Knowledge (XXG)

Retinotopy

Source 📝

292: 176:" was established by Sperry et al in 1963 in which it is thought that molecular gradients in both presynaptic and postsynaptic partners within the optic tectum organize developing axons into a coarse retinotopic map. This was established after a series of seminal experiments in fish and amphibians showed that retinal ganglion axons were already retinotopically organized within the optic tract and if severed, would regenerate and project back to retinotopically appropriate locations. Later, it was identified that 203:
receptive field size or laminar organization. While these animals may not have received external visual cues during development, these experiments suggest that spontaneous activity in the retina may be sufficient for retinotopic organization. In the goldfish, no neural activity (no external visual cues, and no spontaneous activity) did not prevent the formation of the retinal map but the final organization showed signs of lower resolution refinement and more dynamic growth (less stable). Based on
248:. The position of the center of these receptive fields forms an orderly sampling mosaic that covers a portion of the visual field. Because of this orderly arrangement, which emerges from the spatial specificity of connections between neurons in different parts of the visual system, cells in each structure can be seen as contributing to a map of the visual field (also called a retinotopic map, or a visuotopic map). Retinotopic maps are a particular case of 31: 119:(V6). In general, these complex maps are referred to as second-order representations of the visual field, as opposed to first-order (continuous) representations such as V1. Additional retinotopic regions include ventral occipital (VO-1, VO-2), lateral occipital (LO-1, LO-2), dorsal occipital (V3A, V3B), and posterior parietal cortex (IPS0, IPS1, IPS2, IPS3, IPS4). 224:, the presence of developed synapses, and neural activity. As the nervous system develops and more cells are added, this structural plasticity allows for axons to gradually refine their place within the retinotopy. This plasticity is not specific to retinal ganglion axons, rather it's been shown that dendritic arbors of tectal neurons and filopodial processes of 107:), the map is divided along an imaginary horizontal line across the visual field, in such a way that the parts of the retina that respond to the upper half of the visual field are represented in cortical tissue that is separated from those parts that respond the lower half of the visual field. Even more complex maps exist in the third and fourth visual areas 339:
is stimulated with a circular image or angled lines about focus point. The radial map displays the distance from the center of vision. The angular map shows angular location using rays angled about the center of vision. Combining the radial and angular maps, you can see the separate regions of the
219:
Another important factor in the development of retinotopy is the potential for structural plasticity even after neurons are morphologically mature. One interesting hypothesis is that axons and dendrites are continuously extending and retracting their axons and dendrites. Several factors alter this
287:
are sometimes defined by their retinotopic boundaries, using a criterion that states that each area should contain a complete map of the visual field. However, in practice the application of this criterion is in many cases difficult. Those visual areas of the brainstem and cortex that perform the
193:
on postsynaptic partners. In wild type mice, it is thought that competition of target space is important for ensuring continuous retinal mapping, and that if perturbed, this competition may lead to the expansion or compression of the map depending on the available space. If the available space is
180:
family EphA and a related EphA binding molecule referred to as ephrin-A family are expressed in complementary gradients in both the retina and the tectum. More specifically in the mouse, Ephrin A5 is expressed along the rostral-caudal axis of the optic tectum whereas the EphB family is expressed
202:
While neural activity in the retina is not necessary for the development of retinotopy, it seems to be a critical component for the refinement and stabilization of connectivity. Dark reared animals (no external visual cues) develop a normal retinal map in the tectum with no marked changes in
139:
had a prolific body of work on the mind that included much research on neuropathology—although only partially accurate, he correlated the location of brain lesion to areas of occluded vision. He became an early proponent of the existence of a visual map—what he called the "cortical retina."
207:, the thought is that if neurons are sensitive to similar stimuli (similar area of the visual field, similar orientation or direction selectivity) they will likely fire together. This patterned firing will result in stronger connectivity within the retinotopic organization through 194:
altered, such as lesioning or ablating half of the retina, the healthy axons will expand their arbors in the tectum to fill the space. Similarly, if part of the tectum is ablated, the retinal axons will compress the topography to fit within the available tectal space.
288:
first steps of processing the retinal image tend to be organized according to very precise retinotopic maps. The role of retinotopy in other areas, where neurons have large receptive fields, is still being investigated.
