Knowledge (XXG)

Mammatus cloud

Source đź“ť

46: 207: 285:. Being now cooler than the environmental air and unstable, they descend until in static equilibrium, at which point a restoring force curves the edges of the fallout back up, creating the lobed appearance. One problem with this theory is that observations show that cloud-base evaporation does not always produce mammatus. This mechanism could be responsible for the earliest stage of development, but other processes (namely process 1, above) may come into play as the lobes are formed and mature. 386:, where differential heating (cooling at the top and heating at the bottom) of a layer causes convective overturning. However, in this case of mammatus, the base is cooled by thermodynamical mechanisms mentioned above. As the cloud base descends, it happens on the scale of mammatus lobes, while adjacent to the lobes, there is a compensating ascent. This method has not proven to be observationally sound and is viewed as generally insubstantial. 122: 185: 196: 38: 160:
Mammatus may appear as smooth, ragged or lumpy lobes and may be opaque or translucent. Because mammatus occur as a grouping of lobes, the way they clump together can vary from an isolated cluster to a field of mammae that spread over hundreds of kilometers to being organized along a line, and may be
374:
is the name given to the instability that exists between two fluids of differing densities, when the denser of the two is atop the less dense fluid. Along a cloud-base/sub-cloud interface, the denser, hydrometeor-laden air could cause mixing with the less-dense sub-cloud air. This mixing would take
312:
along the cloud-base may cause inhomogeneous descent along the base. Frictional drag and associated eddy-like structures create the lobed appearance of the fallout. The main shortcoming of this theory is that vertical velocities in the lobes have been observed to be greater than the fall speeds of
352:
impinging upon the tropopause and spreading out in wave form over the entirety of the anvil. Therefore, this method does not explain the prevalence of mammatus clouds in one part of the anvil versus another. Furthermore, time and size scales for gravity waves and mammatus do not match up entirely.
175:
True to their ominous appearance, mammatus clouds are often harbingers of a coming storm or other extreme weather system. Typically composed primarily of ice, they can extend for hundreds of miles in each direction and individual formations can remain visibly static for ten to fifteen minutes at a
288:
There may also be destabilization at cloud base due to melting. If the cloud base exists near the freezing line, then the cooling in the immediate air caused by melting can lead to convective overturning, just as in the processes above. However, this strict temperature environment is not always
359:
is prevalent along cloud boundaries and results in the formation of wave-like protrusions (called Kelvin-Helmholtz billows) from a cloud boundary. Mammatus are not in the form of K-H billows, thus, it is proposed that the instability can trigger the formation of the protrusions, but that another
108:
is a cloud supplementary feature rather than a genus, species or variety of cloud. The distinct "lumpy" undersides are formed by cold air sinking down to form the pockets contrary to the puffs of clouds rising through the convection of warm air. These formations were first described in 1894 by
171:
kilometre (0.3 mi). A lobe can last an average of 10 minutes, but a whole cluster of mamma can range from 15 minutes to a few hours. They are usually composed of ice, but also can be a mixture of ice and liquid water or be composed of almost entirely liquid water.
336:
cloud can penetrate downward through the entire layer and emerge as mammatus at cloud-base. Another idea is that as the cloud-base warms due to radiative heating from land surface's longwave emission, the base destabilizes and overturns. This method is valid for only
261:
overturning can occur, creating a lumpy cloud-base. The problems with this theory are that there are observations of mammatus lobes that do not support the presence of strong subsidence in the lobes, and that it is difficult to separate the processes of
225:
The existence of many different types of mammatus clouds, each with distinct properties and occurring in distinct environments, has given rise to multiple hypotheses on their formation, which are also relevant to other cloud forms.
