Knowledge (XXG)

Microfabrication

Source đź“ť

114: 571:
attributed to the change of volume fraction of surface grains. In addition, the anisotropic properties of each grain become significant with the decrease of workpiece size, which results in the inhomogeneous deformation, irregular formed geometry and the variation of deformation load. There is a critical need to establish the systematic knowledge of microforming to support the design of part, process, and tooling with the consideration of size effects.
20: 105: 410:). The purpose of these thin films depends upon the type of device. Electronic devices may have thin films which are conductors (metals), insulators (dielectrics) or semiconductors. Optical devices may have films which are reflective, transparent, light guiding or scattering. Films may also have a chemical or mechanical purpose as well as for MEMS applications. Examples of deposition techniques include: 554:, and microcutting. These and other microforming processes have been envisioned and researched since at least 1990, leading to the development of industrial- and experimental-grade manufacturing tools. However, as Fu and Chan pointed out in a 2013 state-of-the-art technology review, several issues must still be resolved before the technology can be implemented more widely, including 108:
Simplified illustration of the process of fabrication of a CMOS inverter on p-type substrate in semiconductor microfabrication. Each etch step is detailed in the following image. The diagrams are not to scale, as in real devices, the gate, source, and drain contacts are not normally located in the
393:
can be used. For optical devices or flat panel displays, transparent substrates such as glass or quartz are common. The substrate enables easy handling of the micro device through the many fabrication steps. Often many individual devices are made together on one substrate and then singulated into
691:
Surface preparation is just a different viewpoint, all the steps are the same as described above: it is about leaving the wafer surface in a controlled and well known state before you start processing. Wafers are contaminated by previous process steps (e.g. metals bombarded from chamber walls by
481:
It is often desirable to pattern a film into distinct features or to form openings (or vias) in some of the layers. These features are on the micrometer or nanometer scale and the patterning technology is what defines microfabrication. This patterning technique typically uses a 'mask' to define
570:
to the material volume decreases with the decrease of specimen size and the increase of grain size. This leads to the decrease of grain boundary strengthening effect. Surface grains have lesser constraints compared to internal grains. The change of flow stress with part geometry size is partly
58:/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale (for example NEMS, for nano electro mechanical systems). The production of flat-panel displays and solar cells also uses similar techniques. 253:
size range to micrometer range, but they do not share the main idea of microelectronics-originated microfabrication: replication and parallel fabrication of hundreds or millions of identical structures. This parallelism is present in various
506:
Etching is the removal of some portion of the thin film or substrate. The substrate is exposed to an etching (such as an acid or plasma) which chemically or physically attacks the film until it is removed. Etching techniques include:
77:, ultra-precision engineering, fabrication processes, and equipment design. It is also giving rise to various kinds of interdisciplinary research. The major concepts and principles of microfabrication are 329:) portions of the film. Thin film metrology is used typically during each of these individual process steps, to ensure the film structure has the desired characteristics in terms of thickness ( 23:
Synthetic detail of a micromanufactured integrated circuit through four layers of planarized copper interconnect, down to the polysilicon (pink), wells (greyish) and substrate (green)
668:
mixture (a.k.a. Piranha) removes organics. Hydrogen fluoride removes native oxide from silicon surface. These are all wet cleaning steps in solutions. Dry cleaning methods include
684:. Pre-gate cleaning is the most critical cleaning step in CMOS fabrication: it ensures that the ca. 2 nm thick oxide of a MOS transistor can be grown in an orderly fashion. 761:
Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015).
580:
a wide variety of other processes for cleaning, planarizing, or modifying the chemical properties of microfabricated devices can also be performed. Some examples include:
1011: 1641: 278:
Microfabrication is actually a collection of technologies which are utilized in making microdevices. Some of them have very old origins, not connected to
321:
To fabricate a microdevice, many processes must be performed, one after the other, many times repeatedly. These processes typically include depositing a
1799: 1488: 1713: 463: 1460: 1430: 1364: 1270: 1243: 1216: 1197: 1066: 234:
fabrication and integrated circuit technology are terms used instead of microfabrication, but microfabrication is the broad general term.
