Knowledge (XXG)

Nilpotent

Source đź“ť

703: 586: 267: 1844: 599: 1075: 494: 2158: 2125: 1480: 2160:. If a nilpotent infinitesimal is a variable tending to zero, it can be shown that any sum of terms for which it is the subject is an indefinitely small proportion of the first order term. 1233: 351: 1751: 1685: 1367: 1924:
As linear operators form an associative algebra and thus a ring, this is a special case of the initial definition. More generally, in view of the above definitions, an operator
489: 1970: 1651: 1524: 1424: 1257: 1190: 1135: 824: 2003: 1903: 1400: 965: 304: 151: 879: 761: 732: 484: 455: 2045: 1599: 928: 2070:. More generally, the technique of microadditivity (which can used to derive theorems in physics) makes use of nilpotent or nilsquare infinitesimals and is part 186: 1942: 1870: 1619: 1571: 1551: 1500: 1444: 1304: 1280: 1163: 1108: 902: 844: 426: 406: 386: 110: 83: 60: 1725: 2375: 970: 2347: 2293: 2256: 2231: 1770: 1754: 1779: 2169: 2071: 2133: 2100: 1449: 698:{\displaystyle A={\begin{pmatrix}0&1\\0&1\end{pmatrix}},\;\;B={\begin{pmatrix}0&1\\0&0\end{pmatrix}}.} 2067: 1910: 851: 1195: 321: 157: 1730: 1660: 1283: 1309: 2063: 1947: 2365: 1632: 1505: 1405: 1238: 1171: 1142: 1116: 2370: 2018: 847: 358: 28: 931: 782: 362: 63: 1079:
More generally, the sum of a unit element and a nilpotent element is a unit when they commute.
803: 2343: 2289: 2252: 2227: 1482:. As every non-zero commutative ring has a maximal ideal, which is prime, every non-nilpotent 354: 32: 1975: 1875: 1372: 937: 276: 123: 2309: 2189: 2087: 2086:
contain a nilpotent space. Other algebras and numbers that contain nilpotent spaces include
1906: 1530: 1138: 1088: 307: 1533:
and annihilation of simple modules is available for nilradical: nilpotent elements of ring
857: 581:{\displaystyle {\begin{aligned}c^{2}&=(ba)^{2}\\&=b(ab)a\\&=0.\\\end{aligned}}} 262:{\displaystyle A={\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}}} 1766: 737: 708: 460: 431: 161: 24: 20: 2024: 1576: 907: 1621:). This follows from the fact that nilradical is the intersection of all prime ideals. 2091: 1927: 1855: 1774: 1604: 1556: 1536: 1485: 1429: 1289: 1265: 1148: 1093: 887: 829: 411: 391: 371: 95: 68: 45: 2313: 1690: 2359: 2056: 2048: 2006: 174: 2247:
Atiyah, M. F.; MacDonald, I. G. (February 21, 1994). "Chapter 1: Rings and Ideals".
2179: 2095: 2052: 1913:
representation for Fermionic fields are nilpotents since their squares vanish. The
794: 786: 769: 2066:
of a plane wave without sources is nilpotent when it is expressed in terms of the
1773:, which transform from one state to another, for example the raising and lowering 1402:. The prime ideals of the localized ring correspond exactly to those prime ideals 2083: 1914: 1654: 1166: 316: 39: 2010: 1553:
are precisely those that annihilate all integral domains internal to the ring
1111: 19:
This article is about a type of element in a ring. For the type of group, see
2184: 2174: 2128: 2017:
it has a nilpotent matrix in some basis. Another example for this is the
1918: 1850: 90: 2014: 1839:{\displaystyle \sigma _{\pm }=(\sigma _{x}\pm i\sigma _{y})/2} 164:
in the context of his work on the classification of algebras.
2222:
Matsumura, Hideyuki (1970). "Chapter 1: Elementary Results".
1769:
in a finite dimensional space is nilpotent. They represent
1070:{\displaystyle (1-x)(1+x+x^{2}+\cdots +x^{n-1})=1-x^{n}=1.} 2288:. Algebras and applications, Volume 1. Springer, 2002. 1259:
is contained in the intersection of all prime ideals.
