Knowledge (XXG)

Microfabrication

Source đź“ť

125: 582:
attributed to the change of volume fraction of surface grains. In addition, the anisotropic properties of each grain become significant with the decrease of workpiece size, which results in the inhomogeneous deformation, irregular formed geometry and the variation of deformation load. There is a critical need to establish the systematic knowledge of microforming to support the design of part, process, and tooling with the consideration of size effects.
31: 116: 421:). The purpose of these thin films depends upon the type of device. Electronic devices may have thin films which are conductors (metals), insulators (dielectrics) or semiconductors. Optical devices may have films which are reflective, transparent, light guiding or scattering. Films may also have a chemical or mechanical purpose as well as for MEMS applications. Examples of deposition techniques include: 565:, and microcutting. These and other microforming processes have been envisioned and researched since at least 1990, leading to the development of industrial- and experimental-grade manufacturing tools. However, as Fu and Chan pointed out in a 2013 state-of-the-art technology review, several issues must still be resolved before the technology can be implemented more widely, including 119:
Simplified illustration of the process of fabrication of a CMOS inverter on p-type substrate in semiconductor microfabrication. Each etch step is detailed in the following image. The diagrams are not to scale, as in real devices, the gate, source, and drain contacts are not normally located in the
404:
can be used. For optical devices or flat panel displays, transparent substrates such as glass or quartz are common. The substrate enables easy handling of the micro device through the many fabrication steps. Often many individual devices are made together on one substrate and then singulated into
702:
Surface preparation is just a different viewpoint, all the steps are the same as described above: it is about leaving the wafer surface in a controlled and well known state before you start processing. Wafers are contaminated by previous process steps (e.g. metals bombarded from chamber walls by
492:
It is often desirable to pattern a film into distinct features or to form openings (or vias) in some of the layers. These features are on the micrometer or nanometer scale and the patterning technology is what defines microfabrication. This patterning technique typically uses a 'mask' to define
581:
to the material volume decreases with the decrease of specimen size and the increase of grain size. This leads to the decrease of grain boundary strengthening effect. Surface grains have lesser constraints compared to internal grains. The change of flow stress with part geometry size is partly
69:/lab-on-a-chip, optical MEMS (also called MOEMS), RF MEMS, PowerMEMS, BioMEMS and their extension into nanoscale (for example NEMS, for nano electro mechanical systems). The production of flat-panel displays and solar cells also uses similar techniques. 264:
size range to micrometer range, but they do not share the main idea of microelectronics-originated microfabrication: replication and parallel fabrication of hundreds or millions of identical structures. This parallelism is present in various
517:
Etching is the removal of some portion of the thin film or substrate. The substrate is exposed to an etching (such as an acid or plasma) which chemically or physically attacks the film until it is removed. Etching techniques include:
88:, ultra-precision engineering, fabrication processes, and equipment design. It is also giving rise to various kinds of interdisciplinary research. The major concepts and principles of microfabrication are 340:) portions of the film. Thin film metrology is used typically during each of these individual process steps, to ensure the film structure has the desired characteristics in terms of thickness ( 34:
Synthetic detail of a micromanufactured integrated circuit through four layers of planarized copper interconnect, down to the polysilicon (pink), wells (greyish) and substrate (green)
679:
mixture (a.k.a. Piranha) removes organics. Hydrogen fluoride removes native oxide from silicon surface. These are all wet cleaning steps in solutions. Dry cleaning methods include
695:. Pre-gate cleaning is the most critical cleaning step in CMOS fabrication: it ensures that the ca. 2 nm thick oxide of a MOS transistor can be grown in an orderly fashion. 772:
Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015).
591:
a wide variety of other processes for cleaning, planarizing, or modifying the chemical properties of microfabricated devices can also be performed. Some examples include:
1022: 1652: 289:
Microfabrication is actually a collection of technologies which are utilized in making microdevices. Some of them have very old origins, not connected to
332:
To fabricate a microdevice, many processes must be performed, one after the other, many times repeatedly. These processes typically include depositing a
1810: 1499: 1724: 474: 1471: 1441: 1375: 1281: 1254: 1227: 1208: 1077: 245:
fabrication and integrated circuit technology are terms used instead of microfabrication, but microfabrication is the broad general term.
