Knowledge (XXG)

Framebuffer

Source đź“ť

341: 20: 537:, the framebuffer uses half of its memory to display the current frame. While that memory is being displayed, the other half of memory is filled with data for the next frame. Once the secondary buffer is filled, the framebuffer is instructed to display the secondary buffer instead. The primary buffer becomes the secondary buffer, and the secondary buffer becomes the primary. This switch is often done after the 146: 609:
to the framebuffer. The framebuffer's signal is then produced in combination with built-in video overlay devices (usually used to produce the mouse cursor without modifying the framebuffer's data) and any final special effects that are produced by modifying the output signal. An example of such final
516:
distribution to provide a method for running X without a graphical framebuffer. The Linux framebuffer device was developed to abstract the physical method for accessing the underlying framebuffer into a guaranteed memory map that is easy for programs to access. This increases portability, as programs
371:
could be driven beyond its capabilities. In some cases, this resulted in hardware damage to the display. More commonly, it simply produced garbled and unusable output. Modern CRT monitors fix this problem through the introduction of protection circuitry. When the display mode is changed, the monitor
427:
In some designs it was also possible to write data to the lookup table (or switch between existing palettes) on the run, allowing dividing the picture into horizontal bars with their own palette and thus render an image that had a far wider palette. For example, viewing an outdoor shot photograph,
384:
Framebuffers have traditionally supported a wide variety of color modes. Due to the expense of memory, most early framebuffers used 1-bit (2 colors per pixel), 2-bit (4 colors), 4-bit (16 colors) or 8-bit (256 colors) color depths. The problem with such small color depths is that a full range of
245:
in 1972. Shoup was able to use the SuperPaint framebuffer to create an early digital video-capture system. By synchronizing the output signal to the input signal, Shoup was able to overwrite each pixel of data as it shifted in. Shoup also experimented with modifying the output signal using color
363:
machines and operating systems, such conveniences were usually eschewed in favor of directly manipulating the hardware settings. This manipulation was far more flexible in that any resolution, color depth and refresh rate was attainable – limited only by the memory available to the framebuffer.
428:
the picture could be divided into four bars, the top one with emphasis on sky tones, the next with foliage tones, the next with skin and clothing tones, and the bottom one with ground colors. This required each palette to have overlapping colors, but carefully done, allowed great flexibility.
323:
all released framebuffers for their workstation computers in this period. These framebuffers were usually of a much higher quality than could be found in most home computers, and were regularly used in television, printing, computer modeling and 3D graphics. Framebuffers were also used by
372:
attempts to obtain a signal lock on the new refresh frequency. If the monitor is unable to obtain a signal lock, or if the signal is outside the range of its design limitations, the monitor will ignore the framebuffer signal and possibly present the user with an error message.
287:
The rapid improvement of integrated-circuit technology made it possible for many of the home computers of the late 1970s to contain low-color-depth framebuffers. Today, nearly all computers with graphical capabilities utilize a framebuffer for generating the video signal.
375:
LCD monitors tend to contain similar protection circuitry, but for different reasons. Since the LCD must digitally sample the display signal (thereby emulating an electron beam), any signal that is out of range cannot be physically displayed on the monitor.
491:
The CPU sends image updates to the video card. The video processor on the card forms a picture of the screen image and stores it in the frame buffer as a large bitmap in RAM. The bitmap in RAM is used by the card to continually refresh the screen image.
704:
displays, where a buffer holds codes for characters, not individual pixels. The video display device performs the same raster scan as with a framebuffer, but generates the pixels of each character in the buffer as it directs the beam.
246:
tables. These color tables allowed the SuperPaint system to produce a wide variety of colors outside the range of the limited 8-bit data it contained. This scheme would later become commonplace in computer framebuffers.
681:
renders a broadcast signal. The color information for each point thus displayed on the screen is pulled directly from the framebuffer during the scan, creating a set of discrete picture elements, i.e. pixels.
393:
to the framebuffer. Each color stored in framebuffer memory acts as a color index. The lookup table serves as a palette with a limited number of different colors meanwhile the rest is used as an index table.