1718: 1646: 144: 763:"Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" 1401: 1337: 1318: 1289: 1170: 1143: 1116: 1095: 934: 850: 749: 597: 295: 54:(Japanese terminology) and their subfields have re-used, adapted or extended microfabrication methods. These subfields include 688:, and all high temperature steps are very sensitive to contamination, and cleaning steps must precede high temperature steps. 1703: 1544: 1508: 543: 231: 140: 47: 707:: first they remove all unwanted bits and pieces, and then they reconstruct the desired pattern so that the game can go on. 1708: 1481: 365:
layers that constitute the final device. Modern microprocessors are made with 30 masks while a few masks suffice for a
134: 43: 546:(MEMS) "parts or structures with at least two dimensions in the submillimeter range." It includes techniques such as 1759: 1615: 526: 501: 385:
Microfabricated devices are not generally freestanding devices but are usually formed over or in a thicker support
326: 927:
Micro-scaled Products Development via Microforming: Deformation Behaviours, Processes, Tooling and its Realization
1450: 726: 555: 520: 447: 424: 315: 227: 1809: 1749: 1474: 903: 357:
steps, and many others are performed. The complexity of microfabrication processes can be described by their
1804: 1534: 648:
Cleanrooms provide passive cleanliness but the wafers are also actively cleaned before every critical step.
551: 311: 1693: 1661: 1592: 584: 458: 354: 82: 1006: 1001: 1597: 645:
are micrometers in size, and their presence will destroy the functionality of a microfabricated device.
1769: 516: 407: 173: 113: 1728: 1698: 716: 588: 386: 223: 150: 130: 970: 453: 342: 299: 267: 165: 61:
Miniaturization of various devices presents challenges in many areas of science and engineering:
39: 190: 1308: 1106: 1426: 1397: 1370: 1360: 1343: 1333: 1314: 1295: 1285: 1266: 1249: 1239: 1222: 1212: 1193: 1166: 1139: 1112: 1091: 1062: 1021: 995: 930: 846: 838: 782: 745: 657: 414: 374: 263: 70: 19: 1077: 1764: 1636: 1418: 1412: 1389: 1383: 1185: 1158: 1131: 1083: 1054: 1048: 962: 882: 814: 774: 693: 592: 486: 346: 207: 78: 74: 953:
Fu, M.W.; Chan, W.L. (2013). "A review on the state-of-the-art microforming technologies".
1513: 1497: 1454: 721: 104: 809:
Engel, U.; Eckstein, R. (2002). "Microforming - From Basic research to its realization".
558:, forming system stability, mechanical properties, and other size-related effects on the 38:
scales and smaller. Historically, the earliest microfabrication processes were used for
1651: 1620: 1569: 1518: 642: 567: 547: 512: 482:
portions of the film which will be removed. Examples of patterning techniques include:
303: 51: 818: 744:
Nitaigour Premchand Mahalik (2006) "Micromanufacturing and Nanotechnology", Springer,
1793: 974: 704: 661: 390: 377:
photography, with many patterns aligned to each other to create the final structure.
366: 279: 55: 31: 1016: 226:
are in use. Micromachining, semiconductor processing, microelectronic fabrication,
1723: 1035:: Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena 606: 307: 94: 656:-peroxide solution removes organic contamination and particles; RCA-2 cleaning in 887: 266:
techniques which have successfully been applied in the microregime. For example,
622: 559: 539: 370: 283: 1666: 1587: 1539: 1357:
Ultraclean Surface Processing of Silicon Wafers: Secrets of VLSI Manufacturing
1189: 1135: 966: 250: 184: 160: 86: 35: 1448:
Videos and animations on microfabrication techniques and related applications
1374: 1226: 1774: 1347: 1299: 1253: 685: 649: 618: 403: 322: 291: 194: 180: 98: 66: 786: 703:
Wafer cleaning and surface preparation work similarly to the machines in a
1422: 1162: 1087: 1058: 870: 1656: 1579: 677: 665: 638: 626: 255: 219: 325:, patterning the film with the desired micro features, and removing (or 1393: 697: 681: 653: 470: 362: 287: 270:
of DVDs involves fabrication of submicrometer-sized spots on the disc.
259: 211: 154: 90: 62: 1447: 778: 700:
from wafer boxes, and this might be different depending on wait time.