347:
are proposed to be the formation mechanism of linearly organized mammatus clouds. Indeed, wave patterns have been observed in the mammatus environment, but this is mostly due to gravity wave creation as a response to a convective
517: 327:
Clouds undergo thermal reorganization due to radiative effects as they evolve. There are a couple of ideas as to how radiation can cause mammatus to form. One is that, because clouds radiatively cool
149:
clouds, as well as volcanic ash clouds. When occurring in cumulonimbus, mammatus are often indicative of a particularly strong storm. Due to the intensely sheared environment in which mammatus form,
375:
the form of mammatus clouds. The physical problem with this proposed method is that an instability existing along a static interface cannot necessarily be applied to the interface between two
770: 237:) across the anvil cloud/sub-cloud air boundary, which strongly influence interactions therein. The following are the proposed mechanisms, each described with its shortcomings: 324:. In CDI, cloudy air is mixed into the dry sub-cloud air rather than precipitating into it. The cloudy layer destabilizes due to evaporative cooling and mammatus are formed. 161:
composed of either unequal or similarly-sized lobes. The individual mammatus lobe average diameters of 1–3 kilometres (0.6–1.9 mi) and lengths on average of
1393: 245:
gradually subsides as it spreads out from its source cloud. As air descends, it warms. However, the cloudy air will warm more slowly (at the
157:
with mammatus as they indicate convectively induced turbulence. Contrails may also produce lobes but these are incorrectly termed as mammatus.
792: 273:
fallout is a second proposed formation mechanism. As hydrometeors fall into the dry sub-cloud air, the air containing the precipitation
655:
Winstead, Nathaniel S.; Verlinde, J.; Arthur, S. Tracy; Jaskiewicz, Francine; Jensen, Michael; Miles, Natasha; Nicosia, David (2001).
383: 812: 360:
process must form the protrusions into lobes. Still, the main downfall with this theory is that K-H instability occurs in a stably
98: 1681: 356: 341:
clouds. However, the nature of anvil clouds is that they are largely made up of ice, and are therefore relatively optically thin.
744: 390:
This plenitude of proposed formation mechanisms shows, if nothing else, that the mammatus cloud is generally poorly understood.
371: 1504: 459: 282: 1156: 1650: 1655: 1509: 1203: 1166: 309: 270: 263: 1640: 1519: 1514: 361: 246: 1753: 1389: 1060: 1055: 912: 893: 785: 321: 101: 681: 656: 329: 1415: 1176: 1045: 973: 250: 229:
One environmental trend is shared by all of the formation mechanisms hypothesized for mammatus clouds: sharp
1524: 1385: 1379: 1281: 45: 1635: 1630: 1096: 988: 713: 254: 206: 415: 1529: 1374: 1091: 1009: 266:
fallout and cloud-base subsidence, thus rendering it unclear as to whether either process is occurring.
754: 749: 1579: 1467: 1050: 993: 778: 705: 696:
Kanak, Katharine M.; Straka, Jerry M.; Schultz, David M. (2008). "Numerical Simulation of Mammatus".
668: 619: 578: 529: 516:; Bryan, George H.; Durant, Adam J.; Garrett, Timothy J.; Klein, Petra M.; Lilly, Douglas K. (2006). 430: 320:, is called cloud-base detrainment instability (CDI), which acts very much like convective cloud-top 718: 1721: 1487: 1325: 1276: 1181: 1161: 804: 565:
Lane, Todd P.; Sharman, Robert D.; Trier, Stanley B.; Fovell, Robert G.; Williams, John K. (2012).
274: 110: 1584: 1303: 1257: 1230: 1213: 1074: 1028: 1014: 637: 547: 242: 211: 138: 31: 1671: 1625: 1451: 1195: 1139: 839: 512:
Schultz, David M.; Kanak, Katharine M.; Straka, Jerry M.; Trapp, Robert J.; Gordon, Brent A.;
493: 338: 293: 219: 142: 292:
The above processes specifically relied on the destabilization of the sub-cloud layer due to
1758: 1595: 1331: 1171: 723: 676: 627: 586: 537: 438: 353:
Gravity wave trains may be responsible for organizing the mammatus rather than forming them.
1676: 1645: 1570: 1410: 978: 461:
International Cloud Atlas. Volume I. Manual on the observation of clouds and other Meteors
313:
the hydrometeors within them; thus, there should be a dynamical downward forcing, as well.
308:
of the fallout alone are enough to create the lobes. Inhomogeneities in the masses of the
121: 709: 672: 623: 582: 533: 434: 184: 983: 513: 349: 305: 301: 1747: 1691: 1496: 1446: 1438: 1429: 1369: 1361: 1350: 1268: 1148: 1083: 1037: 965: 875: 808: 317: 200: 76:
raincloud, although they may be attached to other classes of parent clouds. The name
641: 551: 468: 195: 1589: 1557: 956: 938: 344: 189: 154: 146: 126: 73: 64:, meaning "mammary cloud") is a cellular pattern of pouches hanging underneath the 764: 606:
Garrett, Timothy J.; Schmidt, Clinton T.; Kihlgren, Stina; Cornet, CĂ©line (2010).