836: 440:
directly to the CPU memory space, this is not the only method by which they may be accessed. Framebuffers have varied widely in the methods used to access memory. Some of the most common are:
1936: 1289: 253:
released the first commercial framebuffer, the Picture System, costing about $ 15,000. It was capable of producing resolutions of up to 512 by 512 pixels in 8-bit
956: 840: 407: 1405: 109:
The information in the buffer typically consists of color values for every pixel to be shown on the display. Color values are commonly stored in 1-bit
1786: 1341: 1615: 484:
Video cards always have a certain amount of RAM. A small portion of this RAM is where the bitmap of image data is "buffered" for display. The term
1931: 1319: 417: 352:
under which the framebuffer can operate. These modes reconfigure the hardware to output different resolutions, color depths, memory layouts and
1282: 689:
that were common prior to the advent of raster graphics (and, consequently, to the concept of a framebuffer). With a vector display, only the
261:
would later create the first 24-bit color system using three of the Evans & Sutherland framebuffers. Each framebuffer was connected to an
1368: 589:
systems. While retaining these 2D capabilities, most modern accelerators focus on producing 3D imagery in real time. A common design uses a
1567: 1092: 157:
Computer researchers had long discussed the theoretical advantages of a framebuffer, but were unable to produce a machine with sufficient
578:. Common graphics drawing commands (many of them geometric) are sent to the graphics accelerator in their raw form. The accelerator then 129:
is sometimes used to retain information about pixel transparency. The total amount of memory required for the framebuffer depends on the
1057: 1192: 204: 1540: 1579: 1562: 1275: 1100: 814: 329: 196:. Later on, the Bell Labs system was expanded to display an image with a color depth of three bits on a standard color TV monitor. 1232: 1574: 1496: 1215: 258: 1257: 500:
Many systems attempt to emulate the function of a framebuffer device, often for reasons of compatibility. The two most common
276:
produced the first commercial full-color broadcast framebuffer, the Quantel DFS 3000. It was first used in TV coverage of the
529:
A frame buffer may be designed with enough memory to store two frames worth of video data. In a technique known generally as
181: 697:
of the output display is then commanded to move from vertex to vertex, tracing a line across the area between these points.
922: 316: 657:. As of 2015 the market for graphics accelerators for x86-based systems is dominated by Nvidia (acquired 3dfx in 2002), 1770: 1535: 630: 618:
cards. These cards add a slight blur to output signal that makes aliasing of the rasterized graphics much less obvious.
1116: 2006: 1985: 1902: 650: 538: 463: 238: 2016: 1839: 1324: 642: 292:
computers, created in the 1980s, featured special design attention to graphics performance and included a unique
257:, and became a boon for graphics researchers who did not have the resources to build their own framebuffer. The 2021: 2011: 1951: 1645: 1298: 602: 601:
which interfaces with the graphics driver to translate received commands to instructions for the accelerator's
565: 570:
As the demand for better graphics increased, hardware manufacturers created a way to decrease the amount of
212: 406: 284:
inset of the Olympic flaming torch while the rest of the picture featured the runner entering the stadium.
265:
color output (one for red, one for green and one for blue), with a Digital Equipment Corporation PDP 11/04
1760: 467: 277: 174: 980:
D. Ophir; S. Rankowitz; B. J. Shepherd; R. J. Spinrad (June 1968), "BRAD: The Brookhave Raster Display",
1946: 1907: 1718: 1650: 729: 611: 250: 233:
system with framebuffers capable of holding a standard video image. This led to the development of the
1914: 1892: 1871: 1666: 1640: 1589: 1557: 673:
With a framebuffer, the electron beam (if the display technology uses one) is commanded to perform a
634: 219: 193: 40: 1973: 1919: 1813: 1610: 1461: 300: 114: 397:
Here is a typical indexed 256-color image and its own palette (shown as a rectangle of swatches):
1963: 1620: 1523: 1035: 995: 903: 719: 281: 208: 130: 63:
contain framebuffer circuitry in their cores. This circuitry converts an in-memory bitmap into a
1160: 173:
memory and displayed on a second CRT. Other research labs were exploring these techniques with
1956: 1755: 1630: 1518: 1096: 895: 810: 690: 505: 437: 340: 1086: 1068: 605:(GPU). The GPU uses those instructions to compute the rasterized results and the results are 1968: 1941: 1876: 1854: 1818: 1750: 1025: 985: 934: 885: 877: 654: 626: 622: 590: 530: 308: 304: 170: 83: 19: 582:
the results of the command to the framebuffer. This method frees the CPU to do other work.