629:, vibrations and electrical disturbances are under stringent control. 1607: 1561: 871:"A review on micro-manufacturing, micro-forming and their key issues" 669: 762: 402:
Microfabricated devices are typically constructed using one or more
1313:. Silicon Processing for the VLSI Era. Vol. 1. Lattice Press. 1744: 1466: 925:
Fu, M.W.; Chan, W.L. (2014). "Chapter 4: Microforming Processes".
673: 630: 440: 435: 430: 419: 350: 215: 169: 103: 46:" or "semiconductor device fabrication". In the last two decades, 18: 389:. For electronic applications, semiconducting substrates such as 1754: 634: 1470: 1032: 1026: 603:
Wafer cleaning, also known as "surface preparation" (see below)
621:, where air has been filtered of particle contamination and 680:
bake at elevated temperature to remove native oxide before
1411:
Meyrueis, P.; Sakoda, K.; Van de Voorde, M., eds. (2017).
1330:
The Science and Engineering of Microelectronic Fabrication
955:
International Journal of Advanced Manufacturing Technology
929:. Springer Science & Business Media. pp. 73–130. 904:"Process Analysis and Variation Control in Micro-stamping" 676:
plasma treatments to remove unwanted surface layers, or
566:
In microforming, the ratio of the total surface area of
902:
Advanced Manufacturing Processes Laboratory (2015).
306:
is also a 19th-century technique adapted to produce
1737: 1686: 1679: 1629: 1606: 1578: 1560: 1553: 1527: 1382:Geschke, O.; Klank, H.; Telleman, P., eds. (2004). 1265:(6th ed.). McGraw-Hill. p. 1302905242. 1207:Plummer, J.D.; Deal, M.D.; Griffin, P.B. (2012). 394:separated devices toward the end of fabrication. 341:), for suitable device behavior. For example, in 206:Microfabrication technologies originate from the 1385:Microsystem Engineering of Lab-on-a-chip Devices 660:-peroxide mixture removes metallic impurities. 1642:Radio-frequency microelectromechanical systems 1180:Widmann, D.; Mader, H.; Friedrich, H. (2000). 1012:Journal of Micromechanics and Microengineering 864: 862: 832: 830: 828: 804: 802: 538:Microforming is a microfabrication process of 298:, and many of the vacuum techniques come from 210:industry, and the devices are usually made on 1482: 8: 16:Fabrication at micrometre scales and smaller 1282:Introduction to Microelectronic Fabrication 1683: 1557: 1489: 1475: 1467: 1033:Journal of Vacuum Science and Technology B 1027:Journal of Vacuum Science and Technology A 948: 946: 811:Journal of Materials Processing Technology 1657:Biological microelectromechanical systems 1332:(2nd ed.). Oxford University Press. 996:Journal of Microelectromechanical Systems 886: 767:The Journal of Physical Chemistry Letters 237:Traditional machining techniques such as 1236:Fundamentals of Semiconductor Processing 112: 737: 50:(MEMS), microsystems (European usage), 1155:Micromanufacturing and Nanotechnology 1022:IEEE Transactions of Electron Devices 7: 1414:Micro- and Nanophotonic Technologies 1108:Micromachined Transducers Sourcebook 617:Microfabrication is carried out in 1647:Microoptoelectromechanical systems 562:(grain) structure and boundaries: 361:. This is the number of different 145:microoptoelectromechanical systems 14: 1182:Technology of Integrated Circuits 1007:Sensors and Actuators B: Chemical 1002:Sensors and Actuators A: Physical 598:Chemical-mechanical planarization 310:scale structures, as are various 126:Microfabricated devices include: 1800:Semiconductor device fabrication 1126:Brodie, I.; Muray, J.J. (1982). 