3379: 3375: 3371: 3364: 3361: 3356: 3352: 3348: 3344: 3340: 3336: 3332: 3328: 3324: 3320: 3316: 3309: 3306: 3301: 3297: 3294:: s226–s235. 3293: 3289: 3285: 3278: 3275: 3270: 3266: 3262: 3258: 3253: 3248: 3244: 3240: 3236: 3229: 3226: 3221: 3217: 3213: 3209: 3205: 3201: 3197: 3190: 3188: 3184: 3179: 3175: 3170: 3165: 3161: 3157: 3153: 3149: 3145: 3138: 3135: 3130: 3126: 3122: 3118: 3114: 3110: 3105: 3100: 3096: 3092: 3088: 3084: 3080: 3073: 3071: 3067: 3062: 3058: 3053: 3048: 3044: 3040: 3036: 3029: 3026: 3015: 3011: 3004: 3002: 2998: 2987: 2983: 2976: 2973: 2968: 2964: 2960: 2956: 2952: 2948: 2944: 2940: 2936: 2929: 2926: 2921: 2917: 2913: 2909: 2904: 2899: 2895: 2891: 2887: 2880: 2877: 2872: 2868: 2864: 2860: 2856: 2852: 2848: 2841: 2838: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2802: 2799: 2794: 2790: 2786: 2782: 2778: 2774: 2770: 2763: 2761: 2759: 2755: 2750: 2746: 2741: 2736: 2732: 2728: 2724: 2717: 2714: 2709: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2670: 2667: 2662: 2658: 2654: 2650: 2646: 2642: 2638: 2634: 2630: 2623: 2620: 2616: 2612: 2605: 2603: 2601: 2597: 2592: 2588: 2584: 2580: 2576: 2569: 2566: 2561: 2557: 2552: 2547: 2543: 2539: 2536:(4): 040801. 2535: 2531: 2527: 2520: 2517: 2512: 2508: 2504: 2500: 2496: 2492: 2488: 2484: 2472: 2470: 2466: 2461: 2457: 2453: 2449: 2444: 2439: 2435: 2431: 2427: 2420: 2417: 2412: 2408: 2402: 2399: 2394: 2390: 2383: 2380: 2374: 2371: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2335: 2332: 2327: 2323: 2319: 2315: 2308: 2305: 2292: 2286: 2283: 2277: 2272: 2268: 2261: 2258: 2245: 2244:Nobelstiftung 2241: 2235: 2232: 2227: 2223: 2217: 2214: 2211: 2205: 2202: 2197: 2193: 2189: 2185: 2181: 2177: 2170: 2167: 2161: 2158: 2153: 2147: 2143: 2136: 2133: 2126: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2095:electron hole 2092: 2090: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2067: 2062: 2057: 2053: 2051: 2048: 2045: 2041: 2037: 2035: 2031: 2028: 2024: 2020: 2018: 2014: 2012: 2008: 2006: 2002: 2000: 1996: 1994: 1990: 1987: 1983: 1980: 1979:defibrillator 1976: 1972: 1968: 1964: 1960: 1958: 1954: 1953: 1952: 1946: 1944: 1942: 1938: 1934: 1930: 1926: 1922: 1915: 1913: 1911: 1907: 1903: 1895: 1893: 1891: 1887: 1883: 1879: 1871: 1869: 1867: 1863: 1859: 1855: 1850: 1848: 1844: 1840: 1839:semiconductor 1836: 1828: 1826: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1786: 1773: 1770: 1764: 1758: 1755: 1752: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1723: 1719: 1715: 1712: 1704: 1700: 1698: 1689: 1687: 1685: 1639: 1637: 1635: 1631: 1627: 1623: 1619: 1611: 1609: 1606: 1602: 1598: 1595: 1591: 1587: 1578: 1574: 1572: 1568: 1560: 1558: 