Knowledge (XXG)

Unbinilium

Source 📝

2801: 3148: 2118: 3124: 3961:, a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility. In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles. They thus preferred to link new isotopes to the already known ones by successive alpha decays. 6639:В этом году мы фактически завершаем подготовительную серию экспериментов по отладке всех режимов ускорителя и масс-спектрометров для синтеза 120-го элемента. Научились получать высокие интенсивности ускоренного хрома и титана. Научились детектировать сверхтяжелые одиночные атомы в реакциях с минимальным сечением. Теперь ждем, когда закончится наработка материала для мишени на реакторах и сепараторах у наших партнеров в «Росатоме» и в США: кюрий, берклий, калифорний. Надеюсь, что в 2025 г. мы полноценно приступим к синтезу 120-го элемента. 1945: 3948:, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former). The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector. 3027:, suggesting that the next proton shell does in fact lie beyond element 120. In September 2007, the team at RIKEN began a program utilizing Cm targets and have indicated future experiments to probe the possibility of 120 being the next proton magic number (and 184 being the next neutron magic number) using the aforementioned nuclear reactions to form Ubn*, as well as Cm+Cr. They also planned to further chart the region by investigating the nearby compound nuclei Og*, Og*, Ubb*, and Ubb*. 1746: 2018: 2219:. Tens of milligrams of these would be needed to create such targets, but only micrograms of einsteinium and picograms of fermium have so far been produced. More practical production of further superheavy elements would require bombarding actinides with projectiles heavier than Ca, but this is expected to be more difficult. Attempts to synthesize elements 119 and 120 push the limits of current technology, due to the decreasing 3099:—than those in lighter atoms. In unbinilium atoms, it lowers the 7p and 8s electron energy levels, stabilizing the corresponding electrons, but two of the 7p electron energy levels are more stabilized than the other four. The effect is called subshell splitting, as it splits the 7p subshell into more-stabilized and the less-stabilized parts. Computational chemists understand the split as a change of the second ( 9591: 9364: 2810: 3019: = 120. At lower excitation energy (see neutron evaporation), the effect of the shell will be enhanced and ground-state nuclei can be expected to have relatively long half-lives. This result could partially explain the relatively long half-life of Og measured in experiments at Dubna. Similar experiments have indicated a similar phenomenon at 2775:) until it is discovered, the discovery is confirmed and a permanent name chosen. Although the IUPAC systematic names are widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, scientists who work theoretically or experimentally on superheavy elements typically call it "element 120", with the symbol 2082:, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival. The transfer takes about 10 seconds; in order to be detected, the nucleus must survive this long. The nucleus is recorded again once its decay is registered, and the location, the 3986:. It was later shown that the identification was incorrect. The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later. JINR insisted that they were the first to create the element and suggested a name of their own for the new element, 3990:; the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty"). This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992. The name "nobelium" remained unchanged on account of its widespread usage. 2885:, the total half-lives of unbinilium isotopes are also predicted to be measured in microseconds. This has consequences for the synthesis of unbinilium, as isotopes with half-lives below one microsecond would decay before reaching the detector. Nevertheless, new theoretical models show that the expected gap in energy between the 2171:
actinides and the predicted island are deformed, and gain additional stability from shell effects. Experiments on lighter superheavy nuclei, as well as those closer to the expected island, have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei.
2709:. This was an unexpectedly good result; the aim had been to experimentally determine the cross-section of a reaction with Cr projectiles and prepare for the synthesis of element 120. It is the first successful reaction producing a superheavy element using an actinide target and a projectile heavier than Ca. 2817:
are raised in energy, eliminating what would otherwise be a gap in orbital energy corresponding to a closed proton shell at element 114, as shown in the left diagram which does not take this effect into account. This raises the next proton shell to the region around element 120, as shown in the right
2804:
A chart of nuclide stability as used by the Dubna team in 2010. Characterized isotopes are shown with borders. Beyond element 118 (oganesson, the last known element), the line of known nuclides is expected to rapidly enter a region of instability, with no half-lives over one microsecond after element
2912:
proton orbital, much attention has been given to the compound nucleus Ubn* and its properties. Several experiments have been performed between 2000 and 2008 at the Flerov Laboratory of Nuclear Reactions in Dubna studying the fission characteristics of the compound nucleus Ubn*. Two nuclear reactions
2101:
provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei. Superheavy nuclei are thus theoretically
3924:
It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to
2181:
The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed
2137:
Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus. Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart
3115:
electrons are correspondingly destabilized, perhaps allowing them to participate in chemical reactions. This stabilization of the outermost s-orbital (already significant in radium) is the key factor affecting unbinilium's chemistry, and causes all the trends for atomic and molecular properties of
2182:
caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.