1079:Fundamentals of Microfabrication 1050:Introduction to Microfabrication 613:Cleanliness in wafer fabrication 1307:Wolf, S.; Tauber, R.N. (2000). 1284:(2nd ed.). Prentice Hall. 1211:(2nd ed.). Prentice Hall. 1128:The Physics of Microfabrication 845:. CRC Press. pp. 263–282. 1509:Microelectromechanical systems 869:Razali, A.R.; Qin, Y. (2013). 345:fabrication there are some 30 337:) and extinction coefficient ( 197:, energy harvesters/scavengers 141:microelectromechanical systems 48:microelectromechanical systems 1: 1461:MicroManufacturing Conference 1234:May, G.S.; Sze, S.S. (2004). 837:Dixit, U.S.; Das, R. (2012). 819:10.1016/S0924-0136(02)00415-6 696:), or they may have gathered 544:microelectromechanical system 373:. Microfabrication resembles 300:19th century physics research 888:10.1016/j.proeng.2013.02.086 843:Micromanufacturing Processes 839:"Chapter 15: Microextrusion" 556:deformation load and defects 353:steps, 20 etching steps, 10 42:fabrication, also known as " 1082:(2nd ed.). CRC Press. 239:electro-discharge machining 135:semiconductor manufacturing 44:semiconductor manufacturing 1826: 1616:Digital micromirror device 502:Etching (microfabrication) 499: 420:Local oxidation of silicon 249:have been scaled from the 1504: 1190:10.1007/978-3-662-04160-4 1136:10.1007/978-1-4899-2160-4 1029:: Vacuum, Surfaces, Films 967:10.1007/s00170-012-4661-7 906:. Northwestern University 813:. 125–126 (2002): 35–44. 727:Semiconductor fabrication 521:deep reactive-ion etching 448:Physical vapor deposition 425:Chemical vapor deposition 228:semiconductor fabrication 1750:Shallow trench isolation 179:sensors (microsensors) ( 34:miniature structures of 1535:Interdigital transducer 1328:Campbell, S.A. (2001). 1209:Silicon VLSI Technology 1105:Kovacs, G.T.A. (1998). 1053:(2nd ed.). Wiley. 841:. In Jain, V.K. (ed.). 243:spark erosion machining 117:Detail of an etch step. 1694:Surface micromachining 1593:Scratch drive actuator 1153:Mahalik, N.P. (2006). 1047:Franssila, S. (2010). 692:energetic ions during 573: 459:Evaporative deposition 118: 110: 24: 1423:10.1002/9783527800728 1280:Jaeger, R.C. (2002). 1263:Microchip Fabrication 1261:van Zant, P. (2014). 1163:10.1007/3-540-29339-6 1088:10.1201/9781482274004 1059:10.1002/9781119990413 564: 333:), refractive index ( 174:thin-film transistors 116: 107: 22: 1770:Silicon on insulator 1355:Hattori, T. (2011). 1076:Madou, M.J. (2002). 875:Procedia Engineering 517:reactive-ion etching 408:Thin film deposition 398:Deposition or growth 296:optics manufacturing 151:microfluidic devices 133:(“microchips”) (see 1729:3D microfabrication 1699:Bulk micromachining 717:3D microfabrication 529:or chemical etching 214:wafers even though 166:flat panel displays 131:integrated circuits 1704:HAR micromachining 1453:2022-02-06 at the 1394:10.1002/3527601651 1310:Process technology 294:was borrowed from 268:injection moulding 119: 111: 40:integrated circuit 30:is the process of 25: 1787: 1786: 1783: 1782: 1675: 1674: 1432:978-3-527-34037-8 1366:978-3-642-08272-6 1272:978-0-07-182101-8 1245:978-0-471-23279-7 1218:978-0-13-614156-3 1199:978-3-662-04160-4 1068:978-1-119-99041-3 881:(2013): 665–672. 