661: 614: 201: 2136: 2103: 2027: 1978: 1950: 1930: 1878: 1858: 1782: 1733: 1693: 1663: 1635: 1607: 1579: 1559: 1539: 1508: 1488: 1452: 1432: 1408: 1375: 1312: 1292: 1268: 1241: 1198: 1174: 1151: 1119: 1096: 973: 940: 910: 890: 860: 832: 806: 740: 711: 602: 492: 463: 434: 414: 394: 374: 324: 279: 189: 126: 98: 71: 48: 2152: 2119: 2039: 1997: 1964: 1936: 1897: 1864: 1838: 1745: 1719: 1679: 1645: 1613: 1593: 1565: 1545: 1518: 1494: 1474: 1438: 1418: 1394: 1361: 1298: 1274: 1251: 1227: 1184: 1157: 1129: 1102: 1069: 959: 922: 896: 873: 838: 818: 755: 726: 697: 580: 478: 449: 420: 400: 380: 345: 298: 261: 145: 104: 77: 54: 1526:is exactly the intersection of all prime ideals. 2153:{\displaystyle \mathbb {C} \otimes \mathbb {O} } 2120:{\displaystyle \mathbb {C} \otimes \mathbb {H} } 1475:{\displaystyle {\mathfrak {p}}\cap S=\emptyset } 173:This definition can be applied in particular to 8: 2340:Zero to Infinity: The Foundations of Physics 2284:Polcino Milies, CĂ©sar; Sehgal, Sudarshan K. 1356: 1319: 1165:in a commutative ring is contained in every 2308:, Class. Quantum Grav. 17:3703–3714, 2000 1502:is not contained in some prime ideal. Thus 1228:{\displaystyle x^{n}=0\in {\mathfrak {p}}} 649: 648: 346:{\displaystyle \mathbb {Z} /9\mathbb {Z} } 2306:The topological particle and Morse theory 2146: 2145: 2138: 2137: 2135: 2113: 2112: 2105: 2104: 2102: 2026: 1983: 1977: 1958: 1957: 1949: 1929: 1883: 1877: 1857: 1828: 1819: 1803: 1787: 1781: 1753:is a nilpotent transformation. See also: 1732: 1708: 1707: 1698: 1697: 1692: 1671: 1670: 1662: 1637: 1636: 1634: 1606: 1583: 1578: 1558: 1538: 1510: 1509: 1507: 1487: 1454: 1453: 1451: 1431: 1410: 1409: 1407: 1380: 1374: 1338: 1311: 1291: 1267: 1243: 1242: 1240: 1219: 1218: 1203: 1197: 1176: 1175: 1173: 1150: 1121: 1120: 1118: 1095: 1055: 1027: 1008: 972: 945: 939: 909: 889: 865: 859: 831: 805: 739: 710: 656: 609: 601: 527: 501: 493: 491: 462: 433: 413: 393: 373: 339: 338: 330: 326: 325: 323: 284: 278: 196: 188: 131: 125: 97: 70: 47: 2201: 16:Element in a ring whose some power is 0 1755:Jordan decomposition in a Lie algebra 1145:of the ring. Every nilpotent element 7: 2208:Polcino Milies & Sehgal (2002), 1746:{\displaystyle \operatorname {ad} x} 1680:{\displaystyle x\in {\mathfrak {g}}} 1529:A characteristic similar to that of 2249:Introduction to Commutative Algebra 1771:creation and annihilation operators 1709: 1699: 1672: 1638: 1511: 1455: 1411: 1362:{\displaystyle S=\{1,x,x^{2},...