151:, although his work on the subject—published in 1909 through a German monograph—was largely ignored and abandoned to obscurity. Independently of Inouye a few years later, the British neurologist 84:
of one's external environment. Moreover, the study of sensory topographies and retinotopy in particular has furthered our understanding of how neurons encode and organize sensory signals.
103:
are typically more complex, in the sense that adjacent points of the visual field are not always represented in adjacent regions of the same area. For example, in the second visual area (
159:. Both scientists observed correlations between the position of an entry wound and the presented visual field loss in the patient (see Fishman, 1997 for an in-depth historical review). 80:
species, though the specific size, number, and spatial arrangement of these maps can differ considerably. Sensory topographies can be found throughout the brain and are critical to the
181:
along the medio-lateral axis. This bimodal expression suggests a mechanism for the graded mapping of the temporal-nasal axis and the dorsoventral axis of the retina.
635:
Ronald S. Fishman (1997). Gordon Holmes, the cortical retina, and the wounds of war. The seventh Charles B. Snyder Lecture Documenta Ophthalmologica 93: 9-28, 1997.
626:
Ronald S. Fishman (1997). Gordon Holmes, the cortical retina, and the wounds of war. The seventh Charles B. Snyder Lecture Documenta Ophthalmologica 93: 9-28, 1997.
291: 143:
Early accurate mapping of the visual map arose from studying cranial injuries in war. Maps were described and analyzed by the Japanese ophthalmologist
189:
While molecular cues are thought to guide axons into a coarse retinotopic map, the resolution of this map is thought to be influenced by available
135:
elucidated that lesions to the occipital and parietal lobes induced blindness. Around the turn of the century, Swedish neurologist and pathologist
87:
Retinal mapping of the visual field is maintained through various points of the visual pathway including but not limited to the retina, the dorsal
332: 828:"Two Eph receptor tyrosine kinase ligands control axon growth and may be involved in the creation of the retinotectal map in the zebrafish" 1271: 714:"In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases" 1318: 312: 437:
Brewer AA, Liu J, Wade AR, Wandell BA (August 2005). "Visual field maps and stimulus selectivity in human ventral occipital cortex".
1303:"MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition" 932:"EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping" 712:
Drescher, Uwe; Kremoser, Claus; Handwerker, Claudia; Löschinger, Jürgen; Noda, Masaharu; Bonhoeffer, Friedrich (1995-08-11).
249: 1256:"NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo" 1353:"Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations" 273: 88: 353: 136: 826:
Brennan, C.; Monschau, B.; Lindberg, R.; Guthrie, B.; Drescher, U.; Bonhoeffer, F.; Holder, N. (February 1997).
66:. For clarity, 'retinotopy' can be replaced with 'retinal mapping', and 'retinotopic' with 'retinally mapped'. 221: 177: 173: 875:"Target-independent ephrina/EphA-mediated axon-axon repulsion as a novel element in retinocollicular mapping" 1666: 1054:"Progress of topographic regulation of the visual projection in the halved optic tectum of adult goldfish" 930:
Hindges, Robert; McLaughlin, Todd; Genoud, Nicolas; Henkemeyer, Mark; O'Leary, Dennis D. M. (2002-08-01).
529:
Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (September 1997).
358: 257: 63: 398:"Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution" 1569: 658: 320: 152: 771:"Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition" 316: 265: 92: 1034: 969: 751: 462: 148: 1556:
DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (March 1996).