779:10.1021/jz502471h 658:hydrogen chloride 589:thermal diffusion 464:Electron beam PVD 415:Thermal oxidation 375:multiple exposure 71:materials science 1817: 1765:Photolithography 1684: 1637:Millipede memory 1598:Thermal actuator 1558: 1528:Basic structures 1491: 1484: 1477: 1468: 1436: 1407: 1378: 1351: 1324: 1303: 1276: 1257: 1230: 1203: 1176: 1149: 1130:. Plenum Press. 1122: 1101: 1072: 979: 978: 961:(9): 2411–2437. 950: 941: 940: 922: 916: 915: 913: 911: 899: 893: 892: 890: 866: 857: 856: 834: 823: 822: 806: 797: 796: 794: 793: 758: 752: 742: 694:ion implantation 593:ion implantation 568:grain boundaries 487:Photolithography 208:microelectronics 79:microlithography 75:computer science 28:Microfabrication 1825: 1824: 1820: 1819: 1818: 1816: 1815: 1814: 1810:Microtechnology 1790: 1789: 1788: 1779: 1733: 1671: 1625: 1602: 1574: 1549: 1523: 1514:Microtechnology 1500: 1498:Microtechnology 1495: 1455:Wayback Machine 1444: 1439: 1433: 1410: 1404: 1381: 1367: 1354: 1340: 1327: 1321: 1306: 1292: 1279: 1273: 1260: 1246: 1233: 1219: 1206: 1200: 1179: 1173: 1152: 1146: 1125: 1119: 1111:. McGraw-Hill. 1104: 1098: 1075: 1069: 1046: 987: 985:Further reading 982: 952: 951: 944: 937: 924: 923: 919: 909: 907: 901: 900: 896: 868: 867: 860: 853: 836: 835: 826: 808: 807: 800: 791: 789: 760: 759: 755: 743: 739: 735: 722:Nanofabrication 713: 615: 578: 536: 504: 498: 479: 400: 383: 276: 222:and many other 204: 124: 17: 12: 11: 5: 1823: 1821: 1813: 1812: 1807: 1805:Nanotechnology 1802: 1792: 1791: 1785: 1784: 1781: 1780: 1778: 1777: 1772: 1767: 1762: 1757: 1752: 1747: 1741: 1739: 1735: 1734: 1732: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1690: 1688: 1681: 1677: 1676: 1673: 1672: 1670: 1669: 1664: 1659: 1654: 1652:Microphotonics 1649: 1644: 1639: 1633: 1631: 1627: 1626: 1624: 1623: 1621:Optical switch 1618: 1612: 1610: 1604: 1603: 1601: 1600: 1595: 1590: 1584: 1582: 1576: 1575: 1573: 1572: 1570:Microbolometer 1566: 1564: 1555: 1551: 1550: 1548: 1547: 1542: 1537: 1531: 1529: 1525: 1524: 1522: 1521: 1519:Micromachinery 1516: 1511: 1505: 1502: 1501: 1496: 1494: 1493: 1486: 1479: 1471: 1465: 1464: 1458: 1443: 1442:External links 1440: 1438: 1437: 1431: 1408: 1402: 1379: 1365: 1352: 1338: 1325: 1319: 1304: 1290: 1277: 1271: 1258: 1244: 1231: 1217: 1204: 1198: 1177: 1171: 1150: 1144: 1123: 1117: 1102: 1096: 1073: 1067: 1043: 1037: 1036: 1030: 1024: 1019: 1014: 1009: 1004: 999: 986: 983: 981: 980: 942: 935: 917: 894: 858: 851: 824: 798: 753: 736: 734: 731: 730: 729: 724: 719: 712: 709: 614: 611: 610: 609: 604: 601: 595: 577: 574: 548:microextrusion 535: 532: 531: 530: 524: 513:plasma etching 500:Main article: 497: 494: 493: 492: 491:Shadow masking 489: 478: 475: 474: 473: 468: 467: 466: 461: 456: 445: 444: 443: 438: 433: 422: 417: 399: 396: 391:silicon wafers 382: 379: 304:Electroplating 275: 272: 247:laser drilling 203: 200: 199: 198: 188: 177: 163: 158: 148: 138: 123: 120: 15: 13: 10: 9: 6: 4: 3: 2: 1822: 1811: 1808: 1806: 1803: 1801: 1798: 1797: 1795: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1742: 1740: 1736: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1691: 1689: 1685: 1682: 1678: 1668: 1665: 1663: 1662:Microfluidics 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1634: 