1729: 1657: 155: 774:"Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" 1412: 1348: 1329: 1300: 1181: 1154: 1127: 1106: 945: 861: 760: 608: 306: 65:(Japanese terminology) and their subfields have re-used, adapted or extended microfabrication methods. These subfields include 699:, and all high temperature steps are very sensitive to contamination, and cleaning steps must precede high temperature steps. 1714: 1555: 1519: 554: 242: 151: 58: 718:: first they remove all unwanted bits and pieces, and then they reconstruct the desired pattern so that the game can go on. 1719: 1492: 376:
layers that constitute the final device. Modern microprocessors are made with 30 masks while a few masks suffice for a
145: 54: 557:(MEMS) "parts or structures with at least two dimensions in the submillimeter range." It includes techniques such as 1770: 1626: 537: 512: 396:
Microfabricated devices are not generally freestanding devices but are usually formed over or in a thicker support
337: 938:
Micro-scaled Products Development via Microforming: Deformation Behaviours, Processes, Tooling and its Realization
1461: 737: 566: 531: 458: 435: 326: 238: 1820: 1760: 1485: 914: 368:
steps, and many others are performed. The complexity of microfabrication processes can be described by their
1815: 1545: 659:
Cleanrooms provide passive cleanliness but the wafers are also actively cleaned before every critical step.
562: 322: 1704: 1672: 1603: 595: 469: 365: 93: 1017: 1012: 1608: 656:
are micrometers in size, and their presence will destroy the functionality of a microfabricated device.
1780: 527: 418: 184: 124: 1739: 1709: 727: 599: 397: 234: 161: 141: 981: 464: 353: 310: 278: 176: 72:
Miniaturization of various devices presents challenges in many areas of science and engineering:
50: 201: 1319: 1117: 1437: 1408: 1381: 1371: 1354: 1344: 1325: 1306: 1296: 1277: 1260: 1250: 1233: 1223: 1204: 1177: 1150: 1123: 1102: 1073: 1032: 1006: 941: 857: 849: 793: 756: 668: 425: 385: 274: 81: 30: 1088: 1775: 1647: 1429: 1423: 1400: 1394: 1196: 1169: 1142: 1094: 1065: 1059: 973: 893: 825: 785: 704: 603: 497: 357: 218: 89: 85: 964:
Fu, M.W.; Chan, W.L. (2013). "A review on the state-of-the-art microforming technologies".
1524: 1508: 1465: 732: 115: 820:
Engel, U.; Eckstein, R. (2002). "Microforming - From Basic research to its realization".
569:, forming system stability, mechanical properties, and other size-related effects on the 49:
scales and smaller. Historically, the earliest microfabrication processes were used for
1662: 1631: 1580: 1529: 653: 578: 558: 523: 493:
portions of the film which will be removed. Examples of patterning techniques include:
314: 62: 829: 755:
Nitaigour Premchand Mahalik (2006) "Micromanufacturing and Nanotechnology", Springer,
1804: 985: 715: 672: 401: 388:
photography, with many patterns aligned to each other to create the final structure.
377: 290: 66: 42: 1027: 237:
are in use. Micromachining, semiconductor processing, microelectronic fabrication,
1734: 1046:: Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena 617: 318: 105: 667:-peroxide solution removes organic contamination and particles; RCA-2 cleaning in 17: 898: 277:
techniques which have successfully been applied in the microregime. For example,
633: 570: 550: 381: 294: 1677: 1598: 1550: 1368:
Ultraclean Surface Processing of Silicon Wafers: Secrets of VLSI Manufacturing
1200: 1146: 977: 261: 195: 171: 97: 46: 1459:
Videos and animations on microfabrication techniques and related applications
1385: 1237: 1785: 1358: 1310: 1264: 696: 660: 629: 414: 333: 302: 205: 191: 109: 77: 797: 714:
Wafer cleaning and surface preparation work similarly to the machines in a
1433: 1173: 1098: 1069: 881: 1667: 1590: 688: 676: 649: 637: 266: 230: 336:, patterning the film with the desired micro features, and removing (or 1404: 708: 692: 664: 481: 373: 298: 281:
of DVDs involves fabrication of submicrometer-sized spots on the disc.
270: 222: 165: 101: 73: 1458: 789: 711:
from wafer boxes, and this might be different depending on wait time.