1924: 1849: 1584: 1528: 1395: 734: 549: 513: 416: 312: 293: 162: 158: 150: 79: 1203: 82:
used by a computer application for the representation of the content to be shown on the
1765: 1491: 1400: 739: 686: 542: 518: 501: 451: 368: 230: 1239: 2000: 1801: 1545: 1441: 1420: 1262: 1223: 890: 694: 579: 534: 386: 166: 126: 48: 999: 907: 764: 1808: 1383: 1361: 1356: 1141: 1039: 743: 479: 459: 390: 353: 266: 110: 99: 64: 517:
are not required to deal with systems that have disjointed memory maps or require
804: 782: 1978: 1796: 1471: 1410: 1173: 674: 646: 615: 185: 134: 122: 56: 942: 621:
At one time there were many manufacturers of graphics accelerators, including:
16:
Portion of random-access memory containing a bitmap that drives a video display
1866: 1834: 1791: 1681: 1446: 1378: 724: 678: 561: 242: 234: 200: 118: 60: 899: 1897: 1456: 1334: 865: 714: 701: 254: 189: 71: 1267: 938: 348:
Framebuffers used in personal and home computing often had sets of defined
1030: 1013: 990: 1844: 1329: 881: 606: 598: 866:"The random-access image: Memory and the history of the computer screen" 1738: 1605: 1550: 1466: 1451: 1415: 1346: 273: 226: 927:
Proceedings of the IEE - Part III: Radio and Communication Engineering
180:
A color scanned display was implemented in the late 1960s, called the
1635: 1625: 1511: 1506: 1436: 1390: 1373: 1351: 638: 594: 44: 145: 545:
where half the old frame and half the new frame is shown together.
1861: 1743: 1728: 1711: 1706: 1701: 1696: 1691: 1686: 1676: 1088:
Computer Architecture For Interactive Display Of Segmented Imagery
662: 447:
Port commands to set each pixel, range of pixels or palette entry.
339: 289: 144: 52: 18: 923:"A storage system for use with binary-digital computing machines" 450:
Mapping a memory range smaller than the framebuffer memory, then
1733: 1723: 1501: 700:
Likewise, framebuffers differ from the technology used in early
509: 360: 325: 215: 1271: 574:
time required to fill the framebuffer. This is commonly called
488:
is thus often used interchangeably when referring to this RAM.
1142:"History of the New York Institute of Technology Graphics Lab" 658: 586: 585:
Early accelerators focused on improving the performance of 2D
571: 332:, which were also of a higher quality than on home computers. 320: 299:
Framebuffers also became popular in high-end workstations and
262: 1233:"Digital Paint Systems: An Anecdotal and Historical Overview" 1161:
http://tldp.org/HOWTO/XFree86-Video-Timings-HOWTO/overd.html
385:
colors cannot be produced. The solution to this problem was
1258:
Interview with NYIT researcher discussing the 24-bit system
229:
memory, made it practical to create, for the first time, a
169:, later the Williams-Kilburn tube, to store 1024 bits on a 1238:. IEEE Annals of the History of Computing. Archived from 1091:. Computer Architectures for Spatially Distributed Data. 806:.NET Framework Solutions: In Search of the Lost Win32 API 548:
Page flipping has become a standard technique used by PC
192:
implemented a scanned display with a frame buffer, using
444:
Mapping the entire framebuffer to a given memory range.