1632: 1628: 1622: 1619: 1617: 1614: 1613: 1611: 1609: 1605: 1599: 1596: 1594: 1591: 1589: 1586: 1585: 1583: 1581: 1577: 1571: 1568: 1567: 1565: 1563: 1559: 1556: 1552: 1546: 1543: 1541: 1538: 1536: 1533: 1532: 1530: 1526: 1520: 1517: 1515: 1512: 1510: 1507: 1506: 1503: 1499: 1492: 1487: 1485: 1480: 1478: 1473: 1472: 1469: 1462: 1459: 1456: 1452: 1449: 1446: 1445: 1441: 1434: 1428: 1424: 1420: 1416: 1415: 1409: 1405: 1403:3-527-30733-8 1399: 1395: 1391: 1387: 1386: 1380: 1376: 1372: 1368: 1362: 1358: 1353: 1349: 1345: 1341: 1339:0-19-513605-5 1335: 1331: 1326: 1322: 1320:0-9616721-6-1 1316: 1312: 1311: 1305: 1301: 1297: 1293: 1291:0-201-44494-1 1287: 1283: 1278: 1274: 1268: 1264: 1259: 1255: 1251: 1247: 1241: 1237: 1232: 1228: 1224: 1220: 1214: 1210: 1205: 1201: 1195: 1191: 1187: 1183: 1178: 1174: 1172:3-540-25377-7 1168: 1164: 1160: 1156: 1151: 1147: 1145:1-4899-2160-5 1141: 1137: 1133: 1129: 1124: 1120: 1118:0-07-290722-3 1114: 1110: 1109: 1103: 1099: 1097:0-8493-0826-7 1093: 1089: 1085: 1081: 1080: 1074: 1070: 1064: 1060: 1056: 1052: 1051: 1045: 1044: 1042: 1041: 1034: 1031: 1028: 1025: 1023: 1020: 1018: 1017:Lab on a Chip 1015: 1013: 1010: 1008: 1005: 1003: 1000: 997: 994: 993: 992: 991: 984: 976: 972: 968: 964: 960: 956: 949: 947: 943: 938: 936:9781447163268 932: 928: 921: 918: 905: 898: 895: 889: 884: 880: 876: 872: 865: 863: 859: 854: 852:9781439852903 848: 844: 840: 833: 831: 829: 825: 820: 816: 812: 805: 803: 799: 788: 784: 780: 776: 772: 768: 764: 757: 754: 751: 750:3-540-25377-7 747: 741: 738: 732: 728: 725: 723: 720: 718: 715: 714: 710: 708: 706: 705:bowling alley 701: 699: 695: 689: 687: 683: 679: 675: 671: 667: 663: 662:Sulfuric acid 659: 655: 651: 646: 644: 640: 636: 632: 628: 624: 620: 612: 608: 605: 602: 599: 596: 594: 590: 586: 583: 582: 581: 575: 572: 569: 563: 561: 557: 553: 552:microstamping 549: 545: 541: 533: 528: 525: 522: 518: 514: 511:Dry etching ( 510: 509: 508: 503: 495: 490: 488: 485: 484: 483: 476: 472: 469: 465: 462: 460: 457: 455: 452: 451: 449: 446: 442: 439: 437: 434: 432: 429: 428: 426: 423: 421: 418: 416: 413: 412: 411: 409: 405: 397: 395: 392: 388: 380: 378: 376: 372: 368: 364: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 319: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 280:manufacturing 273: 271: 269: 265: 261: 257: 252: 248: 244: 240: 235: 233: 229: 225: 221: 217: 213: 209: 201: 196: 192: 189: 186: 182: 178: 175: 171: 167: 164: 162: 159: 156: 152: 149: 146: 142: 139: 136: 132: 129: 128: 127: 122:Fields of use 121: 115: 106: 102: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 59: 57: 56:microfluidics 53: 52:micromachines 49: 45: 41: 37: 33: 29: 21: 1724:Wire bonding 1554:Applications 1545:Microchannel 1413: 1384: 1359:. Springer. 1356: 1329: 1309: 1281: 1262: 1235: 1208: 1184:. Springer. 1181: 1157:. Springer. 1154: 1127: 1107: 1078: 1049: 1039: 1038: 989: 988: 958: 954: 926: 920: 908:. Retrieved 897: 878: 874: 842: 810: 790:. Retrieved 773:(1): 66–71. 770: 766: 756: 740: 702: 690: 647: 616: 607:Wire bonding 579: 565: 537: 534:Microforming 505: 480: 401: 384: 369:device or a 367:microfluidic 358: 338: 334: 330: 320: 318:techniques. 