1550: 1547: 1544: 1541: 1540: 1539: 1532: 1527: 1524: 1519: 1518: 1514: 1511: 1508: 1507: 1505: 1504: 1503: 1498:Manufacturing 1497: 1495: 1493: 1485: 1478: 1475: 1472: 1469: 1466: 1463: 1462: 1458: 1455: 1452: 1449: 1446: 1444:Hardness (HV) 1443: 1442: 1438: 1435: 1432: 1429: 1426: 1423: 1422: 1418: 1415: 1412: 1409: 1406: 1403: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1368: 1362: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1331: 1326: 1322: 1318: 1314: 1305: 1303: 1289: 1280: 1266: 1260: 1257: 1254: 1251: 1244: 1236: 1233: 1230: 1221: 1215: 1211: 1208: 1201: 1198: 1195: 1191: 1177: 1167: 1156: 1151: 1148: 1144: 1123: 1120: 1117: 1114: 1103: 1084: 1078: 1058: 1049: 1031: 1025: 1022: 1015: 1011: 1008: 1002: 999: 995: 990: 987: 979: 971: 967: 959: 948: 938: 927: 922: 919: 915: 906: 903: 899: 895: 890: 888: 883: 869: 849: 846: 841: 837: 824: 821: 807: 801: 798: 795: 792: 785: 777: 774: 769: 765: 755: 749: 745: 742: 738: 735: 732: 724: 721: 708: 704: 698: 695: 688: 684: 677: 671: 667: 664: 660: 657: 654: 646: 645: 629: 622:In which the 620: 605: 597: 594: 589: 585: 572: 569: 565: 560: 555: 551: 539: 523: 519: 493: 489: 473: 463: 457:D + A → D + A 456: 455: 454: 451: 441: 439: 435: 431: 427: 423: 419: 418:Gaston PlantĂ© 415: 406: 398: 391: 389: 387: 386:zinc–chloride 383: 337: 336: 335: 289: 254: 244: 243: 242: 239: 237: 232: 223: 216: 214: 212: 203: 201: 199: 194: 190: 186: 182: 178: 174: 170: 166: 158: 156: 154: 150: 146: 142: 138: 134: 130: 126: 122: 118: 114: 106: 101: 94: 92: 90: 86: 82: 77: 75: 71: 67: 63: 62:semiconductor 59: 55: 51: 44: 39: 33: 19: 4283:Power supply 4273:Filler metal 4267: 4227:Laser-hybrid 4154:Plasma (PAW) 4070:Metalworking 4002: 3934:Zinc–bromine 3741:Silver oxide 3676:Chromic acid 3648:Primary cell 3628:Voltaic pile 3606:Flow battery 3512: 3473: 3443: 3416: 3412: 3402: 3377: 3373: 3363: 3322: 3318: 3308: 3291: 3287: 3277: 3242: 3238: 3228: 3203: 3199: 3151: 3147: 3137: 3104:10261/148077 3086: 3082: 3042: 3038: 3028: 3017:. Retrieved 3013: 2989:. Retrieved 2985: 2975: 2942: 2939:Nano Letters 2938: 2928: 2893: 2889: 2879: 2854: 2850: 2840: 2818:(1): 13–24. 2815: 2811: 2801: 2776: 2772: 2730: 2726: 2716: 2683: 2679: 2669: 2636: 2632: 2622: 2614: 2582: 2578: 2568: 2533: 2529: 2519: 2486: 2482: 2433: 2429: 2419: 2410: 2401: 2392: 2382: 2373: 2348: 2344: 2334: 2317: 2313: 2307: 2295:. Retrieved 2285: 2260: 2248:. Retrieved 2243: 2234: 2225: 2216: 2204: 2179: 2175: 2169: 2160: 2141: 2135: 2115:Cold cathode 2040:electrolysis 1950: 1919: 1906:periodically 1899: 1875: 1851: 1832: 1821: 1817: 1813: 1809: 1801: 1797: 1793: 1789: 1787: 1705: 1701: 1693: 1684:Si nanowires 1643: 1618:intercalated 