367:
An unfortunate side-effect of this method was that the
98:
for short. Screen buffers should be distinguished from
188:
and a television monitor. In 1969, A. Michael Noll of
1220:
A Critical History of Computer Graphics and Animation
1163:
XFree86 Video Timings HOWTO: Overdriving Your Monitor
1885: 1827: 1779: 1659: 1598: 1484: 1429: 1312: 1305: 1058:"SuperPaint: An Early Frame Buffer Graphics System" 1051: 1049: 161:at an economically practicable cost. In 1947, the 837:"Smart Computing Dictionary Entry - video buffer" 470:or have restrictions on how it can be updated. 436:While framebuffers are commonly accessed via a 296:framebuffer capable of displaying 4096 colors. 984:, vol. 11, no. 6, pp. 415–416, 957:"Kilburn 1947 Report Cover Notes (Digital 60)" 765:"What is frame buffer? A Webopedia Definition" 508:device (fbdev) and the X Virtual Framebuffer ( 1283: 67:that can be displayed on a computer monitor. 8: 1193:"Digital Paint Systems: Historical Overview" 746:to eliminate the need for framebuffer memory 1222:. The Ohio State University. Archived from 921:Williams, F. C.; Kilburn, T. (March 1949). 693:of the graphics primitives are stored. The 685:Framebuffers differ significantly from the 401: 86:. The screen buffer may also be called the 1309: 1290: 1276: 1268: 1263:History of Sun Microsystems' Framebuffers 1174:"An illustrated Guide to the Video Cards" 1029: 989: 889: 859: 857: 756: 199:In the early 1970s, the development of 269:controlling the three devices as one. 1093:Springer Science & Business Media 51:containing data representing all the 47:that drives a video display. It is a 7: 458:The framebuffer organization may be 184:RAster Display (BRAD), which used a 1616:Input–output memory management unit 1014:"Scanned-Display Computer Graphics" 1065:Annals of the History of Computing 177:achieving a 4096 display in 1950. 14: 133:of the output signal, and on the 661:(who acquired ATI in 2006), and 415: 405: 259:New York Institute of Technology 1191:Alvy Ray Smith (May 30, 1997). 1012:Noll, A. Michael (March 1971). 1085:Goldwasser, S.M. (June 1983). 1: 961:curation.cs.manchester.ac.uk 117:, 8-bit palettized, 16-bit 2038: 864:Gaboury, J. (2018-03-01). 559: 539:vertical blanking interval 477: 1018:Communications of the ACM 982:Communications of the ACM 891:21.11116/0000-0001-FA73-4 512:). Xvfb was added to the 466:. The framebuffer may be 205:metal–oxide–semiconductor 153:Williams tube CRT in 1951 1646:Video display controller 1299:Graphics processing unit 1124:, Evans & Sutherland 610:special effects was the 603:graphics processing unit 566:Graphics processing unit 533:or more specifically as 272:In 1975, the UK company 102:. To this end, the term 1231:Alvy Ray Smith (2001). 1216:"Hardware advancements" 1095:. pp. 75–94 (81). 344:A Sun cgsix framebuffer 222:) chips with at least 1 125:formats. An additional 1761:Shared graphics memory 1214:Wayne Carlson (2003). 1200:Microsoft Tech Memo 14 1067:. IEEE. Archived from 1056:Richard Shoup (2001). 939:10.1049/pi-3.1949.0018 809:. Wiley. p. 160. 