640:, vibrations and electrical disturbances are under stringent control. 1618: 1572: 882:"A review on micro-manufacturing, micro-forming and their key issues" 680: 773: 413:
Microfabricated devices are typically constructed using one or more
1324:. Silicon Processing for the VLSI Era. Vol. 1. Lattice Press. 1755: 1477: 936:
Fu, M.W.; Chan, W.L. (2014). "Chapter 4: Microforming Processes".
684: 641: 451: 446: 441: 430: 361: 226: 180: 114: 57:" or "semiconductor device fabrication". In the last two decades, 29: 400:. For electronic applications, semiconducting substrates such as 1765: 645: 1481: 1043: 1037: 614:
Wafer cleaning, also known as "surface preparation" (see below)
632:, where air has been filtered of particle contamination and 691:
bake at elevated temperature to remove native oxide before
1422:
Meyrueis, P.; Sakoda, K.; Van de Voorde, M., eds. (2017).
1341:
The Science and Engineering of Microelectronic Fabrication
966:
International Journal of Advanced Manufacturing Technology
940:. Springer Science & Business Media. pp. 73–130. 915:"Process Analysis and Variation Control in Micro-stamping" 687:
plasma treatments to remove unwanted surface layers, or
577:
In microforming, the ratio of the total surface area of
913:
Advanced Manufacturing Processes Laboratory (2015).
317:
is also a 19th-century technique adapted to produce
1748: 1697: 1690: 1640: 1617: 1589: 1571: 1564: 1538: 1393:Geschke, O.; Klank, H.; Telleman, P., eds. (2004). 1276:(6th ed.). McGraw-Hill. p. 1302905242. 1218:Plummer, J.D.; Deal, M.D.; Griffin, P.B. (2012). 405:separated devices toward the end of fabrication. 352:), for suitable device behavior. For example, in 217:Microfabrication technologies originate from the 1396:Microsystem Engineering of Lab-on-a-chip Devices 671:-peroxide mixture removes metallic impurities. 1653:Radio-frequency microelectromechanical systems 1191:Widmann, D.; Mader, H.; Friedrich, H. (2000). 1023:Journal of Micromechanics and Microengineering 875: 873: 843: 841: 839: 815: 813: 549:Microforming is a microfabrication process of 309:, and many of the vacuum techniques come from 221:industry, and the devices are usually made on 1493: 8: 27:Fabrication at micrometre scales and smaller 1293:Introduction to Microelectronic Fabrication 1694: 1568: 1500: 1486: 1478: 1044:Journal of Vacuum Science and Technology B 1038:Journal of Vacuum Science and Technology A 959: 957: 822:Journal of Materials Processing Technology 1668:Biological microelectromechanical systems 1343:(2nd ed.). Oxford University Press. 1007:Journal of Microelectromechanical Systems 897: 778:The Journal of Physical Chemistry Letters 248:Traditional machining techniques such as 1247:Fundamentals of Semiconductor Processing 123: 748: 61:(MEMS), microsystems (European usage), 1166:Micromanufacturing and Nanotechnology 1033:IEEE Transactions of Electron Devices 7: 1425:Micro- and Nanophotonic Technologies 1119:Micromachined Transducers Sourcebook 628:Microfabrication is carried out in 1658:Microoptoelectromechanical systems 573:(grain) structure and boundaries: 372:. This is the number of different 156:microoptoelectromechanical systems 25: 1193:Technology of Integrated Circuits 1018:Sensors and Actuators B: Chemical 1013:Sensors and Actuators A: Physical 609:Chemical-mechanical planarization 321:scale structures, as are various 137:Microfabricated devices include: 1811:Semiconductor device fabrication 1137:Brodie, I.; Muray, J.J. (1982). 