2174:
Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined. (That all decays within a decay
2077:
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam. In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products) and transferred to a
3934:
Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei. The first direct measurement of mass of a
3776:
In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric Xe + Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as
2482:
It was expected that the change in reaction would quintuple the probability of synthesizing unbinilium, as the yield of such reactions is strongly dependent on their asymmetry. Although this reaction is less asymmetric than the Cf+Ti reaction, it also creates more neutron-rich unbinilium isotopes
3303:
The chemistry of unbinilium is predicted to be similar to that of the alkaline earth metals, but it would probably behave more like calcium or strontium than barium or radium. Like strontium, unbinilium should react vigorously with air to form an oxide (UbnO) and with water to form the hydroxide
3190:
at room temperature, with melting point 680 °C: this continues the downward trend down the group, being lower than the value 700 °C for radium. The boiling point of unbinilium is expected to be around 1700 °C, which is lower than that of all the previous elements in the group (in
2940:
of a compound nucleus at high excitation energy, since the yields are significantly higher than from neutron evaporation channels. It is also a useful method for probing the effects of shell closures on the survivability of compound nuclei in the super-heavy region, which can indicate the exact
1996:
Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for about 10 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus. This happens because
3893:
This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle. Such separation can also be aided by a
2170:
in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives. Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived
1890:
Unbinilium has not yet been synthesized, despite multiple attempts from German and Russian teams. Experimental evidence from these attempts shows that the period 8 elements would likely be far more difficult to synthesise than the previous known elements. New attempts by American, Russian, and
3535:
Bond lengths, harmonic frequency, vibrational anharmonicity and bond-dissociation energies of MH and MAu (M = an alkaline earth metal). Data for UbnH and UbnAu are predicted. Data for BaH is taken from experiment, except bond-dissociation energy. Data for BaAu is taken from experiment, except
2724:, United States plans to use the 88-inch cyclotron to make new elements using Ti projectiles. First, the Pu+Ti reaction was tested, successfully creating two atoms of Lv in 2024. Since this was successful, an attempt to make element 120 in the Cf+Ti reaction is planned to begin in 2025. The 3347:, which is not seen in any other alkaline earth metal, in addition to the +2 oxidation state that is characteristic of the other alkaline earth metals and is also the main oxidation state of all the known alkaline earth metals: this is because of the destabilization and expansion of the 7p 3935:
superheavy nucleus was reported in 2018 at LBNL. Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).
2554:
Because of its asymmetry, the reaction between Cf and Ti was predicted to be the most favorable practical reaction for synthesizing unbinilium, though it produces a less neutron-rich isotope of unbinilium than any other reaction studied. No unbinilium atoms were identified.
2001:—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur. This fusion may occur as a result of the quantum effect in which nuclei can 3014:
to exist, because a compound nucleus has no internal structure and its nucleons have not been arranged into shells until it has survived for 10 s, when it forms an electronic cloud), the ability to measure such a process indicates a strong shell effect at
2877:(Ubn) have been predicted to be around 1–20 microseconds. Some heavier isotopes may be more stable; Fricke and Waber predicted Ubn to be the most stable unbinilium isotope in 1971. Since unbinilium is expected to decay via a cascade of alpha decays leading to 2175:
chain were indeed related to each other is established by the location of these decays, which must be in the same place.) The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the
3471:
In the gas phase, the alkaline earth metals do not usually form covalently bonded diatomic molecules like the alkali metals do, since such molecules would have the same number of electrons in the bonding and antibonding orbitals and would have very low
2138:
and produces various nuclei in different instances of identical nuclei fissioning. As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from
2211:, a quasi-stable neutron-rich isotope which could be used as a projectile to produce more neutron-rich isotopes of superheavy elements. This cannot easily be continued to elements 119 and 120, because it would require a target of the next actinides 3009:
The results indicated that nuclei of unbinilium were produced at high (~70 MeV) excitation energy which underwent fission with measurable half-lives just over 10 s. Although very short (indeed insufficient for the element to be considered by
3191:
particular, radium boils at 1737 °C), following the downward periodic trend. The density of unbinilium has been predicted to be 7 g/cm, continuing the trend of increasing density down the group: the value for radium is 5.5 g/cm.
3340:; this effect is already seen for radium. On the other hand, the ionic radius of the Ubn ion is predicted to be larger than that of Sr, because the 7p orbitals are destabilized and are thus larger than the p-orbitals of the lower shells. 2414:
No atoms were detected. The GSI repeated the experiment with higher sensitivity in three separate runs in April–May 2007, January–March 2008, and September–October 2008, all with negative results, reaching a cross section limit of 90 fb.