127:
In the late 19th-century, independent animal studies including some on dogs by the physiologist
252:
organization. Many brain structures that are responsive to visual input, including much of the
48: 1642: 1597: 1537: 1488: 1439: 1390: 1372: 1330: 1322: 1283: 1275: 1236: 1228: 1189: 1171: 1130: 1122: 1091: 1073: 1026: 1018: 961: 953: 912: 894: 855: 847: 808: 790: 743: 735: 694: 676: 609: 560: 511: 454: 419: 363: 225: 81: 1621:"Retinotopic organization in human visual cortex and the spatial precision of functional MRI" 1632: 1587: 1577: 1527: 1519: 1478: 1470: 1429: 1421: 1380: 1364: 1348: 1314: 1267: 1220: 1179: 1161: 1081: 1065: 1008: 1000: 943: 902: 886: 839: 798: 782: 725: 684: 666: 599: 591: 550: 542: 501: 493: 446: 409: 241: 190: 116: 300: 277: 1573: 1414:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
1111:"Visual deprivation and the maturation of the retinotectal projection in Xenopus laevis" 662: 1616: 1532: 1507: 1483: 1458: 1434: 1409: 1385: 1368: 1352: 1184: 1149: 1086: 1053: 907: 874: 803: 770: 604: 579: 555: 546: 530: 506: 481: 204: 144: 42: 948: 931: 689: 646: 1660: 1592: 1557: 1224: 730: 713: 341: 284: 253: 208: 132: 112: 108: 104: 100: 99:(V1), and higher visual areas (V2-V4). Retinotopic maps in cortical areas other than 96: 973: 414: 397: 1474: 1069: 1038: 989:"Independent biaxial reorganization of the retinotectal projection: a reassessment" 755: 497: 466: 373: 245: 128: 69: 30: 890: 786: 156: 1562:
Proceedings of the National Academy of Sciences of the United States of America
651:
Proceedings of the National Academy of Sciences of the United States of America
319:
folds whereas the horizontal meridian tends to be represented in their concave
1255: 315:
of their visual field tends to be represented on the cerebral cortex's convex
261: 1637: 1620: 1376: 1326: 1279: 1232: 1209:"Tetrodotoxin inhibits the formation of refined retinotopography in goldfish" 1175: 1126: 1077: 1022: 957: 898: 851: 794: 739: 680: 647:"Chemoaffinity in the Orderly Growth of Nerve Fiber Patterns and Connections" 1302: 73: 1582: 1541: 1492: 1443: 1425: 1334: 1287: 1208: 1193: 1166: 1110: 965: 916: 827: 812: 698: 613: 515: 458: 423: 295:
Location and visuotopic organization of marmoset primary visual cortex (V1)
17: 1646: 1601: 1394: 1319:
10.1002/(SICI)1097-4695(20000215)42:3<303::AID-NEU2>3.0.CO;2-A
1272:
10.1002/(SICI)1097-4695(19990215)38:3<357::AID-NEU5>3.0.CO;2-#
1240: 1134: 988: 859: 843: 747: 671: 595: 564: 1523: 1095: 1030: 1013: 368: 335:(fMRI). The subject inside the fMRI machine focuses on a point. Then the 269: 1558:"Mapping striate and extrastriate visual areas in human cerebral cortex" 1109:
Keating, M. J.; Grant, S.; Dawes, E. A.; Nanchahal, K. (February 1986).
1004: 580:"Topographic maps of visual spatial attention in human parietal cortex" 304: 280:), are organized into retinotopic maps, also called visual field maps. 1459:"Does retinotopy influence cortical folding in primate visual cortex?" 531:"Functional analysis of V3A and related areas in human visual cortex" 336: 237: 77: 59: 55: 1301:
Schmidt, J. T.; Buzzard, M.; Borress, R.; Dhillon, S. (2000-02-15).
1150:"Hardwiring of fine synaptic layers in the zebrafish visual pathway" 155:
made similar advances studying the injuries suffered by soldiers in
450: 308: 290: 29: 244:
that include slightly different, but overlapping portions of the
482:"Two retinotopic visual areas in human lateral occipital cortex" 1148:
Nevin, Linda M; Taylor, Michael R; Baier, Herwig (2008-12-16).
211:
synapse stabilization mechanisms in the post synaptic cells.
769:
Feldheim, David A.; O'Leary, Dennis D. M. (November 2010).