1090:Fundamentals of Microfabrication 1061:Introduction to Microfabrication 624:Cleanliness in wafer fabrication 1318:Wolf, S.; Tauber, R.N. (2000). 1295:(2nd ed.). Prentice Hall. 1222:(2nd ed.). Prentice Hall. 1139:The Physics of Microfabrication 856:. CRC Press. pp. 263–282. 1520:Microelectromechanical systems 880:Razali, A.R.; Qin, Y. (2013). 356:fabrication there are some 30 348:) and extinction coefficient ( 208:, energy harvesters/scavengers 152:microelectromechanical systems 59:microelectromechanical systems 1: 1472:MicroManufacturing Conference 1245:May, G.S.; Sze, S.S. (2004). 848:Dixit, U.S.; Das, R. (2012). 830:10.1016/S0924-0136(02)00415-6 707:), or they may have gathered 555:microelectromechanical system 384:. Microfabrication resembles 311:19th century physics research 899:10.1016/j.proeng.2013.02.086 854:Micromanufacturing Processes 850:"Chapter 15: Microextrusion" 567:deformation load and defects 364:steps, 20 etching steps, 10 53:fabrication, also known as " 1093:(2nd ed.). CRC Press. 250:electro-discharge machining 146:semiconductor manufacturing 55:semiconductor manufacturing 1837: 1627:Digital micromirror device 513:Etching (microfabrication) 510: 431:Local oxidation of silicon 260:have been scaled from the 1515: 1201:10.1007/978-3-662-04160-4 1147:10.1007/978-1-4899-2160-4 1040:: Vacuum, Surfaces, Films 978:10.1007/s00170-012-4661-7 917:. Northwestern University 824:. 125–126 (2002): 35–44. 738:Semiconductor fabrication 532:deep reactive-ion etching 459:Physical vapor deposition 436:Chemical vapor deposition 239:semiconductor fabrication 1761:Shallow trench isolation 190:sensors (microsensors) ( 45:miniature structures of 1546:Interdigital transducer 1339:Campbell, S.A. (2001). 1220:Silicon VLSI Technology 1116:Kovacs, G.T.A. (1998). 1064:(2nd ed.). Wiley. 852:. In Jain, V.K. (ed.). 254:spark erosion machining 128:Detail of an etch step. 1705:Surface micromachining 1604:Scratch drive actuator 1164:Mahalik, N.P. (2006). 1058:Franssila, S. (2010). 703:energetic ions during 584: 470:Evaporative deposition 129: 121: 35: 1434:10.1002/9783527800728 1291:Jaeger, R.C. (2002). 1274:Microchip Fabrication 1272:van Zant, P. (2014). 1174:10.1007/3-540-29339-6 1099:10.1201/9781482274004 1070:10.1002/9781119990413 575: 344:), refractive index ( 185:thin-film transistors 127: 118: 33: 1781:Silicon on insulator 1366:Hattori, T. (2011). 1087:Madou, M.J. (2002). 886:Procedia Engineering 528:reactive-ion etching 419:Thin film deposition 409:Deposition or growth 307:optics manufacturing 162:microfluidic devices 144:(“microchips”) (see 1740:3D microfabrication 1710:Bulk micromachining 728:3D microfabrication 540:or chemical etching 225:wafers even though 177:flat panel displays 142:integrated circuits 1715:HAR micromachining 1464:2022-02-06 at the 1405:10.1002/3527601651 1321:Process technology 305:was borrowed from 279:injection moulding 130: 122: 51:integrated circuit 41:is the process of 36: 18:Micromanufacturing 1798: 1797: 1794: 1793: 1686: 1685: 1443:978-3-527-34037-8 1377:978-3-642-08272-6 1283:978-0-07-182101-8 1256:978-0-471-23279-7 1229:978-0-13-614156-3 1210:978-3-662-04160-4 1079:978-1-119-99041-3 892:(2013): 665–672. 