1615: 1583: 1571:flow battery 1564: 1555: 1536: 1501: 1489: 1309: 1281: 1050: 907: 891: 884: 825: 822: 725: 722: 647: 621: 540: 468: 447: 422:lead dioxide 411: 378: 333: 240: 231:primary cell 228: 217:Primary cell 207: 162: 137:Daniell cell 121:Voltaic cell 110: 85:Johan Wilcke 81:electrophore 78: 49: 47: 4407:Electricity 4346:Fabrication 4324:Weldability 4116:Arc welding 4023:Salt bridge 4008:Electrolyte 3939:Zinc–cerium 3924:Solid state 3909:Silver–zinc 3884:Nickel–zinc 3869:Nickel–iron 3844:Molten salt 3812:Dual carbon 3807:Lithium ion 3802:Lithium–air 3761:Zinc–carbon 3736:Silicon–air 3716:Lithium–air 3419:: 347–352. 3014:cen.acs.org 2896:(1): 4105. 2857:: 469–490. 2779:: 113–143. 2773:Nano Energy 2639:: 147–170. 2110:Hot cathode 2005:arc welding 1971:heart beats 1969:(recording 1878:arc welding 1862:noble metal 1835:vacuum tube 1808:. The term 1353:(c_p), the 902:Hamiltonian 438:Lithium-ion 382:zinc–carbon 204:Cathode (+) 66:electrolyte 4402:Electrodes 4396:Categories 4366:Metallurgy 4247:Ultrasonic 4242:Spot (RSW) 4197:Exothermic 3976:Cell parts 3967:Solar cell 3949:Other cell 3914:Sodium ion 3785:Automotive 3019:2022-11-19 2991:2022-11-19 2489:: 228837. 2481:battery". 2436:: 100862. 2297:24 January 2226:RB Battery 2127:References 1957:fuel cells 1941:electrical 1370:Properties 1337:time, the 1313:conductive 1306:Efficiency 1100:being the 187:cell. The 18:Electrodes 4361:Machining 4356:Jewellery 4268:Electrode 4261:Equipment 4013:Half-cell 4003:Electrode 3962:Fuel cell 3839:Metal–air 3790:Lead–acid 3706:LeclanchĂ© 3618:Fuel cell 3500:240536462 3435:2352-4316 3394:0001-6160 3355:220330377 3347:1478-6435 3269:102588028 3261:0013-4651 3220:2381-6872 3178:0378-7753 3154:: 80–85. 3113:0036-8075 3061:2542-4785 2959:1530-6984 2912:2041-1723 2871:0378-7753 2832:0378-7753 2793:2211-2855 2749:2567-3165 2708:195381622 2700:2050-7488 2661:233072977 2653:2405-8297 2560:2166-2746 2511:224980374 2460:201301519 2196:145600326 2042:(made of 2017:grounding 1774:σ 1771:⋅ 1768:Ω 1756:⋅ 1753:γ 1747:⁡ 1741:⋅ 1735:⋅ 1720:μ 1713:μ 1626:manganese 1380:Manganese 1255:λ 1237:λ 1228:Δ 1222:− 1212:⁡ 1196:λ 1192:π 1184:ℏ 1118:≪ 1115:ω 1112:ℏ 1023:− 1020:ℏ 1006:Δ 1000:− 983:∞ 975:∞ 972:− 968:∫ 956:ℏ 870:λ 850:λ 842:† 834:Δ 796:λ 778:λ 762:Δ 756:− 746:⁡ 723:leads to 689:† 681:Δ 678:− 668:⁡ 630:λ 598:λ 582:Δ 573:λ 556:† 548:Δ 516:Δ 494:† 486:Δ 302:+ 2e → Mn 198:oxidation 189:electrons 159:Anode (-) 74:batteries 50:electrode 4371:Smithing 4207:Friction 3993:Catalyst 3854:Nanowire 3849:Nanopore 3795:gel–VRLA 3756:Zinc–air 3661:Alkaline 3539:24300777 3452:Archived 3129:11534630 3121:26912708 2967:22582709 2920:25001098 2063:See also 