54: 'place') is the mapping of visual input from the 402:
Brazilian Journal of Medical and Biological Research
1408:Wandell BA, Brewer AA, Dougherty RF (April 2005). 27:Mapping of visual input from the retina to neurons 1254:Rajan, I.; Witte, S.; Cline, H. T. (1999-02-15). 1115:Journal of Embryology and Experimental Morphology 873:Suetterlin, Philipp; Drescher, Uwe (2014-11-19). 147:when studying soldiers' injuries incurred in the 299:Retinotopy mapping shapes the folding of the 236:In many locations within the brain, adjacent 8: 987:Schmidt, J. T.; Easter, S. S. (1978-02-15). 578:Silver MA, Ress D, Heeger DJ (August 2005). 1410:"Visual field map clusters in human cortex" 775:Cold Spring Harbor Perspectives in Biology 331:Retinotopy mapping in humans is done with 72:maps (retinotopic maps) are found in many 1636: 1591: 1581: 1531: 1482: 1457:Rajimehr R, Tootell RB (September 2009). 1433: 1384: 1183: 1165: 1085: 1012: 947: 906: 802: 729: 688: 670: 603: 554: 505: 413: 62:, particularly those neurons within the 1508:"Mapping the visual brain: how and why" 385: 131:and some on monkeys by the neurologist 480:Larsson J, Heeger DJ (December 2006). 391: 389: 344:and the smaller maps in each region. 333:functional magnetic resonance imaging 7: 1369:10.1523/JNEUROSCI.05-12-03228.1985 1351:; Murphey, R. K. (December 1985). 547:10.1523/JNEUROSCI.17-18-07060.1997 25: 303:. In both the V1 and V2 areas of 34:Retinotopic maps with explanation 415:10.1590/s0100-879x2002001200008 1475:10.1523/JNEUROSCI.1835-09.2009 1207:Meyer, R. L. (February 1983). 1070:10.1113/jphysiol.1976.sp011388 645:Sperry, R. W. (October 1963). 498:10.1523/jneurosci.1657-06.2006 1: 949:10.1016/s0896-6273(02)00799-7 220:dynamic growth including the 1225:10.1016/0165-3806(83)90068-8 891:10.1016/j.neuron.2014.09.023 731:10.1016/0092-8674(95)90425-5 1619:, Wandell BA (March 1997). 1463:The Journal of Neuroscience 1357:The Journal of Neuroscience 993:Experimental Brain Research 787:10.1101/cshperspect.a001768 535:The Journal of Neuroscience 486:The Journal of Neuroscience 1683: 584:Journal of Neurophysiology 274:lateral geniculate nucleus 89:lateral geniculate nucleus 1058:The Journal of Physiology 1052:Yoon, M. G. (June 1976). 396:Rosa MG (December 2002). 354:Biological neural network 228:are also highly dynamic. 178:receptor tyrosine kinases 222:chemoaffinity hypothesis 174:chemoaffinity hypothesis 1506:Bridge H (March 2011). 1307:Journal of Neurobiology 1260:Journal of Neurobiology 1638:10.1093/cercor/7.2.181 1583:10.1073/pnas.93.6.2382 1426:10.1098/rstb.2005.1628 1167:10.1186/1749-8104-3-36 359:Cortical magnification 296: 35: 844:10.1242/dev.124.3.655 672:10.1073/pnas.50.4.703 596:10.1152/jn.01316.2004 294: 97:primary visual cortex 33: 1524:10.1038/eye.2010.166 1574:1996PNAS...93.2382D 663:1963PNAS...50..703S 439:Nature Neuroscience 266:superior colliculus 1154:Neural Development 1005:10.1007/BF00237596 297: 226:radial glial cells 205:Hebbian mechanisms 149:Russo-Japanese War 36: 1420:(1456): 693–707. 1363:(12): 3228–3245. 