790:10.1021/jz502471h 669:hydrogen chloride 600:thermal diffusion 475:Electron beam PVD 426:Thermal oxidation 386:multiple exposure 82:materials science 16:(Redirected from 1828: 1776:Photolithography 1695: 1648:Millipede memory 1609:Thermal actuator 1569: 1539:Basic structures 1502: 1495: 1488: 1479: 1447: 1418: 1389: 1362: 1335: 1314: 1287: 1268: 1241: 1214: 1187: 1160: 1141:. Plenum Press. 1133: 1112: 1083: 990: 989: 972:(9): 2411–2437. 961: 952: 951: 933: 927: 926: 924: 922: 910: 904: 903: 901: 877: 868: 867: 845: 834: 833: 817: 808: 807: 805: 804: 769: 763: 753: 705:ion implantation 604:ion implantation 579:grain boundaries 498:Photolithography 219:microelectronics 90:microlithography 86:computer science 39:Microfabrication 21: 1836: 1835: 1831: 1830: 1829: 1827: 1826: 1825: 1821:Microtechnology 1801: 1800: 1799: 1790: 1744: 1682: 1636: 1613: 1585: 1560: 1534: 1525:Microtechnology 1511: 1509:Microtechnology 1506: 1466:Wayback Machine 1455: 1450: 1444: 1421: 1415: 1392: 1378: 1365: 1351: 1338: 1332: 1317: 1303: 1290: 1284: 1271: 1257: 1244: 1230: 1217: 1211: 1190: 1184: 1163: 1157: 1136: 1130: 1122:. McGraw-Hill. 1115: 1109: 1086: 1080: 1057: 998: 996:Further reading 993: 963: 962: 955: 948: 935: 934: 930: 920: 918: 912: 911: 907: 879: 878: 871: 864: 847: 846: 837: 819: 818: 811: 802: 800: 771: 770: 766: 754: 750: 746: 733:Nanofabrication 724: 626: 589: 547: 515: 509: 490: 411: 394: 287: 233:and many other 215: 135: 28: 23: 22: 15: 12: 11: 5: 1834: 1832: 1824: 1823: 1818: 1816:Nanotechnology 1813: 1803: 1802: 1796: 1795: 1792: 1791: 1789: 1788: 1783: 1778: 1773: 1768: 1763: 1758: 1752: 1750: 1746: 1745: 1743: 1742: 1737: 1732: 1727: 1722: 1717: 1712: 1707: 1701: 1699: 1692: 1688: 1687: 1684: 1683: 1681: 1680: 1675: 1670: 1665: 1663:Microphotonics 1660: 1655: 1650: 1644: 1642: 1638: 1637: 1635: 1634: 1632:Optical switch 1629: 1623: 1621: 1615: 1614: 1612: 1611: 1606: 1601: 1595: 1593: 1587: 1586: 1584: 1583: 1581:Microbolometer 1577: 1575: 1566: 1562: 1561: 1559: 1558: 1553: 1548: 1542: 1540: 1536: 1535: 1533: 1532: 1530:Micromachinery 1527: 1522: 1516: 1513: 1512: 1507: 1505: 1504: 1497: 1490: 1482: 1476: 1475: 1469: 1454: 1453:External links 1451: 1449: 1448: 1442: 1419: 1413: 1390: 1376: 1363: 1349: 1336: 1330: 1315: 1301: 1288: 1282: 1269: 1255: 1242: 1228: 1215: 1209: 1188: 1182: 1161: 1155: 1134: 1128: 1113: 1107: 1084: 1078: 1054: 1048: 1047: 1041: 1035: 1030: 1025: 1020: 1015: 1010: 997: 994: 992: 991: 953: 946: 928: 905: 869: 862: 835: 809: 764: 747: 745: 742: 741: 740: 735: 730: 723: 720: 625: 622: 621: 620: 615: 612: 606: 588: 585: 559:microextrusion 546: 543: 542: 541: 535: 524:plasma etching 511:Main article: 508: 505: 504: 503: 502:Shadow masking 500: 489: 486: 485: 484: 479: 478: 477: 472: 467: 456: 455: 454: 449: 444: 433: 428: 410: 407: 402:silicon wafers 393: 390: 315:Electroplating 286: 283: 258:laser drilling 214: 211: 210: 209: 199: 188: 174: 169: 159: 149: 134: 131: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1833: 1822: 1819: 1817: 1814: 1812: 1809: 1808: 1806: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1753: 1751: 1747: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1702: 1700: 1696: 1693: 1689: 1679: 1676: 1674: 1673:Microfluidics 