\}} 1244: 1220: 1177: 1122: 1469: 789:, which has only a single element 14: 2342:, London, World Scientific 2007, 2047:). Both are linked, also through 1965:{\displaystyle n\in \mathbb {N} } 1625:Nilpotent elements in Lie algebra 1282:is not nilpotent, we are able to 27:. For the type of semigroup, see 2376:Algebraic properties of elements 2170:Idempotent element (ring theory) 1687:is called nilpotent if it is in 850:is nilpotent if and only if its 768:By definition, any element of a 156:The term, along with its sister 1646:{\displaystyle {\mathfrak {g}}} 1519:{\displaystyle {\mathfrak {N}}} 1419:{\displaystyle {\mathfrak {p}}} 1252:{\displaystyle {\mathfrak {N}}} 1185:{\displaystyle {\mathfrak {p}}} 1137:; this is a consequence of the 1130:{\displaystyle {\mathfrak {N}}} 357:of 3 is nilpotent because 3 is 31:. For the type of algebra, see 2329:. J.Diff.Geom.17:661–692,1982. 2327:Supersymmetry and Morse theory 2286:An introduction to group rings 2210:An Introduction to Group Rings 1825: 1796: 1714: 1694: 1286:with respect to the powers of 1087:The nilpotent elements from a 1039: 989: 986: 974: 793:). All nilpotent elements are 781:No nilpotent element can be a 588:An example with matrices (for 555: 546: 524: 514: 89:if there exists some positive 1: 2251:. Westview Press. p. 5. 2226:. W. A. Benjamin. p. 6. 2072:smooth infinitesimal analysis 23:. For the type of ideal, see 2314:10.1088/0264-9381/17/18/309 1917:is an important example in 2392: 2273:Linear Associative Algebra 18: 2068:algebra of physical space 2059:in a celebrated article. 1944:is nilpotent if there is 852:characteristic polynomial 819:{\displaystyle n\times n} 368:Assume that two elements 1998:{\displaystyle Q^{n}=0} 1898:{\displaystyle Q^{2}=0} 1395:{\displaystyle S^{-1}R} 1369:to get a non-zero ring 960:{\displaystyle x^{n}=0} 299:{\displaystyle A^{3}=0} 146:{\displaystyle x^{n}=0} 2154: 2121: 2041: 1999: 1966: 1938: 1899: 1866: 1840: 1747: 1721: 1681: 1647: 1615: 1595: 1573:(that is, of the form 1567: 1547: 1520: 1496: 1476: 1440: 1420: 1396: 1363: 1300: 1276: 1253: 1229: 1186: 1159: 1131: 1104: 1071: 961: 924: 898: 875: 840: 820: 757: 728: 699: 582: 480: 451: 422: 402: 382: 347: 300: 263: 147: 106: 79: 56: 2155: 2122: 2064:electromagnetic field 2042: 2000: 1967: 1939: 1900: 1867: 1841: 1761:Nilpotency in physics 1748: 1722: 1682: 1648: 1616: 1596: 1568: 1548: 1521: 1497: 1477: 1441: 1421: 1397: 1364: 1301: 1277: 1254: 1230: 1187: 1160: 1132: 1105: 1072: 962: 925: 899: 876: 874:{\displaystyle t^{n}} 841: 821: 758: 729: 700: 583: 481: 452: 423: 403: 383: 348: 301: 273:is nilpotent because 264: 148: 107: 80: 57: 2134: 2101: 2082:The two-dimensional 2078:Algebraic nilpotents 2025: 1976: 1948: 1928: 1876: 1856: 1780: 1731: 1691: 1661: 1633: 1605: 1577: 1557: 1537: 1506: 1486: 1450: 1430: 1406: 1373: 1310: 1290: 1266: 1239: 1196: 1192:of that ring, since 1172: 1149: 1141:. This ideal is the 1117: 1094: 971: 938: 908: 888: 858: 846:with entries from a 830: 804: 756:{\displaystyle BA=B} 738: 727:{\displaystyle AB=0} 709: 600: 490: 479:{\displaystyle c=ba} 461: 450:{\displaystyle ab=0} 432: 412: 392: 372: 322: 277: 187: 160:, was introduced by 124: 96: 69: 46: 2224:Commutative Algebra 2040:{\displaystyle n=2} 2019:exterior derivative 1594:{\displaystyle R/I} 