760:
NASA Astronomy Picture of the Day: Mammatus Clouds Over Mexico (30 December 2007)
1551: 821: 297: 278: 134: 1308: 1297: 591: 566: 376: 258: 234: 65: 1336: 365: 82: 37: 759: 727: 632: 607: 518:"The Mysteries of Mammatus Clouds: Observations and Formation Mechanisms" 333: 230: 215: 176:
time. They usually appear around, before, or even after severe weather.
17: 364:
environment, and the mammatus environment is usually at least somewhat
150: 542: 443: 332:) very efficiently at their tops, entire pockets of cool, negatively 91: 137:
and also severe thunderstorms. They often extend from the base of a
765:
Mammatus Clouds over St Albans, Hertfordshire, UK on 12 August 2008
253:). Because of the differential warming, the cloud/sub-cloud layer 1696: 801: 382:
The last proposed formation mechanism is that mammatus arise from
205: 194: 183: 120: 87: 69: 44: 36: 807:
and selected species, supplementary features, and other airborne
416:"Contrail lobes or mamma? The importance of correct terminology" 304:
effects of hydrometeor fallout, another mechanism proposes that
774: 608:"Mammatus Clouds as a Response to Cloud-Base Radiative Heating" 567:"Recent Advances in the Understanding of Near-Cloud Turbulence" 1472: 1390:
Cumulus castellanus (unofficial alternative name for Cu con))
495:
Cloudland: A study on the structure and characters of clouds
922:
No differentiated sub-types; tends to resemble cirrostratus
682:
10.1175/1520-0493(2001)129<0159:HRAROO>2.0.CO;2
27:
Distinct pattern of pouches on the underside of some clouds
30:"Mammatus" redirects here. For the Ninjago character, see 657:"High-Resolution Airborne Radar Observations of Mammatus" 498:. London, England: Edward Stanford. pp. 104–105. 1396:
term for Cu con and "Cu cas" is Towering cumulus ))
1705: 1664: 1618: 1609: 1567: 1542: 1495: 1486: 1460: 1437: 1428: 1403: 1360: 1349: 1318: 1290: 1267: 1256: 1247: 1223: 1212: 1194: 1147: 1138: 1129: 1109: 1082: 1073: 1036: 1027: 1002: 964: 955: 946: 937: 911: 892: 883: 874: 838: 829: 820: 467:. World Meteorological Organization. Archived from 1717:(Mother cloud)+mutatus (e.g. cumulomutatus (cumut) 1714:(Mother cloud)+genitus (e.g. cumulogenitus (cugen) 571:Bulletin of the American Meteorological Society 210:Several pouches of mammatus clouds seen under 41:Mammatus clouds formation in Coimbatore, India 786: 755:Mammatus Clouds sagging pouch-like structures 8: 316:Another method, that was first proposed by 1615: 1492: 1434: 1357: 1264: 1253: 1220: 1144: 1135: 1079: 1033: 961: 952: 943: 889: 880: 835: 826: 793: 779: 771: 409: 407: 405: 403: 199:Mammatus cloud formation lit by sunset in 894:Nacreous polar stratospheric clouds (PSC) 717: 680: 631: 590: 541: 507: 505: 442: 188:Panorama of mammatus cloud formations in 815:Latin terminology except where indicated 767:at the BBC News web site. 21 August 2008 745:Forming Mammatus Clouds Time Lapse Video 133:Mammatus are most often associated with 49:Mammatus clouds over the Nepal Himalayas 1118:Mutatus non-height specific (see below) 750:Mammatus clouds over Hastings, Nebraska 414:Schultz, David M.; Hancock, Y. (2016). 