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1645: 1643: 1639: 1633: 1630: 1628: 1625: 1624: 1622: 1620: 1616: 1610: 1607: 1605: 1602: 1600: 1597: 1596: 1594: 1592: 1588: 1582: 1579: 1578: 1576: 1574: 1570: 1567: 1563: 1557: 1554: 1552: 1549: 1547: 1544: 1543: 1541: 1537: 1531: 1528: 1526: 1523: 1521: 1518: 1517: 1514: 1510: 1503: 1498: 1496: 1491: 1489: 1484: 1483: 1480: 1473: 1470: 1467: 1463: 1460: 1457: 1456: 1452: 1445: 1439: 1435: 1431: 1427: 1426: 1420: 1416: 1414:3-527-30733-8 1410: 1406: 1402: 1398: 1397: 1391: 1387: 1383: 1379: 1373: 1369: 1364: 1360: 1356: 1352: 1350:0-19-513605-5 1346: 1342: 1337: 1333: 1331:0-9616721-6-1 1327: 1323: 1322: 1316: 1312: 1308: 1304: 1302:0-201-44494-1 1298: 1294: 1289: 1285: 1279: 1275: 1270: 1266: 1262: 1258: 1252: 1248: 1243: 1239: 1235: 1231: 1225: 1221: 1216: 1212: 1206: 1202: 1198: 1194: 1189: 1185: 1183:3-540-25377-7 1179: 1175: 1171: 1167: 1162: 1158: 1156:1-4899-2160-5 1152: 1148: 1144: 1140: 1135: 1131: 1129:0-07-290722-3 1125: 1121: 1120: 1114: 1110: 1108:0-8493-0826-7 1104: 1100: 1096: 1092: 1091: 1085: 1081: 1075: 1071: 1067: 1063: 1062: 1056: 1055: 1053: 1052: 1045: 1042: 1039: 1036: 1034: 1031: 1029: 1028:Lab on a Chip 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1008: 1005: 1004: 1003: 1002: 995: 987: 983: 979: 975: 971: 967: 960: 958: 954: 949: 947:9781447163268 943: 939: 932: 929: 916: 909: 906: 900: 895: 891: 887: 883: 876: 874: 870: 865: 863:9781439852903 859: 855: 851: 844: 842: 840: 836: 831: 827: 823: 816: 814: 810: 799: 795: 791: 787: 783: 779: 775: 768: 765: 762: 761:3-540-25377-7 758: 752: 749: 743: 739: 736: 734: 731: 729: 726: 725: 721: 719: 717: 716:bowling alley 712: 710: 706: 700: 698: 694: 690: 686: 682: 678: 674: 673:Sulfuric acid 670: 666: 662: 657: 655: 651: 647: 643: 639: 635: 631: 623: 619: 616: 613: 610: 607: 605: 601: 597: 594: 593: 592: 586: 583: 580: 574: 572: 568: 564: 563:microstamping 560: 556: 552: 544: 539: 536: 533: 529: 525: 522:Dry etching ( 521: 520: 519: 514: 506: 501: 499: 496: 495: 494: 487: 483: 480: 476: 473: 471: 468: 466: 463: 462: 460: 457: 453: 450: 448: 445: 443: 440: 439: 437: 434: 432: 429: 427: 424: 423: 422: 420: 416: 408: 406: 403: 399: 391: 389: 387: 383: 379: 375: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 330: 328: 324: 320: 316: 312: 308: 304: 300: 296: 292: 291:manufacturing 284: 282: 280: 276: 272: 268: 263: 259: 255: 251: 246: 244: 240: 236: 232: 228: 224: 220: 212: 207: 203: 200: 197: 193: 189: 186: 182: 178: 175: 173: 170: 167: 163: 160: 157: 153: 150: 147: 143: 140: 139: 138: 133:Fields of use 132: 126: 117: 113: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 70: 68: 67:microfluidics 64: 63:micromachines 60: 56: 52: 48: 44: 40: 32: 19: 1735:Wire bonding 1565:Applications 1556:Microchannel 1424: 1395: 1370:. Springer. 1367: 1340: 1320: 1292: 1273: 1246: 1219: 1195:. Springer. 1192: 1168:. Springer. 1165: 1138: 1118: 1089: 1060: 1050: 1049: 1000: 999: 969: 965: 937: 931: 919:. Retrieved 908: 889: 885: 853: 821: 801:. Retrieved 784:(1): 66–71. 781: 777: 767: 751: 713: 701: 658: 627: 618:Wire bonding 590: 576: 548: 545:Microforming 516: 491: 412: 395: 380:device or a 378:microfluidic 369: 349: 345: 341: 331: 329:techniques. 