614:technique used by the 468:all points addressable 345: 303:throughout the 1980s. 278:1976 Montreal Olympics 251:Evans & Sutherland 175:MIT Lincoln Laboratory 171:cathode-ray tube (CRT) 154: 24: 1947:Hardware acceleration 1651:Video processing unit 1031:10.1145/362566.362567 991:10.1145/363347.363385 730:Tile-based video game 612:spatial anti-aliasing 576:graphics acceleration 556:Graphics accelerators 504:framebuffers are the 474:RAM on the video card 343: 148: 22: 1872:Performance per watt 1641:Texture mapping unit 1590:Unified shader model 1209:on February 7, 2012. 882:10.1162/GREY_a_00233 803:Mueller, J. (2002). 496:Virtual framebuffers 301:arcade system boards 220:random-access memory 211:chips, particularly 194:magnetic-core memory 113:(monochrome), 4-bit 41:random-access memory 1814:Integrated graphics 92:regeneration buffer 43:(RAM) containing a 23:Sun TGX Framebuffer 1964:Parallel computing 1840:Display resolution 1621:Render output unit 1611:Geometry processor 945:on April 26, 2019. 783:"Frame Buffer FAQ" 720:Scanline rendering 346: 282:picture-in-picture 209:integrated-circuit 155: 149:Memory pattern on 39:) is a portion of 25: 2007:Computer graphics 1994: 1993: 1809:External graphics 1792:Discrete graphics 1756:Memory controller 1519:Graphics pipeline 1480: 1479: 506:Linux framebuffer 423: 422: 328:for its high-end 137:or palette size. 104:off-screen buffer 2029: 2017:Image processing 1969:Vector processor 1952:Image processing 1942:Graphics library 1877:Transistor count 1819:System on a chip 1751:Memory bandwidth 1631:Stream processor 1310: 1292: 1285: 1278: 1269: 1246: 1244: 1237: 1227: 1210: 1208: 1202:. Archived from 1197: 1182: 1181: 1170: 1164: 1158: 1152: 1151: 1149: 1148: 1138: 1132: 1131: 1130: 1129: 1123: 1113: 1107: 1106: 1082: 1076: 1075: 1073: 1062: 1053: 1044: 1043: 1033: 1009: 1003: 1002: 993: 977: 971: 970: 968: 967: 953: 947: 946: 941:. Archived from 918: 912: 911: 893: 861: 852: 851: 849: 848: 839:. Archived from 833: 827: 826: 824: 823: 800: 794: 793: 791: 789: 779: 773: 772: 761: 655:Silicon Graphics 623:3dfx Interactive 591:graphics library 550:game programmers 531:double buffering 419: 409: 402: 359:In the world of 309:Sun Microsystems 225: 165:computer used a 84:computer display 2037: 2036: 2032: 2031: 2030: 2028: 2027: 2026: 2022:User interfaces 2012:Computer memory 1997: 1996: 1995: 1990: 1881: 1823: 1775: 1655: 1594: 1585:Tiled rendering 1476: 1425: 1396:InfiniteReality 1301: 1296: 1254: 1249: 1242: 1235: 1230: 1213: 1206: 1195: 1190: 1186: 1185: 1178:karbosguide.com 1172: 1171: 1167: 1159: 1155: 1146: 1144: 1140: 1139: 1135: 1127: 1125: 1121: 1115: 1114: 1110: 1103: 1084: 1083: 1079: 1071: 1060: 1055: 1054: 1047: 1011: 1010: 1006: 979: 978: 974: 965: 963: 955: 954: 950: 920: 919: 915: 863: 862: 855: 846: 844: 835: 834: 830: 821: 819: 817: 802: 801: 797: 787: 785: 781: 780: 776: 763: 762: 758: 753: 735:Tiled rendering 711: 687:vector displays 671: 568: 558: 527: 514:X Window System 498: 482: 476: 434: 382: 338: 294:Hold-And-Modify 223: 163:Manchester Baby 143: 80:computer memory 35:, or sometimes 17: 12: 11: 5: 2035: 2033: 2025: 2024: 2019: 2014: 2009: 1999: 1998: 1992: 1991: 1989: 1988: 1983: 1982: 1981: 