364:Frontal eye field 16:(Redirected from 1674: 1651: 1650: 1640: 1612: 1606: 1605: 1595: 1585: 1553: 1547: 1545: 1535: 1503: 1497: 1496: 1486: 1469:(36): 11149–52. 1454: 1448: 1447: 1437: 1405: 1399: 1398: 1388: 1349:Sakaguchi, D. S. 1345: 1339: 1338: 1298: 1292: 1291: 1251: 1245: 1244: 1204: 1198: 1197: 1187: 1169: 1145: 1139: 1138: 1106: 1100: 1099: 1089: 1049: 1043: 1042: 1016: 984: 978: 977: 951: 927: 921: 920: 910: 870: 864: 863: 823: 817: 816: 806: 766: 760: 759: 733: 709: 703: 702: 692: 674: 642: 636: 633: 627: 624: 618: 617: 607: 575: 569: 568: 558: 526: 520: 519: 509: 492:(51): 13128–42. 477: 471: 470: 434: 428: 427: 417: 393: 242:receptive fields 137:Salomon Henschen 117:dorsomedial area 21: 1682: 1681: 1677: 1676: 1675: 1673: 1672: 1671: 1657: 1656: 1655: 1654: 1625:Cerebral Cortex 1614: 1613: 1609: 1555: 1554: 1550: 1505: 1504: 1500: 1456: 1455: 1451: 1407: 1406: 1402: 1347: 1346: 1342: 1300: 1299: 1295: 1253: 1252: 1248: 1206: 1205: 1201: 1147: 1146: 1142: 1108: 1107: 1103: 1051: 1050: 1046: 986: 985: 981: 929: 928: 924: 872: 871: 867: 825: 824: 820: 781:(11): a001768. 768: 767: 763: 711: 710: 706: 644: 643: 639: 634: 630: 625: 621: 577: 576: 572: 541:(18): 7060–78. 528: 527: 523: 479: 478: 474: 436: 435: 431: 408:(12): 1485–98. 395: 394: 387: 382: 350: 329: 301:cerebral cortex 234: 217: 200: 198:Neural activity 187: 170: 165: 125: 28: 23: 22: 15: 12: 11: 5: 1680: 1678: 1670: 1669: 1659: 1658: 1653: 1652: 1607: 1548: 1498: 1449: 1400: 1340: 1313:(3): 303–314. 1293: 1246: 1219:(3): 293–298. 1213:Brain Research 1199: 1140: 1101: 1064:(3): 621–643. 1044: 999:(2): 155–162. 979: 942:(3): 475–487. 922: 885:(4): 740–752. 865: 838:(3): 655–664. 818: 761: 724:(3): 359–370. 704: 657:(4): 703–710. 637: 628: 619: 590:(2): 1358–71. 570: 521: 472: 451:10.1038/nn1507 429: 384: 383: 381: 378: 377: 376: 371: 366: 361: 356: 349: 346: 328: 325: 233: 230: 216: 215:Dynamic growth 213: 199: 196: 186: 183: 169: 168:Molecular cues 166: 164: 161: 145:Tatsuji Inouye 124: 121: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1679: 1668: 1667:Visual system 1665: 1664: 1662: 1648: 1644: 1639: 1634: 1631:(2): 181–92. 1630: 1626: 1622: 1618: 1611: 1608: 1603: 1599: 1594: 1589: 1584: 1579: 1575: 1571: 1568:(6): 2382–6. 1567: 1563: 1559: 1552: 1549: 1543: 1539: 1534: 1529: 1525: 1521: 1517: 1513: 1509: 1502: 1499: 1494: 1490: 1485: 1480: 1476: 1472: 1468: 1464: 1460: 1453: 1450: 1445: 1441: 1436: 1431: 1427: 1423: 1419: 1415: 1411: 1404: 1401: 1396: 1392: 1387: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1354: 1350: 1344: 1341: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1297: 1294: 1289: 1285: 1281: 1277: 1273: 1269: 1266:(3): 357–68. 