288: 257: 253: 249: 247: 216: 168:print heads) 136: 71: 38: 37: 1725:Lithography 661:RCA-1 clean 634:temperature 571:crystallite 551:microsystem 538:Wet etching 382:laser diode 358:lithography 354:memory chip 295:lithography 196:nanosensors 172:solar cells 154:(MEMS) and 120:same plane. 43:fabricating 1805:Categories 1720:Deposition 1678:Micropower 1599:Comb drive 1551:Cantilever 803:2021-11-16 744:References 630:cleanrooms 598:by either 526:) such as 488:Patterning 465:Sputtering 415:thin films 392:Substrates 370:mask count 360:steps, 10 319:micrometre 262:millimeter 206:fuel cells 202:power MEMS 192:biosensors 98:thin films 47:micrometre 1786:Smart cut 1691:Processes 1591:Actuators 1428:. Wiley. 1399:. Wiley. 1386:751530070 1249:. Wiley. 1238:753300108 986:110879846 697:Oxidation 530:(RIE) or 398:substrate 362:oxidation 327:embossing 303:Polishing 285:Processes 235:substrate 110:polishing 78:chemistry 1771:Lift-off 1749:Specific 1619:Switches 1462:Archived 1359:45209102 1311:48226051 1265:52333554 1009:(J.MEMS) 1001:Journals 921:18 March 798:26263093 722:See also 709:polymers 689:hydrogen 677:peroxide 650:bacteria 638:humidity 323:stamping 275:moulding 231:plastics 1730:Etching 1698:General 1573:Sensors 693:epitaxy 665:ammonia 507:Etching 482:Epitaxy 374:pattern 338:etching 299:etching 293:, like 271:casting 267:imprint 256:, and 223:silicon 213:Origins 166:ink jet 158:(MOEMS) 106:bonding 102:etching 74:physics 1440:  1411:  1384:  1374:  1357:  1347:  1328:  1309:  1299:  1280:  1263:  1253:  1236:  1226:  1207:  1180:  1153:  1126:  1105:  1076:  984:  944:  860:  796:  759:  681:oxygen 596:Doping 534:(DRIE) 461:(PVD) 438:(CVD) 366:doping 108:, and 94:doping 1756:LOCOS 1641:Other 1051:Books 982:S2CID 685:argon 654:cells 642:Smoke 611:(CMP) 587:Other 452:PECVD 447:LPCVD 442:APCVD 417:(see 227:glass 181:AMLCD 179:(see 1766:LIGA 1438:ISBN 1409:ISBN 1382:OCLC 1372:ISBN 1355:OCLC 1345:ISBN 1326:ISBN 1307:OCLC 1297:ISBN 1278:ISBN 1261:OCLC 1251:ISBN 1234:OCLC 1224:ISBN 1205:ISBN 1178:ISBN 1151:ISBN 1124:ISBN 1103:ISBN 1074:ISBN 942:ISBN 923:2016 858:ISBN 794:PMID 757:ISBN 683:and 652:and 646:dust 334:film 325:and 273:and 243:MEMS 183:and 1430:doi 1401:doi 1197:doi 1170:doi 1143:doi 1095:doi 1066:doi 974:doi 894:doi 826:doi 786:doi 663:in 602:or 553:or 297:or 104:, 100:, 1807:: 1436:. 1407:. 1380:. 1353:. 1305:. 1259:. 1232:. 1203:. 1176:. 1149:. 1101:. 1072:. 980:. 970:67 968:. 956:^ 890:53 888:. 884:. 872:^ 838:^ 812:^ 792:. 780:. 776:. 648:, 644:, 636:, 561:, 313:. 301:. 269:, 252:, 241:, 229:, 204:, 194:, 112:. 96:, 92:, 84:, 80:, 76:, 1501:e 1494:t 1487:v 1474:. 1468:. 1446:. 1432:: 1417:. 1403:: 1388:. 1361:. 1334:. 1313:. 1286:. 1267:. 1240:. 1213:. 1199:: 1186:. 1172:: 1159:. 1145:: 1132:. 1111:. 1097:: 1082:. 1068:: 988:. 976:: 950:. 925:. 902:. 896:: 866:. 832:. 828:: 806:. 788:: 782:6 675:- 350:k 346:n 342:t 198:) 187:) 164:( 148:) 20:)

Index

Micromanufacturing

fabricating
micrometre
integrated circuit
semiconductor manufacturing
microelectromechanical systems
micromachines
microfluidics
physics
chemistry
materials science
computer science
microlithography
doping
thin films
etching
bonding
polishing


integrated circuits
semiconductor manufacturing
microelectromechanical systems
microoptoelectromechanical systems
microfluidic devices
ink jet
solar cells
flat panel displays
AMLCD

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