399: 233:in temperature, moisture and momentum ( 249:) than the sub-cloud, dry air (at the 7: 1520:Stratocumulus stratiformis (Sc str) 1515:Stratocumulus lenticularis (Sc len) 698:Journal of the Atmospheric Sciences 612:Journal of the Atmospheric Sciences 522:Journal of the Atmospheric Sciences 1505:Stratocumulus castellanus (Sc cas) 1061:Cirrocumulus stratiformis (Cc str) 1056:Cirrocumulus lenticularis (Cc len) 357:Kelvin–Helmholtz (K–H) instability 25: 1177:Altocumulus stratiformis (Ac str) 1172:Altocumulus lenticularis (Ac len) 1046:Cirrocumulus castellanus (Cc cas) 180:Hypothesized formation mechanisms 1282:Cumulonimbus capillatus (Cb cap) 1157:Altocumulus castellanus (Ac cas) 915:polar stratospheric clouds (PSC) 153:are strongly cautioned to avoid 1461:St-only genitus cloud and other 1097:Cirrostratus nebulosus (Cs neb) 1530:Stratocumulus volutus (Sc vol) 1510:Stratocumulus floccus (Sc flo) 1291:Cb-only supplementary features 1092:Cirrostratus fibratus (Cs fib) 141:, but may also be found under 1: 1468:Stratus silvagenitus (St sil) 1326:Cumulonimbus flumen ((Cb flu) 1319:Cb-only accessories and other 1167:Altocumulus lacunosus (Ac la) 1051:Cirrocumulus floccus (Cc flo) 492:Ley, William Clement (1894). 1277:Cumulonimbus calvus (Cb cal) 1182:Altocumulus volutus (Ac vol) 1162:Altocumulus floccus (Ac flo) 856:Noctilucent type III billows 1231:Nimbostratus virga (Ns vir) 974:Cirrus castellanus (Ci cas) 372:Rayleigh–Taylor instability 1775: 1452:Stratus nebulosus (St neb) 1386:Cumulus congestus (Cu con) 1380:Cumulus mediocris (Cu med) 1015:Cirrus vertebratus (Ci ve) 859:Noctilucent type IV whirls 384:Rayleigh–BĂ©nard convection 300:effects. Discounting the 247:moist adiabatic lapse rate 80:is derived from the Latin 29: 1309:Cumulonimbus murus ((mur) 1298:Cumulonimbus cauda ((cau) 989:Cirrus spissatus (Ci spa) 853:Noctilucent type II bands 592:10.1175/BAMS-D-11-00062.1 102:International Cloud Atlas 1447:Stratus fractus (St fra) 1375:Cumulus humilis (Cu hum) 1354:Variable vertical extent 1304:Cumulonimbus incus (inc) 979:Cirrus fibratus (Ci fib) 850:Noctilucent type I veils 844:Polar mesospheric clouds 251:dry adiabatic lapse rate 1525:Stratocumulus Undulatus 1010:Cirrus intortus (Ci in) 994:Cirrus uncinus (Ci unc) 984:Cirrus floccus (Ci flo) 1665:Supplementary features 1545:supplementary features 661:Monthly Weather Review 222: 203: 192: 190:Swifts Creek, Victoria 130: 50: 42: 1708:and human-made clouds 1204:Altostratus undulatus 913:Nitric acid and water 728:10.1175/2007JAS2469.1 633:10.1175/2010JAS3513.1 209: 198: 187: 125:Mammatus clouds on a 124: 48: 40: 330:Stefan–Boltzmann law 201:Visakhapatnam, India 1726:Homomutatus (homut) 1722:Homogenitus (hogen) 1692:Praecipitatio (pra) 904:Lenticular nacreous 710:2008JAtS...65.1606K 673:2001MWRv..129..159W 624:2010JAtS...67.3891G 583:2012BAMS...93..499L 534:2006JAtS...63.2409S 435:2016Wthr...71..203S 111:William Clement Ley 1488:Stratocumulus (Sc) 1475:(Fg) Surface level 1416:Trade wind cumulus 901:Cirriform nacreous 458:Anonymous (1975). 379:atmospheric flows. 