2487:= 184. Three signals were observed in May 2011; a possible assignment to Ubn and its daughters was considered, but could not be confirmed, and a different analysis suggested that what was observed was simply a random sequence of events. 3110:
from 1 to 1/2 and 3/2 for the more-stabilized and less-stabilized parts of the 7p subshell, respectively. Thus, the outer 8s electrons of unbinilium are stabilized and become harder to remove than expected, while the
3079:
elements, with the exception of beryllium due to its small size. Unbinilium is predicted to continue the trend and have a valence electron configuration of 8s. It is therefore expected to behave much like its lighter
3171:. For comparison, the figure for hydrogen-like radium is 1.30 and the figure for hydrogen-like barium is 1.095. According to simple extrapolations of relativity laws, that indirectly indicates the contraction of the 2897:(filled at element 120) is smaller than expected, so that element 114 no longer appears to be a stable spherical closed nuclear shell, and this energy gap may increase the stability of elements 119 and 120. The next 2705:, stated that he hoped that the experiments to synthesise element 120 will begin in 2025. In preparation for this, the JINR reported success in the U+Cr reaction in late 2023, making a new isotope of livermorium, 3767:
series). Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
2929: = 82). It was also found that the yield for the fusion-fission pathway was similar between Ca and Fe projectiles, suggesting a possible future use of Fe projectiles in superheavy element formation. 1988:
in order to make such repulsion insignificant compared to the velocity of the beam nucleus. The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the
2110:. Almost all alpha emitters have over 210 nucleons, and the lightest nuclide primarily undergoing spontaneous fission has 238. In both decay modes, nuclei are inhibited from decaying by corresponding 4396: 8080: 2697:, after which collaboration between the JINR and other institutes completely ceased due to sanctions. Thus, Cf could no longer be used as a target, as it would have to be produced at the 3328:, their lowered intensity is somewhat unusual, as ignoring relativistic effects, periodic trends would predict unbinilium to be even more reactive than barium or radium. This lowered 1997:
during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed. Each pair of a target and a beam is characterized by its
3151:
Empirical (Na–Fr, Mg–Ra) and predicted (Uue–Uhp, Ubn–Uhh) ionization energy of the alkali and alkaline earth metals from the third to the ninth period, measured in electron volts
4267:
Pershina, V.; Borschevsky, A.; Anton, J. (2012). "Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces".
2743:, also plans to synthesise elements 119 and 120. The reactions used will involve actinide targets (e.g. Am, Cm) and first-row transition metal projectiles (e.g. Ti, V, Cr, Mn). 2005:
through electrostatic repulsion. If the two nuclei can stay close past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.
3167:
unbinilium atom—oxidized so it has only one electron, Ubn—is predicted to move so quickly that its mass is 2.05 times that of a non-moving electron, a feature coming from the
6241:
Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016). "Remarks on the Fission Barriers of SHN and Search for Element 120". In Peninozhkevich, Yu. E.; Sobolev, Yu. G. (eds.).
6267: 3663:
bond should be the weakest of all bonds between gold and an alkaline earth metal, but should still be stable. This gives extrapolated medium-sized adsorption enthalpies (−Δ
1956:. Reactions that created new elements to this moment were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all. 3875:
reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.
2933: 6338:
Heßberger, F. P.; Ackermann, D. (2017). "Some critical remarks on a sequence of events interpreted to possibly originate from a decay chain of an element 120 isotope".
3183:
of the Ubn ion is also correspondingly lowered to 160 pm. The trend in electron affinity is also expected to reverse direction similarly at radium and unbinilium.
5608: 6796:
Gan, Z. G.; Huang, W. X.; Zhang, Z. Y.; Zhou, X. H.; Xu, H. S. (2022). "Results and perspectives for study of heavy and super-heavy nuclei and elements at IMP/CAS".
7763:
Skripnikov, L.V.; Mosyagin, N.S.; Titov, A.V. (January 2013). "Relativistic coupled-cluster calculations of spectroscopic and chemical properties for element 120".
6165: 2826:, element 96, whose half-life is four orders of magnitude longer than that of any currently known higher-numbered element. All isotopes with an atomic number above 8073: 4518: 2418:
In 2011, after upgrading their equipment to allow the use of more radioactive targets, scientists at the GSI attempted the rather asymmetrical fusion reaction:
1824: 6887:
de Marcillac, Pierre; Coron, Noël; Dambier, Gérard; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth".