277: 246: 242: 238: 236: 205: 157:print heads) 125: 60: 27: 26: 1714:Lithography 650:RCA-1 clean 623:temperature 560:crystallite 540:microsystem 527:Wet etching 371:laser diode 347:lithography 343:memory chip 284:lithography 185:nanosensors 161:solar cells 143:(MEMS) and 109:same plane. 32:fabricating 1794:Categories 1709:Deposition 1667:Micropower 1588:Comb drive 1540:Cantilever 792:2021-11-16 733:References 619:cleanrooms 587:by either 515:) such as 477:Patterning 454:Sputtering 404:thin films 381:Substrates 359:mask count 349:steps, 10 308:micrometre 251:millimeter 195:fuel cells 191:power MEMS 181:biosensors 87:thin films 36:micrometre 1775:Smart cut 1680:Processes 1580:Actuators 1417:. Wiley. 1388:. Wiley. 1375:751530070 1238:. Wiley. 1227:753300108 975:110879846 686:Oxidation 519:(RIE) or 387:substrate 351:oxidation 316:embossing 292:Polishing 274:Processes 224:substrate 99:polishing 67:chemistry 1760:Lift-off 1738:Specific 1608:Switches 1451:Archived 1348:45209102 1300:48226051 1254:52333554 998:(J.MEMS) 990:Journals 910:18 March 787:26263093 711:See also 698:polymers 678:hydrogen 666:peroxide 639:bacteria 627:humidity 312:stamping 264:moulding 220:plastics 1719:Etching 1687:General 1562:Sensors 682:epitaxy 654:ammonia 496:Etching 471:Epitaxy 363:pattern 327:etching 288:etching 282:, like 260:casting 256:imprint 245:, and 212:silicon 202:Origins 155:ink jet 147:(MOEMS) 95:bonding 91:etching 63:physics 1429:  1400:  1373:  1363:  1346:  1336:  1317:  1298:  1288:  1269:  1252:  1242:  1225:  1215:  1196:  1169:  1142:  1115:  1094:  1065:  973:  933:  849:  785:  748:  670:oxygen 585:Doping 523:(DRIE) 450:(PVD) 427:(CVD) 355:doping 97:, and 83:doping 1745:LOCOS 1630:Other 1040:Books 971:S2CID 674:argon 643:cells 631:Smoke 600:(CMP) 576:Other 441:PECVD 436:LPCVD 431:APCVD 406:(see 216:glass 170:AMLCD 168:(see 1755:LIGA 1427:ISBN 1398:ISBN 1371:OCLC 1361:ISBN 1344:OCLC 1334:ISBN 1315:ISBN 1296:OCLC 1286:ISBN 1267:ISBN 1250:OCLC 1240:ISBN 1223:OCLC 1213:ISBN 1194:ISBN 1167:ISBN 1140:ISBN 1113:ISBN 1092:ISBN 1063:ISBN 931:ISBN 912:2016 847:ISBN 783:PMID 746:ISBN 672:and 641:and 635:dust 323:film 314:and 262:and 232:MEMS 172:and 1419:doi 1390:doi 1186:doi 1159:doi 1132:doi 1084:doi 1055:doi 963:doi 883:doi 815:doi 775:doi 652:in 591:or 542:or 286:or 93:, 89:, 1796:: 1425:. 1396:. 1369:. 1342:. 1294:. 1248:. 1221:. 1192:. 1165:. 1138:. 1090:. 1061:. 969:. 959:67 957:. 945:^ 879:53 877:. 873:. 861:^ 827:^ 801:^ 781:. 769:. 765:. 637:, 633:, 625:, 550:, 302:. 290:. 258:, 241:, 230:, 218:, 193:, 183:, 101:. 85:, 81:, 73:, 69:, 65:, 1490:e 1483:t 1476:v 1463:. 1457:. 1435:. 1421:: 1406:. 1392:: 1377:. 1350:. 1323:. 1302:. 1275:. 1256:. 1229:. 1202:. 1188:: 1175:. 1161:: 1148:. 1134:: 1121:. 1100:. 1086:: 1071:. 1057:: 977:. 965:: 939:. 914:. 891:. 885:: 855:. 821:. 817:: 795:. 777:: 771:6 664:- 339:k 335:n 331:t 187:) 176:) 153:( 137:)

Index


fabricating
micrometre
integrated circuit
semiconductor manufacturing
microelectromechanical systems
micromachines
microfluidics
physics
chemistry
materials science
computer science
microlithography
doping
thin films
etching
bonding
polishing


integrated circuits
semiconductor manufacturing
microelectromechanical systems
microoptoelectromechanical systems
microfluidic devices
ink jet
solar cells
flat panel displays
AMLCD
thin-film transistors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