243:cumulonimbus cloud 223: 212:cumulonimbus incus 204: 193: 139:cumulonimbus cloud 131: 51: 43: 32:Mammatus (Ninjago) 1741: 1740: 1737: 1736: 1733: 1732: 1651:Translucidus (tr) 1605: 1604: 1538: 1537: 1482: 1481: 1424: 1423: 1345: 1344: 1261:Towering vertical 1258:Cumulonimbus (Cb) 1243: 1242: 1239: 1238: 1214:Nimbostratus (Ns) 1190: 1189: 1125: 1124: 1105: 1104: 1075:Cirrostratus (Cs) 1069: 1068: 1029:Cirrocumulus (Cc) 1023: 1022: 1003:Ci-only varieties 933: 932: 929: 928: 870: 869: 866: 865: 543:10.1175/JAS3758.1 97:According to the 16:(Redirected from 1766: 1754:Accessory clouds 1616: 1596:Actinoform cloud 1493: 1435: 1358: 1332:Overshooting top 1265: 1254: 1221: 1196:Altostratus (As) 1145: 1140:Altocumulus (Ac) 1136: 1080: 1034: 962: 953: 944: 890: 881: 836: 827: 795: 788: 781: 772: 732: 731: 721: 693: 687: 686: 684: 652: 646: 645: 635: 603: 597: 596: 594: 562: 556: 555: 545: 509: 500: 499: 489: 483: 482: 480: 479: 473: 466: 455: 449: 448: 446: 444:10.1002/wea.2765 420: 411: 170: 169: 165: 21: 1774: 1773: 1769: 1768: 1767: 1765: 1764: 1763: 1744: 1743: 1742: 1729: 1718: 1707: 1701: 1672:Asperitas (asp) 1660: 1641:Perlucidus (pe) 1626:Duplicatus (du) 1611: 1601: 1598:(Stratocumulus) 1571:accessory cloud 1569: 1563: 1544: 1534: 1478: 1456: 1420: 1399: 1353: 1341: 1314: 1286: 1260: 1249: 1235: 1216: 1208: 1186: 1131: 1121: 1111: 1110:High-level-only 1101: 1065: 1019: 998: 948: 925: 914: 907: 885: 884:Very high-level 862: 843: 831: 816: 799: 741: 736: 735: 719:10.1.1.720.2477 695: 694: 690: 654: 653: 649: 605: 604: 600: 564: 563: 559: 514:Zrnić, Dusan S. 511: 510: 503: 491: 490: 486: 477: 475: 471: 464: 457: 456: 452: 418: 413: 412: 401: 396: 339:optically thick 302:thermodynamical 269:Cooling due to 241:The anvil of a 182: 167: 163: 162: 119: 117:Characteristics 35: 28: 23: 22: 15: 12: 11: 5: 1772: 1770: 1762: 1761: 1756: 1746: 1745: 1739: 1738: 1735: 1734: 1731: 1730: 1728: 1727: 1724: 1719: 1715: 1711: 1709: 1706:Mother clouds 1703: 1702: 1700: 1699: 1694: 1689: 1684: 1679: 1674: 1668: 1666: 1662: 1661: 1659: 1658: 1656:Undulatus (un) 1653: 1648: 1643: 1638: 1633: 1631:Lacunosus (la) 1628: 1622: 1620: 1613: 1607: 1606: 1603: 1602: 1600: 1599: 1592: 1587: 1582: 1576: 1574: 1568:Low-level-only 1565: 1564: 1562: 1561: 1555: 1548: 1546: 1543:Low-level-only 1540: 1539: 1536: 1535: 1533: 1532: 1527: 1522: 1517: 1512: 1507: 1501: 1499: 1490: 1484: 1483: 1480: 1479: 1477: 1476: 1470: 1464: 1462: 1458: 1457: 1455: 1454: 1449: 1443: 1441: 1432: 1426: 1425: 1422: 1421: 1419: 1418: 1413: 1407: 1405: 1401: 1400: 1398: 1397: 1382: 1377: 1372: 1366: 1364: 1355: 1347: 1346: 1343: 1342: 1340: 1339: 1334: 1329: 1322: 1320: 1316: 1315: 1313: 1312: 1306: 1301: 1294: 1292: 1288: 1287: 1285: 1284: 1279: 1273: 1271: 1262: 1251: 1245: 1244: 1241: 1240: 1237: 1236: 1234: 1233: 1227: 1225: 1218: 1210: 1209: 1207: 1206: 1200: 1198: 1192: 1191: 1188: 1187: 1185: 1184: 1179: 1174: 1169: 1164: 1159: 1153: 1151: 1142: 1133: 1127: 1126: 1123: 1122: 1120: 1119: 1115: 1113: 1107: 1106: 1103: 1102: 1100: 1099: 1094: 1088: 1086: 1077: 1071: 1070: 1067: 1066: 1064: 