1971: 1966: 1961: 1960: 1959: 1949: 1944: 1939: 1934: 1929: 1928: 1927: 1922: 1912: 1911: 1910: 1905: 1900: 1889: 1887: 1883: 1882: 1880: 1879: 1874: 1869: 1864: 1859: 1858: 1857: 1852: 1842: 1837: 1831: 1829: 1825: 1824: 1822: 1821: 1816: 1811: 1806: 1805: 1804: 1799: 1789: 1783: 1781: 1777: 1776: 1774: 1773: 1768: 1766:Texture memory 1763: 1758: 1753: 1748: 1747: 1746: 1741: 1736: 1731: 1726: 1716: 1715: 1714: 1709: 1704: 1699: 1694: 1689: 1684: 1674: 1669: 1663: 1661: 1657: 1656: 1654: 1653: 1648: 1643: 1638: 1633: 1628: 1623: 1618: 1613: 1608: 1602: 1600: 1596: 1595: 1593: 1592: 1587: 1582: 1577: 1572: 1571: 1570: 1560: 1555: 1554: 1553: 1543: 1538: 1533: 1532: 1531: 1526: 1516: 1515: 1514: 1509: 1504: 1494: 1492:Compute kernel 1488: 1486: 1482: 1481: 1478: 1477: 1475: 1474: 1469: 1464: 1459: 1454: 1449: 1444: 1439: 1433: 1431: 1427: 1426: 1424: 1423: 1418: 1413: 1408: 1403: 1398: 1393: 1388: 1387: 1386: 1381: 1376: 1366: 1365: 1364: 1359: 1354: 1349: 1339: 1338: 1337: 1332: 1327: 1316: 1314: 1307: 1303: 1302: 1297: 1295: 1294: 1287: 1280: 1272: 1266: 1265: 1260: 1253: 1252:External links 1250: 1248: 1247: 1245:on 2012-02-05. 1228: 1226:on 2012-03-14. 1211: 1187: 1184: 1183: 1165: 1153: 1133: 1118:Picture System 1108: 1101: 1077: 1074:on 2004-06-12. 1045: 1024:(3): 145–150. 1004: 972: 948: 913: 853: 828: 815: 795: 774: 755: 754: 752: 749: 748: 747: 740:Tektronix 4050 737: 732: 727: 722: 717: 710: 707: 670: 667: 557: 554: 543:screen tearing 526: 523: 519:bank switching 497: 494: 475: 472: 456: 455: 452:bank switching 448: 445: 438:memory mapping 433: 430: 425: 424: 421: 420: 413: 410: 381: 378: 369:display device 337: 334: 280:to generate a 231:digital memory 142: 139: 106:is also used. 55:in a complete 15: 13: 10: 9: 6: 4: 3: 2: 2034: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2004: 2002: 1987: 1984: 1980: 1977: 1976: 1975: 1972: 1970: 1967: 1965: 1962: 1958: 1955: 1954: 1953: 1950: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1926: 1923: 1921: 1918: 1917: 1916: 1913: 1909: 1906: 1904: 1901: 1899: 1896: 1895: 1894: 1891: 1890: 1888: 1884: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1856: 1853: 1851: 1848: 1847: 1846: 1843: 1841: 1838: 1836: 1833: 1832: 1830: 1826: 1820: 1817: 1815: 1812: 1810: 1807: 1803: 1800: 1798: 1795: 1794: 1793: 1790: 1788: 1785: 1784: 1782: 1778: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1721: 1720: 1717: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1679: 1678: 1675: 1673: 1670: 1668: 1665: 1664: 1662: 1658: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1603: 1601: 1597: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1569: 1566: 1565: 1564: 1561: 1559: 1556: 1552: 1549: 1548: 1547: 1546:Rasterisation 1544: 1542: 1539: 1537: 1536:HDR rendering 1534: 1530: 1527: 1525: 1522: 1521: 1520: 1517: 1513: 1510: 1508: 1505: 1503: 1500: 1499: 1498: 1495: 1493: 1490: 1489: 1487: 1483: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1442:Apple silicon 1440: 1438: 1435: 1434: 1432: 1428: 1422: 1421:Apple silicon 1419: 1417: 1414: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1385: 1382: 1380: 