5638: 3982:. There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, 2179:
of the emitted particle). Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.
4066:
Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).
1815: 2335: 6654:[Livermorium-288 was synthesized for the first time in the world at FLNR JINR] (in Russian). Joint Institute for Nuclear Research. 23 October 2023 7383: 7816:
Knight, L. B.; Easley, W. C.; Weltner, W.; Wilson, M. (January 1971). "Hyperfine Interaction and Chemical Bonding in MgF, CaF, SrF, and BaF molecules".
4105: 3391:
of the Ubn/Ubn couple is predicted to be −2.9 V, which is almost exactly the same as that for the Sr/Sr couple of strontium (−2.899 V).
2913:
have been used, namely Pu+Fe and U+Ni. The results have revealed how nuclei such as this fission predominantly by expelling closed shell nuclei such as
2838:) have stable isotopes. Nevertheless, because of reasons not yet well understood, there is a slight increase of nuclear stability around atomic numbers 2089:
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost
8066: 4586: 3751:(element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 4404: 2053:. This happens in about 10 seconds after the initial nuclear collision and results in creation of a more stable nucleus. The definition by the 3512:, which should be the most weakly bound of all the group 2 homodiatomic molecules. The cause of this trend is the increasing participation of the p 2097:
and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited. Total
9827: 4980: 4143: 3351:
spinor, causing its outermost electrons to have a lower ionization energy than what would otherwise be expected. The +6 state involving all the 7p
3163:—the energy required to remove an electron from a neutral atom—is predicted to be 6.0 eV, comparable to that of calcium. The electron of the 6620: 3763:; sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical 1968:, the greater the possibility that the two react. The material made of the heavier nuclei is made into a target, which is then bombarded by the 1922:
of the alkaline earth metals, it is also predicted to show the +4 and +6 oxidation states, which are unknown in any other alkaline earth metal.
4400: 2725: 2122: 1964:
is created in a nuclear reaction that combines two other nuclei of unequal size into one; roughly, the more unequal the two nuclei in terms of
3332:
is due to the relativistic stabilization of unbinilium's valence electron, increasing unbinilium's first ionization energy and decreasing the
8004: 7985: 7959: 7921: 7742: 7713: 7653: 7596: 7494: 6947: 6322: 6012: 4814: 4446: 4212: 4079: 2713: 4838: 2255: 5793: 3147: 3095:. The SO interaction is especially strong for the superheavy elements because their electrons move faster—at velocities comparable to the 6537: 7029: 6143: 4473:; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction Xe + Xe". 6674: 2945: = 114, 120, 124, or 126). The team studied the nuclear fusion reaction between uranium ions and a target of natural nickel: 3799:
The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the
2851: 2558:
This reaction was investigated again in April to September 2012 at the GSI. This experiment used a Bk target and a Ti beam to produce
2562:, but since Bk decays to Cf with a half-life of about 327 days, both elements 119 and 120 could be searched for simultaneously: 2270:
target. The attempt was unsuccessful, and the Russian team planned to upgrade their facilities before attempting the reaction again.
7628: 6250: 4312: 3781:. In comparison, the reaction that resulted in hassium discovery, Pb + Fe, had a cross section of ~20 pb (more specifically, 19 3123: 2049:, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a 1549: 109: 7027:
Chowdhury, P. Roy; Samanta, C. & Basu, D. N. (2008). "Nuclear half-lives for α -radioactivity of elements with 100 ≤ Z ≤ 130".
5763:"Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" 2751: 7977: 7188:
Chowdhury, P. Roy; Samanta, C. & Basu, D. N. (2008). "Nuclear half-lives for α-radioactivity of elements with 100 ≤ Z ≤ 130".
7135:
Samanta, C.; Chowdhury, P. Roy & Basu, D.N. (2007). "Predictions of alpha decay half lives of heavy and superheavy elements".
4071: 6974:
Chowdhury, P. Roy; Samanta, C. & Basu, D. N. (2008). "Search for long lived heaviest nuclei beyond the valley of stability".
6275: 5110: 5069: 3895: 1808: 2054: 9822: 6082:
Oganessian, Yu. Ts.; Utyonkov, V.; Lobanov, Yu.; et al. (2009). "Attempt to produce element 120 in the Pu+Fe reaction".
3168: 2025: 1899: 5613: 4711:
Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.).
2490:
In August–October 2011, a different team at the GSI using the TASCA facility tried a new, even more asymmetrical reaction:
6735: 4717: 3395:
Bond lengths and bond-dissociation energies of MAu (M = an alkaline earth metal). All data is predicted, except for CaAu.