1265: 1261: 1257: 1250: 1247: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1200: 1195: 1191: 1186: 1181: 1177: 1173: 1168: 1163: 1159: 1155: 1151: 1144: 1141: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1105: 1102: 1097: 1093: 1088: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1048: 1045: 1040: 1036: 1032: 1028: 1024: 1020: 1015: 1014:2027.42/46548 1010: 1006: 1002: 998: 994: 990: 983: 980: 975: 971: 967: 963: 959: 955: 950: 945: 941: 937: 933: 926: 923: 918: 914: 909: 904: 900: 896: 892: 888: 884: 880: 876: 869: 866: 861: 857: 853: 849: 845: 841: 837: 833: 829: 822: 819: 814: 810: 805: 800: 796: 792: 788: 784: 780: 776: 772: 765: 762: 757: 753: 749: 745: 741: 737: 732: 727: 723: 719: 715: 708: 705: 700: 696: 691: 686: 682: 678: 673: 668: 664: 660: 656: 652: 648: 641: 638: 632: 629: 623: 620: 615: 611: 606: 601: 597: 593: 589: 585: 581: 574: 571: 566: 562: 557: 552: 548: 544: 540: 536: 532: 525: 522: 517: 513: 508: 503: 499: 495: 491: 487: 483: 476: 473: 468: 464: 460: 456: 452: 448: 445:(8): 1102–9. 444: 440: 433: 430: 425: 421: 416: 411: 407: 403: 399: 392: 390: 386: 379: 375: 372: 370: 367: 365: 362: 360: 357: 355: 352: 351: 347: 345: 343: 342:visual cortex 338: 334: 326: 324: 322: 318: 314: 311:the vertical 310: 306: 302: 293: 289: 286: 285:visual cortex 283:Areas of the 281: 279: 275: 272:(such as the 271: 267: 264:(such as the 263: 259: 255: 254:visual cortex 251: 247: 243: 239: 231: 229: 227: 223: 214: 212: 210: 206: 197: 195: 192: 184: 182: 179: 175: 167: 162: 160: 158: 154: 153:Gordon Holmes 150: 146: 141: 138: 134: 133:David Ferrier 130: 122: 120: 118: 115:, and in the 114: 110: 106: 102: 98: 94: 90: 85: 83: 82:understanding 79: 75: 71: 67: 65: 64:visual stream 61: 57: 53: 50: 47: 44: 40: 32: 19: 1628: 1624: 1610: 1565: 1561: 1551: 1518:(3): 291–6. 1515: 1511: 1501: 1466: 1462: 1452: 1417: 1413: 1403: 1360: 1356: 1343: 1310: 1306: 1296: 1263: 1259: 1249: 1216: 1212: 1202: 1157: 1153: 1143: 1118: 1114: 1104: 1061: 1057: 1047: 996: 992: 982: 939: 935: 925: 882: 878: 868: 835: 831: 821: 778: 774: 764: 721: 717: 707: 654: 650: 640: 631: 622: 587: 583: 573: 538: 534: 524: 489: 485: 475: 442: 438: 432: 405: 401: 374:Visual space 330: 298: 282: 246:visual field 235: 218: 201: 191:target space 188: 185:Target space 171: 142: 129:Hermann Munk 126: 93:optic tectum 86: 70:Visual field 68: 51: 46: 38: 37: 1121:: 101–115. 832:Development 256:and visual 250:topographic 232:Description 163:Development 157:World War I 18:Retinotopic 1615:Engel SA, 380:References 262:brain stem 41:(from 39:Retinotopy 1617:Glover GH 1377:0270-6474 1327:0022-3034 1280:0022-3034 1233:0006-8993 1176:1749-8104 1127:0022-0752 1078:0022-3751 1023:0014-4819 958:0896-6273 899:1097-4199 852:0950-1991 795:1943-0264 740:0092-8674 681:0027-8424 78:mammalian 74:amphibian 1661:Category 1542:21102491 1493:19741121 1444:15937008 1335:10645970 1288:10022578 1194:19087349 974:18724075 966:12165470 917:25451192 813:20880989 699:14077501 614:15817643 516:17182764 459:16025108 424:12436190 369:Tonotopy 348:See also 313:meridian 305:macaques 278:pulvinar 276:and the 270:thalamus 1647:9087826 1602:8637882 1570:Bibcode 1533:3178304 1484:2785715 1435:1569486 1395:3001241 1386:6565231 1241:6831250 1185:2647910 1135:3711779 1087:1309382 1039:8865051 908:4250266 860:9043080 804:2964178 756:2537692 748:7634326 659:Bibcode 605:2367310 565:9278542 556:6573277 507:1904390 467:8413534 327:Methods 323:folds. 