1377: 1375: 1372: 1371: 1370: 1367: 1363: 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1344: 1343: 1340: 1336: 1333: 1331: 1328: 1326: 1323: 1322: 1321: 1318: 1317: 1315: 1311: 1308: 1304: 1300: 1293: 1288: 1286: 1281: 1279: 1274: 1273: 1270: 1264: 1261: 1259: 1256: 1255: 1251: 1241: 1234: 1229: 1225: 1221: 1217: 1212: 1205: 1201: 1194: 1189: 1188: 1179: 1175: 1169: 1166: 1162: 1157: 1154: 1143: 1137: 1134: 1120: 1119: 1112: 1109: 1104: 1102:9783642821509 1098: 1094: 1090: 1089: 1081: 1078: 1070: 1066: 1059: 1052: 1050: 1046: 1041: 1037: 1032: 1027: 1023: 1019: 1015: 1008: 1005: 1001: 997: 992: 987: 983: 976: 973: 962: 958: 952: 949: 944: 940: 936: 932: 928: 924: 917: 914: 909: 905: 901: 897: 892: 887: 883: 879: 876:(70): 24–53. 875: 871: 867: 860: 858: 854: 843:on 2012-03-24 842: 838: 832: 829: 818: 816:9780782141344 812: 808: 807: 799: 796: 784: 778: 775: 770: 769:webopedia.com 766: 760: 757: 750: 745: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 712: 708: 706: 703: 698: 696: 695:electron beam 692: 688: 683: 680: 676: 668: 666: 664: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 619: 617: 613: 608: 604: 600: 596: 592: 588: 583: 581: 577: 573: 567: 563: 555: 553: 551: 546: 544: 540: 536: 535:page flipping 532: 525:Page flipping 524: 522: 520: 515: 511: 507: 503: 495: 493: 489: 487: 481: 473: 471: 469: 465: 461: 454:as necessary. 453: 449: 446: 443: 442: 441: 439: 432:Memory access 431: 429: 418: 414: 411: 408: 404: 403: 400: 399: 398: 395: 392: 389:which adds a 388: 387:indexed color 380:Color palette 379: 377: 373: 370: 365: 362: 357: 355: 351: 342: 336:Display modes 335: 333: 331: 330:arcade boards 327: 322: 318: 314: 310: 306: 302: 297: 295: 291: 285: 283: 279: 275: 270: 268: 264: 260: 256: 252: 247: 244: 240: 239:Richard Shoup 236: 232: 228: 221: 217: 214: 210: 206: 202: 197: 195: 191: 187: 183: 178: 176: 172: 168: 167:Williams tube 164: 160: 152: 147: 140: 138: 136: 132: 128: 127:alpha channel 124: 120: 116: 112: 107: 105: 101: 97: 93: 89: 85: 81: 78:is a part of 77: 76:screen buffer 73: 68: 66: 62: 58: 54: 50: 49:memory buffer 46: 42: 38: 34: 30: 21: 1974:Video coding 1671: 1575:Tessellation 1485:Architecture 1240:the original 1224:the original 1219: 1204:the original 1199: 1177: 1168: 1156: 1145:. Retrieved 1136: 1126:, retrieved 1117: 1111: 1087: 1080: 1069:the original 1064: 1021: 1017: 1007: 981: 975: 964:. Retrieved 960: 951: 943:the original 930: 926: 916: 873: 869: 845:. Retrieved 841:the original 831: 820:. Retrieved 805: 798: 786:. Retrieved 777: 771:. June 1998. 768: 759: 744:storage tube 699: 684: 677:, the way a 672: 620: 584: 575: 569: 547: 528: 499: 490: 486:frame buffer 485: 483: 480:Video memory 460:packed pixel 457: 435: 426: 396: 391:lookup table 383: 374: 366: 358: 354:refresh rate 349: 347: 298: 286: 271: 267:minicomputer 248: 213:high-density 198: 179: 156: 108: 103: 100:video memory 96:regen buffer 95: 91: 88:video buffer 87: 75: 69: 65:video signal 36: 33:frame buffer 32: 28: 26: 1957:Compression 1828:Performance 1780:Form factor 1672:Framebuffer 1636:Tensor unit 1626:Shader unit 1558:Ray-tracing 1497:Fabrication 1472:Intel 2700G 1406:3dfx Voodoo 1401:NEC µPD7220 933:(40): 81–. 