1063: 1058: 1053: 1048: 1042: 1040: 1031: 1025: 1024: 1021: 1020: 1018: 1017: 1012: 1006: 1004: 1000: 999: 997: 996: 991: 986: 981: 976: 970: 968: 959: 950: 941: 935: 934: 931: 930: 927: 926: 924: 923: 919: 917: 909: 908: 906: 905: 902: 898: 896: 887: 878: 872: 871: 868: 867: 864: 863: 861: 860: 857: 854: 851: 847: 845: 833: 824: 818: 817: 800: 798: 797: 790: 783: 775: 769: 768: 762: 757: 752: 747: 740: 739:External links 737: 734: 733: 688: 667:(1): 159–166. 647: 598: 557: 501: 484: 450: 398: 397: 395: 392: 388: 387: 380: 369: 354: 342: 325: 314: 298:latent heating 290: 286: 267: 181: 178: 118: 115: 72:, typically a 62:mammatocumulus 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1771: 1760: 1757: 1755: 1752: 1751: 1749: 1725: 1723: 1720: 1716: 1713: 1712: 1710: 1704: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1682:Fluctus (flu) 1680: 1678: 1675: 1673: 1670: 1669: 1667: 1663: 1657: 1654: 1652: 1649: 1647: 1646:Radiatus (ra) 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1623: 1621: 1617: 1614: 1608: 1597: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1577: 1575: 1572: 1566: 1560:Funnel cloud) 1559: 1556: 1553: 1550: 1549: 1547: 1541: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1502: 1500: 1498: 1494: 1491: 1489: 1485: 1474: 1471: 1469: 1466: 1465: 1463: 1459: 1453: 1450: 1448: 1445: 1444: 1442: 1440: 1436: 1433: 1431: 1427: 1417: 1414: 1412: 1409: 1408: 1406: 1402: 1395: 1391: 1387: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1367: 1365: 1363: 1359: 1356: 1352: 1348: 1338: 1335: 1333: 1330: 1327: 1324: 1323: 1321: 1317: 1310: 1307: 1305: 1302: 1299: 1296: 1295: 1293: 1289: 1283: 1280: 1278: 1275: 1274: 1272: 1270: 1266: 1263: 1259: 1255: 1252: 1246: 1232: 1229: 1228: 1226: 1222: 1219: 1215: 1211: 1205: 1202: 1201: 1199: 1197: 1193: 1183: 1180: 1178: 1175: 1173: 1170: 1168: 1165: 1163: 1160: 1158: 1155: 1154: 1152: 1150: 1146: 1143: 1141: 1137: 1134: 1128: 1117: 1116: 1114: 1112:mutatus cloud 1108: 1098: 1095: 1093: 1090: 1089: 1087: 1085: 1081: 1078: 1076: 1072: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1043: 1041: 1039: 1035: 1032: 1030: 1026: 1016: 1013: 1011: 1008: 1007: 1005: 1001: 995: 992: 990: 987: 985: 982: 980: 977: 975: 972: 971: 969: 967: 963: 960: 958: 954: 951: 945: 942: 940: 936: 921: 920: 918: 916: 910: 903: 900: 899: 897: 895: 891: 888: 882: 879: 877: 876:Stratospheric 873: 858: 855: 852: 849: 848: 846: 841: 837: 834: 830:Extreme-level 828: 825: 823: 819: 814: 810: 806: 803: 796: 791: 789: 784: 782: 777: 776: 773: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 742: 738: 729: 725: 720: 715: 711: 707: 703: 699: 692: 689: 683: 678: 674: 670: 666: 662: 658: 651: 648: 643: 639: 634: 629: 625: 621: 617: 613: 609: 602: 599: 593: 588: 584: 580: 576: 572: 568: 561: 558: 553: 549: 544: 539: 535: 531: 527: 523: 519: 515: 508: 506: 502: 497: 496: 488: 485: 474:on 2017-07-08 470: 463: 462: 454: 451: 445: 440: 436: 432: 428: 424: 417: 410: 408: 406: 404: 400: 393: 391: 385: 381: 378: 373: 370: 367: 363: 358: 355: 351: 346: 345:Gravity waves 343: 340: 335: 331: 326: 