923:{\displaystyle 1-x} 904:is nilpotent, then 457:. Then the element 29:Nilpotent semigroup 2150: 2117: 2037: 1995: 1962: 1934: 1895: 1862: 1836: 1743: 1717: 1677: 1657:. Then an element 1643: 1611: 1591: 1563: 1543: 1516: 1492: 1472: 1436: 1416: 1392: 1359: 1296: 1272: 1249: 1225: 1182: 1155: 1127: 1100: 1067: 957: 920: 894: 871: 836: 816: 753: 724: 695: 686: 639: 578: 576: 476: 447: 418: 398: 378: 343: 296: 259: 253: 143: 116:(or sometimes the 102: 75: 52: 2348:978-981-270-914-1 2294:978-1-4020-0238-0 2258:978-0-201-40751-8 2233:978-0-805-37025-6 2090:(coquaternions), 2088:split-quaternions 1937:{\displaystyle Q} 1907:Grassmann numbers 1865:{\displaystyle Q} 1614:{\displaystyle I} 1601:for prime ideals 1566:{\displaystyle R} 1546:{\displaystyle R} 1495:{\displaystyle x} 1439:{\displaystyle R} 1299:{\displaystyle x} 1275:{\displaystyle x} 1158:{\displaystyle x} 1103:{\displaystyle R} 1083:Commutative rings 897:{\displaystyle x} 839:{\displaystyle A} 421:{\displaystyle R} 401:{\displaystyle b} 381:{\displaystyle a} 355:equivalence class 105:{\displaystyle n} 78:{\displaystyle R} 55:{\displaystyle x} 33:Nilpotent algebra 2383: 2350: 2336: 2330: 2323: 2317: 2302: 2296: 2282: 2276: 2269: 2263: 2262: 2244: 2238: 2237: 2219: 2213: 2206: 2190:Nilpotent matrix 2159: 2157: 2156: 2151: 2149: 2141: 2126: 2124: 2123: 2118: 2116: 2108: 2046: 2044: 2043: 2038: 2004: 2002: 2001: 1996: 1988: 1987: 1971: 1969: 1968: 1963: 1961: 1943: 1941: 1940: 1935: 1904: 1902: 1901: 1896: 1888: 1887: 1871: 1869: 1868: 1863: 1845: 1843: 1842: 1837: 1832: 1824: 1823: 1808: 1807: 1792: 1791: 1752: 1750: 1749: 1744: 1726: 1724: 1723: 1720:{\displaystyle } 1718: 1713: 1712: 1703: 1702: 1686: 1684: 1683: 1678: 1676: 1675: 1652: 1650: 1649: 1644: 1642: 1641: 1620: 1618: 1617: 1612: 1600: 1598: 1597: 1592: 1587: 1572: 1570: 1569: 1564: 1552: 1550: 1549: 1544: 1531:Jacobson radical 1525: 1523: 1522: 1517: 1515: 1514: 1501: 1499: 1498: 1493: 1481: 1479: 1478: 1473: 1459: 1458: 1445: 1443: 1442: 1437: 1425: 1423: 1422: 1417: 1415: 1414: 1401: 1399: 1398: 1393: 1388: 1387: 1368: 1366: 1365: 1360: 1343: 1342: 1305: 1303: 1302: 1297: 1281: 1279: 1278: 1273: 1258: 1256: 1255: 1250: 1248: 1247: 1234: 1232: 1231: 1226: 1224: 1223: 1208: 1207: 1191: 1189: 1188: 1183: 1181: 1180: 1164: 1162: 1161: 1156: 1139:binomial theorem 1136: 1134: 1133: 1128: 1126: 1125: 1109: 1107: 1106: 1101: 1089:commutative ring 1076: 1074: 1073: 1068: 1060: 1059: 1038: 1037: 1013: 1012: 966: 964: 963: 958: 950: 949: 929: 927: 926: 921: 903: 901: 900: 895: 880: 878: 877: 872: 870: 869: 845: 843: 842: 837: 825: 823: 822: 817: 792: 762: 760: 759: 754: 733: 731: 730: 725: 704: 702: 701: 696: 691: 690: 644: 643: 587: 585: 584: 579: 577: 564: 536: 532: 531: 506: 505: 486:is nilpotent as 485: 483: 482: 477: 456: 454: 453: 448: 427: 425: 424: 419: 407: 405: 404: 399: 387: 385: 384: 379: 352: 350: 349: 344: 