260:of the 238:neurons 123:History 60:neurons 52:(tópos) 1645:  1600:  1590:  1540:  1530:  1491:  1481:  1442:  1432:  1393:  1383:  1375:  1333:  1325:  1286:  1278:  1239:  1231:  1192:  1182:  1174:  1160:: 36. 1133:  1125:  1096:950607 1094:  1084:  1076:  1037:  1031:631237 1029:  1021:  972:  964:  956:  936:Neuron 915:  905:  897:  879:Neuron 858:  850:  811:  801:  793:  754:  746:  738:  697:  690:221249 687:  679:  612:  602:  563:  553:  514:  504:  465:  457:  422:  337:retina 309:humans 268:) and 258:nuclei 95:, the 91:, the 56:retina 1593:39805 1035:S2CID 970:S2CID 752:S2CID 463:S2CID 321:sulci 240:have 209:NMDAR 172:The " 49:τόπος 45: 43:Greek 1643:PMID 1598:PMID 1546:> 1538:PMID 1489:PMID 1440:PMID 1391:PMID 1373:ISSN 1331:PMID 1323:ISSN 1284:PMID 1276:ISSN 1237:PMID 1229:ISSN 1190:PMID 1172:ISSN 1131:PMID 1123:ISSN 1092:PMID 1074:ISSN 1027:PMID 1019:ISSN 962:PMID 954:ISSN 913:PMID 895:ISSN 856:PMID 848:ISSN 809:PMID 791:ISSN 744:PMID 736:ISSN 718:Cell 695:PMID 677:ISSN 610:PMID 561:PMID 512:PMID 455:PMID 420:PMID 317:gyri 307:and 111:and 76:and 1633:doi 1588:PMC 1578:doi 1528:PMC 1520:doi 1512:Eye 1479:PMC 1471:doi 1430:PMC 1422:doi 1418:360 1381:PMC 1365:doi 1315:doi 1268:doi 1221:doi 1217:282 1180:PMC 1162:doi 1082:PMC 1066:doi 1062:257 1009:hdl 1001:doi 944:doi 903:PMC 887:doi 840:doi 836:124 799:PMC 783:doi 726:doi 685:PMC 667:doi 600:PMC 592:doi 551:PMC 543:doi 502:PMC 494:doi 447:doi 410:doi 58:to 1663:: 1641:. 1627:. 1623:. 1596:. 1586:. 1576:. 1566:93 1564:. 1560:. 1536:. 1526:. 1516:25 1514:. 1510:. 1487:. 1477:. 1467:29 1465:. 1461:. 1438:. 1428:. 1416:. 1412:. 1389:. 1379:. 1371:. 1359:. 1355:. 1329:. 1321:. 1311:42 1309:. 1305:. 1282:. 1274:. 1264:38 1262:. 1258:. 1235:. 1227:. 1215:. 1211:. 1188:. 1178:. 1170:. 1156:. 1152:. 1129:. 1119:91 1117:. 1113:. 1090:. 1080:. 1072:. 1060:. 1056:. 1033:. 1025:. 1017:. 1007:. 997:31 995:. 991:. 968:. 960:. 952:. 940:35 938:. 934:. 911:. 901:. 893:. 883:84 881:. 877:. 854:. 846:. 834:. 830:. 807:. 797:. 789:. 777:. 773:. 750:. 742:. 734:. 722:82 720:. 716:. 693:. 683:. 675:. 665:. 655:50 653:. 649:. 608:. 598:. 588:94 586:. 582:. 559:. 549:. 539:17 537:. 533:. 510:. 500:. 490:26 488:. 484:. 461:. 453:. 441:. 418:. 406:35 404:. 400:. 388:^ 113:V4 109:V3 105:V2 101:V1 1649:. 1635:: 1629:7 1604:. 1580:: 1572:: 1544:. 1522:: 1495:. 1473:: 1446:. 1424:: 1397:. 1367:: 1361:5 1337:. 1317:: 1290:. 1270:: 1243:. 1223:: 1196:. 1164:: 1158:3 1137:. 1098:. 1068:: 1041:. 1011:: 1003:: 976:. 946:: 919:. 889:: 862:. 842:: 815:. 785:: 779:2 758:. 728:: 701:. 669:: 661:: 616:. 594:: 567:. 545:: 518:. 496:: 469:. 449:: 443:8 426:. 412:: 20:)

Index

Retinotopic

Greek
τόπος
retina
neurons
visual stream
Visual field
amphibian
mammalian
understanding
lateral geniculate nucleus
optic tectum
primary visual cortex
V1
V2
V3
V4
dorsomedial area
Hermann Munk
David Ferrier
Salomon Henschen
Tatsuji Inouye
Russo-Japanese War
Gordon Holmes
World War I
chemoaffinity hypothesis
receptor tyrosine kinases
target space
Hebbian mechanisms

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.