323: 319: 318:Kerry Emanuel 315: 311: 307: 303: 299: 295: 291: 287: 284: 280: 276: 272: 268: 265: 260: 256: 252: 248: 244: 240: 239: 238: 236: 232: 227: 221: 217: 213: 208: 202: 197: 191: 186: 179: 177: 173: 158: 156: 152: 148: 144: 140: 136: 128: 123: 116: 114: 112: 107: 103: 100: 95: 93: 89: 85: 84: 79: 75: 71: 67: 63: 59: 56:(also called 55: 47: 39: 33: 19: 1686: 1590:Pannus (pan) 1580:Pileus (pil) 1552:Arcus ((arc) 1430:Stratus (St) 1351:Cumulus (Cu) 1328:Beaver tail) 1130:Medium-level 939:Tropospheric 809:hydrometeors 701: 697: 691: 664: 660: 650: 618:(12): 3891. 615: 611: 601: 574: 570: 560: 528:(10): 2409. 525: 521: 494: 487: 476:. Retrieved 469:the original 460: 453: 426: 422: 389: 310:hydrometeors 255:destabilizes 228: 224: 174: 159: 155:cumulonimbus 135:anvil clouds 132: 127:cumulonimbus 105: 96: 81: 77: 74:cumulonimbus 61: 57: 53: 52: 1697:Virga (vir) 1687:Mamma (mam) 1677:Cavum (cav) 1636:Opacus (op) 1585:Velum (vel) 1558:Tuba ((tub) 1311:Wall cloud) 1300:Tail cloud) 1217:Multi-level 957:Cirrus (Ci) 840:Noctilucent 822:Mesospheric 704:(5): 1606. 322:entrainment 283:sublimation 279:evaporation 271:hydrometeor 264:hydrometeor 143:altostratus 1748:Categories 1610:Non-height 947:High-level 577:(4): 499. 478:2017-05-13 429:(8): 203. 394:References 362:stratified 259:convective 235:wind shear 129:capillatus 86:(meaning " 1619:Varieties 1573:and other 1411:Horseshoe 1337:Hot tower 1248:Low-level 1224:Varieties 714:CiteSeerX 366:turbulent 294:adiabatic 231:gradients 1612:specific 886:15–30 km 832:80–85 km 642:54938314 552:53128552 306:dynamics 289:present. 151:aviators 78:mammatus 54:Mammatus 18:Mammatus 1759:Cumulus 1594:Other- 1497:Species 1439:Species 1370:Fractus 1362:Species 1269:Species 1149:Species 1084:Species 1038:Species 966:Species 949:3–18 km 706:Bibcode 669:Bibcode 620:Bibcode 579:Bibcode 530:Bibcode 431:Bibcode 423:Weather 377:sheared 350:updraft 334:buoyant 277:due to 166:⁄ 1554:Shelf) 1250:0–2 km 1132:2–8 km 805:genera 716:  640:  550:  220:Laguna 147:cirrus 145:, and 92:breast 90:" or " 1404:Other 842:(NLC) 802:Cloud 638:S2CID 548:S2CID 472:(PDF) 465:(PDF) 419:(PDF) 275:cools 216:Biñan 106:mamma 88:udder 83:mamma 70:cloud 68:of a 58:mamma 1394:ICAO 257:and 94:"). 66:base 60:or 1473:Fog 813:WMO 724:doi 677:doi 665:129 628:doi 587:doi 538:doi 439:doi 296:or 281:or 214:in 99:WMO 1750:: 811:- 722:. 712:. 702:65 700:. 675:. 663:. 659:. 636:. 626:. 616:67 614:. 610:. 585:. 575:93 573:. 569:. 546:. 536:. 526:63 524:. 520:. 504:^ 437:. 427:71 425:. 421:. 402:^ 218:, 113:. 104:, 1392:( 1388:( 1384:( 794:e 787:t 780:v 730:. 726:: 708:: 685:. 679:: 671:: 644:. 630:: 622:: 595:. 589:: 581:: 554:. 540:: 532:: 481:. 447:. 441:: 433:: 368:. 328:( 168:2 164:1 34:. 20:)

Index

Mammatus
Mammatus (Ninjago)


base
cloud
cumulonimbus
mamma
udder
breast
WMO
International Cloud Atlas
William Clement Ley

cumulonimbus
anvil clouds
cumulonimbus cloud
altostratus
cirrus
aviators
cumulonimbus

Swifts Creek, Victoria

Visakhapatnam, India

cumulonimbus incus
Biñan
Laguna
gradients

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