2698: 2117: 2111: 4425:
Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.).
2121:
Scheme of an apparatus for creation of superheavy elements, based on the Dubna Gas-Filled Recoil Separator set up in the
4772: 3388: 2901:
nucleus is now expected to be around the spherical Ubb (element 122), but the expected low half-life and low production
1894:
Unbinilium's position as the seventh alkaline earth metal suggests that it would have similar properties to its lighter
7877: 4650: 1976:
into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to
7521:
Pyykkö, Pekka (2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions".
4557: 2740: 2736: 2694: 1801: 7417:"Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding" 5240:
Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. (2017). "On the volatility of nihonium (Nh, Z = 113)".
4303:
Pershina, Valeria. "Theoretical Chemistry of the Heaviest Elements". In Schädel, Matthias; Shaughnessy, Dawn (eds.).
3088: 6651: 5358: 4370: 5710: 4872: 4798: 4655: 2800: 2102:
predicted and have so far been observed to predominantly decay via decay modes that are caused by such repulsion:
5367: 4232: 7360: 6545: 6453: 5643: 4285:
This article gives the Mulliken electronegativity as 2.862, which has been converted to the Pauling scale via χ
4000: 3497: 3100: 2814: 1984:
can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly
7390: 3944:
If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay
4676:
Kern, B. D.; Thompson, W. E.; Ferguson, J. M. (1959). "Cross sections for some (n, p) and (n, α) reactions".
3130:(Na–Cs, Mg–Ra) and predicted (Fr–Uhp, Ubn–Uhh) atomic radii of the alkali and alkaline earth metals from the 8089: 7734: 4510: 3999:
The quantum number corresponds to the letter in the electron orbital name: 0 to s, 1 to p, 2 to d, etc. See
3521: 3087:
The main reason for the predicted differences between unbinilium and the other alkaline earth metals is the
2902: 2762: 2220: 1998: 1880: 1864: 1777: 1482: 3371:
electrons in the bonding: this effect is also seen to a lesser extent in radium, which shows some 6s and 6p
7082:
Chowdhury, P. Roy; Samanta, C. & Basu, D. N. (2006). "α decay half-lives of new superheavy elements".
4591: 3329: 3076: 2701:(ORNL) in the United States. Instead, the Cm+Cr reaction will be used. In 2023, the director of the JINR, 2236: 2098: 2079: 1867:, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the 1784: 1510: 1503: 1495: 1470: 6385: 5132:"Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory" 3674:, the smallest of all the alkaline earth metals, that demonstrate that it would be feasible to study the 7705: 7670: 2702: 3898:
and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.
8109: 8023: 7997:"Future of superheavy element research: Which nuclei could be synthesized within the next few years?" 7892: 7825: 7782: 7530: 7428: 7326: 7282: 7207: 7154: 7101: 7048: 6993: 6896: 6468: 6426: 6347: 6302: 6207: 6091: 5882: 5524: 5491: 5442: 5321: 5249: 5153: 4726: 4685: 4533: 4430: 4191:
Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements".
3084:; however, it is also predicted to differ from the lighter alkaline earth metals in some properties. 3081: 2728:(LLNL), which previously collaborated with the JINR, will collaborate with the LBNL on this project. 2717: 1985: 1895: 1876: 1739: 1475: 20: 5856: 2693:
The JINR's plans to investigate the Cf+Ti reaction in their new facility were disrupted by the 2022
9817: 7939: 6593: 4985: 4919: 4582: 3708: 3477: 3473: 2886: 2878: 2847: 2167: 2163: 2107: 1884: 1758: 6567: 5435:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2065:
within 10 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire
8047: 8013: 7798: 7772: 7500: 7223: 7197: 7170: 7144: 7117: 7091: 7064: 7038: 7009: 6983: 6920: 6484: 6363: 6223: 5946: 5898: 5872: 5785: 5589: 5558: 5273: 5143: 4951: 4897: 4842: 4549: 4452: 3970:
For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in
3164: 2158:
thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the
2125:
in JINR. The trajectory within the detector and the beam focusing apparatus changes because of a
2002: 1981: 1932: 1621: 1615: 6413:
Siwek-Wilczyńska, K.; Cap, T.; Wilczyński, J. (April 2010). "How can one synthesize the element
5762: 4329: 3670:) of 172 kJ/mol on gold (the radium value should be 237 kJ/mol) and 50 kJ/mol on 2045:
without formation of a more stable nucleus. Alternatively, the compound nucleus may eject a few
7580: 7568: 6510: 5819: 4864: 8974: 8039: 7981: 7955: 7927: 7917: 7841: 7738: 7709: 7649: 7624: 7592: 7546: 7490: 7342: 6953: 6943: 6912: 6318: 6246: 6008: 5938: 5691: 5550: 5542: 5468: 5460: 5339: 5265: 5171: 4943: 4889: 4865:"Criteria that must be satisfied for the discovery of a new chemical element to be recognized" 4810: 4754: 4492: 4475: 4442: 4308: 4208: 4075: 3160: 2866: 2831: 2155: 2130: 2062: 1902:
may cause some of its properties to differ from those expected from a straight application of
1733: 1670: 1656: 1548: 733: 5099: 5058: 3884:
This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.