675:raster scan 669:Comparisons 647:S3 Graphics 616:3dfx Voodoo 607:bit blitted 186:drum memory 135:color depth 121:and 24-bit 61:video cards 57:video frame 29:framebuffer 2001:Categories 1867:Frame rate 1835:Clock rate 1797:Clustering 1599:Components 1379:Radeon Pro 1147:2007-08-31 1128:2017-12-31 966:2019-04-26 847:2015-04-21 822:2015-04-21 751:References 725:Swap chain 679:television 580:rasterizes 562:Video card 560:See also: 478:See also: 243:Xerox PARC 237:system by 235:SuperPaint 201:MOS memory 182:Brookhaven 131:resolution 123:true color 119:high color 115:palettized 37:framestore 1898:Scrolling 1802:Switching 1457:VideoCore 900:1526-3819 870:Grey Room 715:Bit plane 702:text mode 541:to avoid 356:timings. 255:grayscale 249:In 1974, 218:(dynamic 190:Bell Labs 72:computing 59:. Modern 1845:Fillrate 1524:Geometry 1384:Instinct 1000:11160780 908:57565564 709:See also 691:vertices 631:Hercules 599:Direct3D 593:such as 207:memory) 1925:Texture 1855:Texel/s 1850:Pixel/s 1787:IP core 1739:HBM-PIM 1606:Blitter 1580:T&L 1551:Shading 1467:Imageon 1462:Vivante 1452:PowerVR 1416:Glaze3D 1347:GeForce 1313:Desktop 1040:2210619 742:used a 635:Trident 502:virtual 412:  274:Quantel 141:History 1903:Sprite 1862:FLOP/s 1660:Memory 1529:Vertex 1512:MOSFET 1507:FinFET 1437:Adreno 1430:Mobile 1391:Matrox 1374:Radeon 1352:Quadro 1342:Nvidia 1099:  1038:  998:  906:  898:  813:  788:14 May 643:Radius 639:Nvidia 595:OpenGL 464:planar 224:  159:memory 111:binary 90:, the 53:pixels 45:bitmap 1979:Codec 1937:GPGPU 1744:HBM3E 1729:HBM2E 1712:GDDR7 1707:GDDR6 1702:GDDR5 1697:GDDR4 1692:GDDR3 1687:GDDR2 1677:SGRAM 1362:Tegra 1357:Tesla 1320:Intel 1243:(PDF) 1236:(PDF) 1207:(PDF) 1196:(PDF) 1122:(PDF) 1072:(PDF) 1061:(PDF) 1036:S2CID 996:S2CID 904:S2CID 663:Intel 350:modes 290:Amiga 94:, or 1986:VLIW 1932:ASIC 1908:Tile 1886:Misc 1771:VRAM 1734:HBM3 1724:HBM2 1682:GDDR 1568:SIMT 1563:SIMD 1502:CMOS 1447:Mali 1097:ISBN 896:ISSN 811:ISBN 790:2014 653:and 564:and 510:Xvfb 361:Unix 326:Sega 319:and 216:DRAM 151:SWAC 74:, a 1719:HBM 1667:DMA 1541:MAC 1369:AMD 1335:Arc 1306:GPU 1026:doi 986:doi 935:doi 886:hdl 878:doi 659:AMD 651:SiS 637:; 629:; 627:ATI 597:or 587:GUI 572:CPU 462:or 321:IBM 317:DEC 305:SGI 263:RGB 241:at 70:In 2003:: 1920:GI 1915:3D 1893:2D 1411:S3 1330:Xe 1325:GT 1218:. 1198:. 1176:. 1063:. 1048:^ 1034:. 1022:14 1020:. 1016:. 994:, 959:. 931:96 929:. 925:. 902:. 894:. 884:. 874:70 872:. 868:. 856:^ 767:. 665:. 649:; 645:; 641:; 633:; 625:; 552:. 521:. 315:, 313:HP 311:, 307:, 227:kb 27:A 1291:e 1284:t 1277:v 1180:. 1150:. 1105:. 1042:. 1028:: 988:: 969:. 937:: 910:. 888:: 880:: 850:. 825:. 792:. 203:( 31:(

Index


random-access memory
bitmap
memory buffer
pixels
video frame
video cards
video signal
computing
computer memory
computer display
video memory
binary
palettized
high color
true color
alpha channel
resolution
color depth

SWAC
memory
Manchester Baby
Williams tube
cathode-ray tube (CRT)
MIT Lincoln Laboratory
Brookhaven
drum memory
Bell Labs
magnetic-core memory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