342: 334: 329: 308:nilpotent matrix 305: 303: 302: 297: 289: 288: 268: 266: 265: 260: 258: 257: 152: 150: 149: 144: 136: 135: 111: 109: 108: 103: 84: 82: 81: 76: 61: 59: 58: 53: 2391: 2390: 2386: 2385: 2384: 2382: 2381: 2380: 2356: 2355: 2354: 2353: 2337: 2333: 2324: 2320: 2303: 2299: 2283: 2279: 2270: 2266: 2259: 2246: 2245: 2241: 2234: 2221: 2220: 2216: 2207: 2203: 2198: 2166: 2132: 2131: 2099: 2098: 2092:split-octonions 2080: 2023: 2022: 1979: 1974: 1973: 1946: 1945: 1926: 1925: 1879: 1874: 1873: 1872:that satisfies 1854: 1853: 1815: 1799: 1783: 1778: 1777: 1767:ladder operator 1763: 1729: 1728: 1689: 1688: 1659: 1658: 1631: 1630: 1627: 1603: 1602: 1575: 1574: 1555: 1554: 1535: 1534: 1504: 1503: 1484: 1483: 1448: 1447: 1428: 1427: 1404: 1403: 1376: 1371: 1370: 1334: 1308: 1307: 1288: 1287: 1264: 1263: 1237: 1236: 1199: 1194: 1193: 1170: 1169: 1147: 1146: 1115: 1114: 1092: 1091: 1085: 1051: 1023: 1004: 969: 968: 941: 936: 935: 906: 905: 886: 885: 861: 856: 855: 828: 827: 802: 801: 790: 785:(except in the 779: 736: 735: 707: 706: 685: 684: 679: 673: 672: 667: 657: 638: 637: 632: 626: 625: 620: 610: 598: 597: 575: 574: 562: 561: 534: 533: 523: 507: 497: 488: 487: 459: 458: 430: 429: 410: 409: 390: 389: 370: 369: 320: 319: 280: 275: 274: 252: 251: 246: 241: 235: 234: 229: 224: 218: 217: 212: 207: 197: 185: 184: 175:square matrices 170: 162:Benjamin Peirce 127: 122: 121: 94: 93: 67: 66: 44: 43: 36: 25:Nilpotent ideal 21:Nilpotent group 17: 12: 11: 5: 2389: 2387: 2379: 2378: 2373: 2368: 2358: 2357: 2352: 2351: 2331: 2318: 2297: 2277: 2264: 2257: 2239: 2232: 2214: 2200: 2199: 2197: 2194: 2193: 2192: 2187: 2182: 2177: 2172: 2165: 2162: 2148: 2144: 2140: 2127:, and complex 2115: 2111: 2107: 2079: 2076: 2055:, as shown by 2036: 2033: 2030: 1994: 1991: 1986: 1982: 1960: 1956: 1953: 1933: 1909:which allow a 1905:is nilpotent. 1894: 1891: 1886: 1882: 1861: 1835: 1831: 1827: 1822: 1818: 1814: 1811: 1806: 1802: 1798: 1795: 1790: 1786: 1775:Pauli matrices 1762: 1759: 1742: 1739: 1736: 1716: 1711: 1706: 1701: 1696: 1674: 1669: 1666: 1640: 1626: 1623: 1610: 1590: 1586: 1582: 1562: 1542: 1513: 1491: 1471: 1468: 1465: 1462: 1457: 1435: 1413: 1391: 1386: 1383: 1379: 1358: 1355: 1352: 1349: 1346: 1341: 1337: 1333: 1330: 1327: 1324: 1321: 1318: 1315: 1295: 1271: 1246: 1222: 1217: 1214: 1211: 1206: 1202: 1179: 1154: 1124: 1099: 1084: 1081: 1066: 1063: 1058: 1054: 1050: 1047: 1044: 1041: 1036: 1033: 1030: 1026: 1022: 1019: 1016: 1011: 1007: 1003: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 956: 953: 948: 944: 919: 916: 913: 893: 868: 864: 835: 815: 812: 809: 778: 775: 774: 773: 765: 764: 752: 749: 746: 743: 723: 720: 717: 714: 694: 689: 683: 680: 678: 675: 674: 671: 668: 666: 663: 662: 660: 655: 652: 647: 642: 636: 633: 631: 628: 627: 624: 621: 619: 616: 615: 613: 608: 605: 573: 570: 567: 565: 563: 560: 557: 554: 551: 548: 545: 542: 