9338: 9039: 8740: 8567: 8394: 8311: 8228: 8199: 8161: 8156: 8151: 8031: 7951: 7900: 7833: 7790: 7697: 7584: 7538: 7482: 7436: 7334: 7290: 7215: 7162: 7109: 7056: 7001: 6904: 6836: 6805: 6769: 6709: 6476: 6434: 6355: 6310: 6215: 6099: 6000: 5930: 5890: 5834: 5777: 5581: 5532: 5450: 5405: 5329: 5257: 5161: 4935: 4881: 4802: 4790: 4744: 4734: 4693: 4541: 4514: 4484: 4434: 4344: 4276: 4242: 4200: 4117: 3975: 3912: 3363:. The +1 state may also be isolable. Many unbinilium compounds are expected to have a large 3309: 3135: 3131: 3064: 3036: 2765: 2058: 2038: 1977: 1844: 1600: 1487: 60: 6054:"Synthesis of New Nuclei and Study of Nuclear Properties and Heavy-Ion Reaction Mechanisms" 2936:, France, described the results from a new technique which attempts to measure the fission 8146: 8141: 8136: 8131: 8126: 8121: 8116: 6297:
Hofmann, Sigurd (August 2015). "Search for Isotopes of Element 120 on the Island of SHN".
5705: 4976: 4860: 4470: 4375: 3740: 3376: 3344: 3333: 3325: 3072: 2706: 2251: 2159: 2126: 2042: 1944: 1919: 1715: 1637: 8035: 6868:. 4th International Conference on the Chemistry and Physics of the Transactinide Elements 5894: 5334: 5309: 8027: 7904: 7896: 7829: 7786: 7534: 7432: 7330: 7286: 7211: 7158: 7105: 7052: 6997: 6900: 6472: 6430: 6351: 6306: 6211: 6095: 5886: 5528: 5495: 5446: 5325: 5253: 5157: 4730: 4689: 4537: 7943: 7384:"Future Plan of the Experimental Program on Synthesizing the Heaviest Element at RIKEN" 3675: 3200:
Bond lengths and bond-dissociation energies of alkaline earth metal dimers. Data for Ba
3104: 3096: 3092: 2925: 2834:
with half-lives of less than 30 hours. No elements with atomic numbers above 82 (after
2176: 1990: 1973: 1961: 1949: 1903: 1868: 1543: 136: 6809: 6761: 2805:
121. The elliptical region encloses the predicted location of the island of stability.
2041:—and thus it is very unstable. To reach a more stable state, the temporary merger may 9811: 9201: 7504: 7121: 7013: 6701: 6488: 6367: 6227: 6195: 5950: 5921:
Gates, J.; Pore, J.; Crawford, H.; Shaughnessy, D.; Stoyer, M. A. (25 October 2022).
5902: 5593: 5562: 5515: 5396: 5277: 4697: 4553: 4456: 3958: 3764: 3744: 3172: 2919: 2855: 2483:
that should receive increased stability from their proximity to the shell closure at
2267: 2034: 1969: 1852: 1698: 1581: 1564: 1452: 1130: 1116: 1109: 1060: 1046: 1039: 905: 8051: 7802: 7227: 7166: 7068: 6243:
Exotic Nuclei: EXON-2016 Proceedings of the International Symposium on Exotic Nuclei
6028: 5857:"Prospects for the discovery of the next new element: Influence of projectiles with 5789: 5409: 4955: 4901: 4846: 4624: 2861:
Isotopes of unbinilium are predicted to have alpha decay half-lives of the order of
9255: 9084: 8785: 8171: 8104: 7338: 7242: 7174: 6924: 6860: 6053: 4438: 3356: 3337: 3180: 2898: 2839: 2822:
The stability of nuclei decreases greatly with the increase in atomic number after
2083: 1745: 1385: 1364: 1350: 1343: 1221: 1200: 1186: 1179: 1144: 1137: 1123: 1081: 1074: 1067: 1053: 947: 814: 586: 5391: 5366:. Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. 4739: 4712: 3516:
and d electrons as well as the relativistically contracted s orbital. From these M
7794: 6359: 6219: 5639:"The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War" 5261: 4246: 9622: 9309: 9273: 9264: 9174: 9156: 9147: 8166: 7969: 6480: 4204: 3760: 3682: 3481: 3020: 2882: 2870: 2862: 2827: 2809: 2212: 2204: 2103: 1392: 1378: 1371: 1357: 1315: 1294: 1280: 1273: 1228: 1214: 1207: 1193: 1151: 1102: 1088: 1032: 989: 961: 954: 884: 870: 863: 7113: 7005: 6825:"Recommendations for the naming of elements of atomic numbers greater than 100" 6774: 6713: 6452:
Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; et al. (December 2020).