2044:platinum 1929:chemical 1925:physical 1866:graphite 1612:Cathodes 1586:galvanic 1419:6.00e-6 1398:Graphite 1359:hardness 1357:and the 1341:and the 1325:polymers 1321:graphite 185:metallic 153:cathodes 105:galvanic 60:(e.g. a 4381:Welding 4351:Forming 4341:Casting 4108:Welding 3998:Cathode 3751:Zamboni 3721:Mercury 3686:Daniell 3530:3989498 3327:Bibcode 3156:Bibcode 3083:Science 2727:InfoMat 2538:Bibcode 2491:Bibcode 2452:1546514 2353:Bibcode 2250:2 April 2029:methods 1937:optical 1597:solvent 1594:organic 1416:5.92e-8 1413:1.70e-8 1410:1.44e-6 1407:8.40e-8 1374:Lithium 113:battery 58:circuit 4278:Helmet 3988:Binder 3746:Weston 3671:Bunsen 3537:  3527:  3498:  3488:  3433:  3392:  3353:  3345:  3267:  3259:  3218:  3176:  3127:  3119:  3111:  3059:  2986:Forbes 2965:  2957:  2918:  2910:  2869:  2830:  2791:  2747:  2706:  2698:  2659:  2651:  2558:  2509:  2477:LiFePO 2458:  2450:  2194:  2148:  2089:Cation 2025:using 1843:diodes 1640:Anodes 1622:cobalt 1479:0.707 1476:0.3898 1436:-0.760 1433:-0.340 1386:Copper 1349:, the 436:, and 342:+ 2MnO 149:anodes 139:after 125:copper 107:) cell 70:vacuum 52:is an 4288:Robot 4252:Upset 4202:Forge 4134:Flash 3983:Anode 3701:Grove 3681:Clark 3584:Types 3496:S2CID 3351:S2CID 3265:S2CID 3206:(3). 3125:S2CID 3039:Joule 2733:(4). 2704:S2CID 2657:S2CID 2507:S2CID 2456:S2CID 2192:S2CID 2085:Anion 2056:Taser 1837:or a 1833:In a 1473:0.385 1470:0.448 1467:2.997 1459:7-11 1447:<5 1430:-1.05 1427:-3.02 1051:With 346:⇌ ZnO 310:+ 2OH 269:+ 2e 257:→ ZnO 249:+ 2OH 173:Greek 133:brine 64:, an 4018:Ions 3535:PMID 3486:ISBN 3431:ISSN 3390:ISSN 3343:ISSN 3257:ISSN 3216:ISSN 3174:ISSN 3117:PMID 3109:ISSN 3057:ISSN 2963:PMID 2955:ISSN 2916:PMID 2908:ISSN 2867:ISSN 2828:ISSN 2789:ISSN 2745:ISSN 2696:ISSN 2649:ISSN 2556:ISSN 2448:OSTI 2299:2021 2252:2007 2146:ISBN 2087:vs. 1947:Uses 1804:the 1603:and 1394:(Zn) 1392:Zinc 1388:(Cu) 1382:(Mn) 1376:(Li) 428:are 356:3(s) 350:+ Mn 344:2(s) 312:(aq) 308:3(s) 292:2(s) 290:2MnO 151:and 129:zinc 127:and 79:The 68:, a 3691:Dry 3525:PMC 3517:doi 3478:doi 3421:doi 3382:doi 3335:doi 3296:doi 3247:doi 3243:164 3208:doi 3164:doi 3152:366 3099:hdl 3091:doi 3087:351 3047:doi 2947:doi 2898:doi 2859:doi 2855:267 2820:doi 2816:196 2781:doi 2735:doi 2688:doi 2641:doi 2587:doi 2546:doi 2499:doi 2487:480 2438:doi 2361:doi 2322:doi 2271:doi 2184:doi 1975:ECT 1973:), 1967:ECG 1963:EEG 1884:or 1876:In 1864:or 1744:log 1588:or 1450:500 1209:exp 743:exp 665:exp 538:). 348:(s) 340:(s) 300:(l) 294:+ H 267:(l) 261:+ H 259:(s) 247:(s) 167:at 48:An 4398:: 3533:. 3523:. 3511:. 3494:. 3484:. 3429:. 3411:. 3388:. 3378:21 3376:. 3372:. 3349:. 3341:. 3333:. 3323:85 3321:. 3317:. 3292:94 3290:. 