539: 537: 535: 530: 526: 522: 519: 516: 513: 510: 508: 504: 500: 496: 495: 475: 472: 469: 466: 446: 443: 440: 437: 417: 397: 377: 366: 341: 337: 333: 328: 312: 311: 295: 292: 287: 283: 271: 270: 269: 256: 250: 247: 245: 242: 240: 237: 236: 233: 230: 228: 225: 223: 220: 219: 216: 213: 211: 208: 206: 203: 202: 200: 195: 192: 179: 178: 169: 166: 142: 139: 134: 130: 101: 74: 51: 15: 13: 10: 9: 6: 4: 3: 2: 2388: 2377: 2374: 2372: 2369: 2367: 2364: 2363: 2361: 2349: 2345: 2341: 2338:Rowlands, P. 2335: 2332: 2328: 2322: 2319: 2315: 2311: 2307: 2301: 2298: 2295: 2291: 2287: 2281: 2278: 2274: 2268: 2265: 2260: 2254: 2250: 2243: 2240: 2235: 2229: 2225: 2218: 2215: 2211: 2205: 2202: 2195: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2167: 2163: 2161: 2142: 2130: 2109: 2097: 2096:biquaternions 2093: 2089: 2085: 2077: 2075: 2073: 2069: 2065: 2060: 2058: 2057:Edward Witten 2054: 2050: 2049:supersymmetry 2034: 2031: 2028: 2020: 2016: 2013:is nilpotent 2012: 2008: 2007:zero function 1992: 1989: 1984: 1980: 1954: 1951: 1931: 1922: 1920: 1916: 1912: 1911:path integral 1908: 1892: 1889: 1884: 1880: 1859: 1852: 1847: 1833: 1829: 1820: 1816: 1812: 1809: 1804: 1800: 1793: 1788: 1784: 1776: 1772: 1768: 1760: 1758: 1756: 1740: 1737: 1734: 1704: 1667: 1664: 1656: 1624: 1622: 1608: 1588: 1584: 1580: 1560: 1540: 1532: 1527: 1489: 1466: 1463: 1460: 1433: 1389: 1384: 1381: 1377: 1353: 1350: 1347: 1344: 1339: 1335: 1331: 1328: 1325: 1322: 1316: 1313: 1293: 1285: 1269: 1260: 1215: 1212: 1209: 1204: 1200: 1168: 1152: 1144: 1140: 1113: 1097: 1090: 1082: 1080: 1077: 1064: 1061: 1056: 1052: 1048: 1045: 1042: 1034: 1031: 1028: 1024: 1020: 1017: 1014: 1009: 1005: 1001: 998: 995: 992: 983: 980: 977: 954: 951: 946: 942: 933: 917: 914: 911: 891: 882: 866: 862: 853: 849: 833: 813: 810: 807: 798: 796: 795:zero divisors 788: 784: 776: 772:is nilpotent. 771: 767: 766: 750: 747: 744: 741: 721: 718: 715: 712: 692: 687: 681: 676: 669: 664: 658: 653: 650: 645: 640: 634: 629: 622: 617: 611: 606: 603: 595: 591: 571: 568: 566: 558: 552: 549: 543: 540: 538: 528: 520: 517: 511: 509: 502: 498: 473: 470: 467: 464: 444: 441: 438: 435: 415: 395: 375: 367: 364: 360: 356: 335: 331: 318: 314: 313: 309: 293: 290: 285: 281: 272: 254: 248: 243: 238: 231: 226: 221: 214: 209: 204: 198: 193: 190: 183: 182: 181: 180: 176: 172: 171: 167: 165: 163: 159: 154: 140: 137: 132: 128: 120:), such that 119: 115: 112:, called the 99: 92: 88: 72: 65: 49: 42:, an element 41: 34: 30: 26: 22: 2339: 2334: 2326: 2321: 2305: 2300: 2285: 2280: 2272: 2267: 2248: 2242: 2223: 2217: 2209: 2204: 2180:Reduced ring 2084:dual numbers 2081: 2061: 2053:Morse theory 2021:(again with 1923: 1848: 1764: 1628: 1528: 1261: 1086: 1078: 883: 799: 787:trivial ring 780: 770:nilsemigroup 593: 589: 177:. The matrix 155: 117: 113: 86: 37: 2366:Ring theory 2304:A. Rogers, 2271:Peirce, B. 2009:). Thus, a 1915:BRST charge 1655:Lie algebra 1167:prime ideal 317:factor ring 40:mathematics 2371:0 (number) 2360:Categories 2325:E Witten, 2196:References 2011:linear map 1972:such that 1143:nilradical 934:, because 777:Properties 408:in a ring 158:idempotent 85:is called 2212:. p. 127. 