6314: 6103: 5166: 5131: 4981:"How to Make Superheavy Elements and Finish the Periodic Table [Video]" 4923: 4488: 2818:
diagram, potentially increasing the half-lives of element 119 and 120 isotopes.
2262:
started experiments in March–April 2007 to attempt to create unbinilium with a
1883:. It has attracted attention because of some predictions that it may be in the 9638: 9345: 9318: 9246: 9219: 9192: 8848: 8830: 8803: 8630: 8621: 8356: 7996: 7486: 7314: 7219: 7060: 6438: 6004: 4939: 4713:"Comparing Experimental and Theoretical Quasifission Mass Angle Distributions" 3908: 3752: 3720: 3678: 2721: 2559: 2208: 2021: 1891:
Chinese teams to synthesize unbinilium are planned to begin in the mid-2020s.
1428: 1399: 1336: 1322: 1308: 1301: 1287: 1235: 1172: 1158: 1095: 1016: 996: 940: 919: 898: 635: 621: 600: 470: 463: 264: 8043: 7845: 7569:"Superheavy elements: a prediction of their chemical and physical properties" 6957: 5922: 5585: 5546: 5464: 5343: 5269: 5175: 4947: 4893: 4758: 4496: 9597: 9327: 9300: 9291: 9138: 9120: 9111: 9102: 8884: 8794: 8767: 8711: 8657: 8639: 8603: 8583: 8520: 8457: 8401: 8338: 8327: 8244: 8191: 8181: 8176: 7931: 6841: 6824: 6625: 5838: 5781: 5688:
Popular library of chemical elements. Silver through nielsbohrium and beyond
4885: 4806: 3971: 3712: 3176: 3127: 3052: 3044: 3040: 3024: 2937: 2846:, which leads to the appearance of what is known in nuclear physics as the " 2843: 2339: 2247: 2224: 2200: 2196: 2192: 2050: 1915: 1704: 1516: 1436: 1329: 1266: 1252: 1165: 1003: 982: 975: 856: 842: 835: 828: 663: 593: 572: 533: 491: 477: 449: 431: 387: 338: 294: 250: 241: 181: 7550: 7346: 6916: 5667:[Popular library of chemical elements. Seaborgium (eka-tungsten)]. 5472: 5455: 5430: 1993:. However, if too much energy is applied, the beam nucleus can fall apart. 8058: 7315:"Fission Time Measurements: A New Probe into Superheavy Element Stability" 3755:(although there are other definitions, such as atomic number greater than 9606: 9282: 9183: 9066: 9046: 9019: 9010: 8983: 8956: 8920: 8911: 8893: 8821: 8812: 8702: 8574: 8538: 8448: 8439: 8430: 8421: 8374: 8291: 8273: 8206: 8098: 7294: 5820:"Names and symbols of transfermium elements (IUPAC Recommendations 1997)" 5107:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
5066:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
4237: 3945: 3778: 3364: 3313: 3139: 2143: 2066: 1259: 968: 891: 800: 784: 768: 761: 740: 719: 691: 684: 670: 614: 607: 526: 424: 401: 331: 324: 317: 310: 278: 218: 204: 156: 7974:
From Transuranic to Superheavy Elements: A Story of Dispute and Creation
7149: 7096: 6908: 5684:Популярная библиотека химических элементов. Серебро – Нильсборий и далее 4121: 3907:
Not all decay modes are caused by electrostatic repulsion. For example,
1586:
1973 K ​(1700 °C, ​3092 °F)
9792: 9787: 9782: 9777: 9772: 9237: 9228: 9210: 9165: 9093: 9075: 9001: 8947: 8929: 8902: 8875: 8857: 8839: 8747: 8675: 8648: 8612: 8594: 8556: 8547: 8529: 8511: 8410: 8347: 8235: 8186: 7588: 7542: 6862:
The Impact of Superheavy Elements on the Chemical and Physical Sciences
4749: 4545: 3756: 3317: 3159:
Due to the stabilization of its outer 8s electrons, unbinilium's first
3048: 2874: 2732: 2343: 2263: 2216: 2151: 2147: 2139: 2090: 2046: 1953: 1872: 1594: 933: 926: 912: 877: 821: 807: 754: 712: 698: 677: 656: 642: 628: 556: 505: 484: 456: 442: 415: 408: 394: 380: 301: 257: 174: 7837: 7441: 7416: 6196:"Review of even element super-heavy nuclei and search for element 120" 5942: 5761:
Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993).