3286:. 3263:. 3255:. 3241:. 3237:. 3214:. 3204:13 3202:. 3198:. 3186:^ 3172:. 3162:. 3150:. 3146:. 3123:. 3115:. 3107:. 3097:. 3085:. 3081:. 3069:^ 3055:. 3041:. 3037:. 3012:. 3000:^ 2984:. 2961:. 2953:. 2943:12 2941:. 2937:. 2914:. 2906:. 2892:. 2888:. 2865:. 2853:. 2849:. 2826:. 2814:. 2810:. 2787:. 2777:31 2775:. 2771:. 2757:^ 2743:. 2729:. 2725:. 2702:. 2694:. 2682:. 2678:. 2655:. 2647:. 2637:36 2635:. 2631:. 2613:, 2599:^ 2583:35 2581:. 2577:. 2554:. 2544:. 2534:35 2532:. 2528:. 2505:. 2497:. 2485:. 2468:^ 2454:. 2446:. 2434:25 2432:. 2428:. 2409:. 2391:. 2359:. 2349:65 2347:. 2343:. 2318:91 2316:. 2269:. 2242:. 2224:. 2190:. 2180:16 2178:. 1939:, 1935:, 1931:, 1927:, 1912:. 1845:, 1794:Ό° 1679:12 1673:Ti 1666:12 1660:Ti 1654:12 1648:Ti 1456:30 1453:50 1439:- 1319:, 432:, 384:, 338:Zn 253:aq 245:Zn 229:A 213:. 155:. 91:. 4100:e 4093:t 4086:v 4062:e 4055:t 4048:v 3569:e 3562:t 3555:v 3541:. 3519:: 3502:. 3480:: 3437:. 3423:: 3417:9 3396:. 3384:: 3357:. 3337:: 3329:: 3302:. 3298:: 3271:. 3249:: 3222:. 3210:: 3180:. 3166:: 3158:: 3131:. 3101:: 3093:: 3063:. 3049:: 3043:2 3022:. 2994:. 2969:. 2949:: 2922:. 2900:: 2894:5 2873:. 2861:: 2834:. 2822:: 2795:. 2783:: 2751:. 2737:: 2731:4 2710:. 2690:: 2684:7 2663:. 2643:: 2593:. 2589:: 2562:. 2548:: 2540:: 2513:. 2501:: 2493:: 2479:4 2462:. 2440:: 2413:. 2395:. 2367:. 2363:: 2355:: 2328:. 2324:: 2301:. 2279:. 2273:: 2254:. 2198:. 2186:: 2154:. 2046:) 1822:σ 1818:Ω 1814:x 1810:Îł 1802:k 1798:T 1790:ÎŒ 1765:+ 1762:) 1759:x 1750:( 1738:T 1732:k 1729:+ 1724:o 1716:= 1677:O 1675:5 1671:4 1664:O 1662:5 1658:4 1652:O 1650:5 1646:4 1290:A 1267:] 1261:T 1258:k 1252:4 1245:2 1241:) 1234:+ 1231:E 1225:( 1216:[ 1202:T 1199:k 1178:2 1173:| 1168:J 1164:| 1157:= 1152:T 1149:E 1145:w 1124:T 1121:k 1088:) 1085:t 1082:( 1079:g 1059:J 1035:) 1032:t 1029:( 1026:g 1016:/ 1012:t 1009:E 1003:i 996:e 991:t 988:d 980:+ 960:2 949:2 944:| 939:J 935:| 928:= 923:T 920:E 916:w 847:= 838:G 808:] 802:T 799:k 793:4 786:2 782:) 775:+ 770:0 766:G 759:( 750:[ 739:A 736:= 733:k 709:, 705:) 699:T 696:k 685:G 672:( 661:A 658:= 655:k 606:2 602:) 595:+ 590:0 586:G 579:( 570:4 566:1 561:= 552:G 524:0 520:G 490:G 476:x 354:O 352:2 306:O 304:2 298:O 296:2 265:O 263:2 255:) 251:( 34:. 20:)

Index

Electrodes
Electrode (Pokémon)

shielded metal arc welding
electrical conductor
circuit
semiconductor
electrolyte
vacuum
batteries
electrophore
Johan Wilcke
static electricity

galvanic
battery
Alessandro Volta
Voltaic cell
copper
zinc
brine
Daniell cell
John Frederic Daniell
many more batteries
anodes
cathodes
William Whewell
Michael Faraday
Greek
conventional current

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