2185:Nil ideal 2175:Unipotent 2143:⊗ 2129:octonions 2110:⊗ 1955:∈ 1817:σ 1810:± 1801:σ 1789:± 1785:σ 1738:⁡ 1668:∈ 1470:∅ 1461:∩ 1382:− 1216:∈ 1049:− 1032:− 1018:⋯ 981:− 915:− 811:× 359:congruent 310:for more. 87:nilpotent 2164:See also 1284:localize 1110:form an 967:entails 428:satisfy 168:Examples 2275:. 1870. 1919:physics 1851:operand 826:matrix 592:,  315:In the 91:integer 2346:  2292:  2255:  2230:  363:modulo 353:, the 306:. See 118:degree 2005:(the 1653:be a 1446:with 1235:. So 1112:ideal 930:is a 848:field 791:0 = 1 705:Here 361:to 0 114:index 62:of a 2344:ISBN 2290:ISBN 2253:ISBN 2228:ISBN 2062:The 2051:and 1765:Any 1727:and 1629:Let 932:unit 783:unit 734:and 388:and 64:ring 2310:doi 2015:iff 1849:An 1846:. 1426:of 1262:If 884:If 854:is 800:An 38:In 2362:: 2094:, 2074:. 1921:. 1757:. 1735:ad 1306:: 1065:1. 881:. 797:. 596:): 572:0. 365:9. 153:. 2316:. 2312:: 2261:. 2236:. 2147:O 2139:C 2114:H 2106:C 2035:2 2032:= 2029:n 1993:0 1990:= 1985:n 1981:Q 1959:N 1952:n 1932:Q 1893:0 1890:= 1885:2 1881:Q 1860:Q 1834:2 1830:/ 1826:) 1821:y 1813:i 1805:x 1797:( 1794:= 1741:x 1715:] 1710:g 1705:, 1700:g 1695:[ 1673:g 1665:x 1639:g 1609:I 1589:I 1585:/ 1581:R 1561:R 1541:R 1512:N 1490:x 1467:= 1464:S 1456:p 1434:R 1412:p 1390:R 1385:1 1378:S 1357:} 1354:. 1351:. 1348:. 1345:, 1340:2 1336:x 1332:, 1329:x 1326:, 1323:1 1320:{ 1317:= 1314:S 1294:x 1270:x 1245:N 1221:p 1213:0 1210:= 1205:n 1201:x 1178:p 1153:x 1123:N 1098:R 1062:= 1057:n 1053:x 1046:1 1043:= 1040:) 1035:1 1029:n 1025:x 1021:+ 1015:+ 1010:2 1006:x 1002:+ 999:x 996:+ 993:1 990:( 987:) 984:x 978:1 975:( 955:0 952:= 947:n 943:x 918:x 912:1 892:x 867:n 863:t 834:A 814:n 808:n 763:. 751:B 748:= 745:A 742:B 722:0 719:= 716:B 713:A 693:. 688:) 682:0 677:0 670:1 665:0 659:( 654:= 651:B 646:, 641:) 635:1 630:0 623:1 618:0 612:( 607:= 604:A 594:b 590:a 569:= 559:a 556:) 553:b 550:a 547:( 544:b 541:= 529:2 525:) 521:a 518:b 515:( 512:= 503:2 499:c 474:a 471:b 468:= 465:c 445:0 442:= 439:b 436:a 416:R 396:b 376:a 340:Z 336:9 332:/ 327:Z 294:0 291:= 286:3 282:A 255:) 249:0 244:0 239:0 232:1 227:0 222:0 215:0 210:1 205:0 199:( 194:= 191:A 141:0 138:= 133:n 129:x 100:n 73:R 50:x 35:.

Index

Nilpotent group
Nilpotent ideal
Nilpotent semigroup
Nilpotent algebra
mathematics
ring
integer
idempotent
Benjamin Peirce
square matrices
nilpotent matrix
factor ring
equivalence class
congruent
modulo
nilsemigroup
unit
trivial ring
zero divisors
field
characteristic polynomial
unit
commutative ring
ideal
binomial theorem
nilradical
prime ideal
localize
Jacobson radical
Lie algebra

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