5706:"Nobelium - Element information, properties and uses | Periodic Table" 5554: 5537: 5510: 4348: 4280: 9129: 9055: 8938: 8866: 8776: 8756: 8720: 8684: 8666: 8493: 8484: 8475: 8365: 8318: 8282: 8264: 8217: 5994: 5971: 5969: 5967: 3979: 3671: 3060: 3056: 2823: 2757: 2347: 2199:) were discovered in "hot fusion" reactions bombarding the actinides 2094: 1911: 1907: 1570: 1411: 849: 791: 705: 649: 579: 563: 540: 512: 498: 366: 359: 352: 271: 234: 211: 197: 165: 7648:(New ed.). New York, NY: Oxford University Press. p. 586. 7474: 6274:. Journal of Physics G: Nuclear and Particle Physics. Archived from 5934: 5756: 5754: 5665:"Популярная библиотека химических элементов. Сиборгий (экавольфрам)" 5609:"Exploring the superheavy elements at the end of the periodic table" 4330:"Prospects for further considerable extension of the periodic table" 4307:(2nd ed.). Springer Science & Business Media. p. 154. 3476:. Thus, the M–M bonding in these molecules is predominantly through 3387:), resulting in these compounds having more covalent character. The 2869:
model with mass estimates from a macroscopic-microscopic model, the
5632: 5630: 5052: 5050: 4587:"Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist" 9028: 8729: 8383: 8255: 8018: 7777: 7202: 7043: 6988: 6623:["Most of our partners are much wiser than politicians"]. 5877: 5385: 5383: 5303: 5301: 5299: 5148: 4913: 4911: 4828: 4826: 4231:
Cao, Chang-Su; Hu, Han-Shi; Schwarz, W. H. Eugen; Li, Jun (2022).
4195:. Challenges and Advances in Computational Chemistry and Physics. 3187: 3146: 3122: 3011: 2808: 2799: 2259: 2116: 1943: 775: 547: 285: 190: 4971: 4969: 4967: 4965: 4924:"A History and Analysis of the Discovery of Elements 104 and 105" 4144:"Theoretical Predictions of the Chemistry of Superheavy Elements" 4106:"Predicting the properties of the 113-120 transactinide elements" 2166:
suggested that nuclei with about 300 nucleons would form an
8992: 8965: 8502: 8466: 8300: 7273:
Natowitz, Joseph (2008). "How stable are the heaviest nuclei?".
5664: 5093: 5091: 5089: 5087: 5085: 3748: 3660: 2835: 2061:
can only be recognized as discovered if a nucleus of it has not
1965: 747: 726: 373: 345: 225: 8062: 6675:"A New Way to Make Element 116 Opens the Door to Heavier Atoms" 3039:, unbinilium is predicted to be an alkaline earth metal, below 2858:, explains why superheavy elements last longer than predicted. 2024:
of unsuccessful nuclear fusion, based on calculations from the
1906:. For example, unbinilium is expected to be less reactive than 16:
Hypothetical chemical element, symbol Ubn and atomic number 120
8693: 6128: = 184 (Report). GSI Scientific Report. p. 131. 3071:
s), which is easily lost in chemical reactions to form the +2
2914: 2752:
Mendeleev's nomenclature for unnamed and undiscovered elements
519: 6762:"How Japan Took the Lead in the Race to Discover Element 119" 4233:"Periodic Law of Chemistry Overturns for Superheavy Elements" 66: 6702:"Heaviest element yet within reach after major breakthrough" 6538:"In search of element 120 in the periodic table of elements" 5310:"Nuclei in the "Island of Stability" of Superheavy Elements" 2146:(element 102), and by 30 orders of magnitude from 1573: ​(680 °C, ​1256 °F) 7313:
Morjean, M.; Jacquet, D.; Charvet, J.; et al. (2008).
6268:"Weighty matters: Sigurd Hofmann on the heaviest of nuclei" 3067:
in the outermost s-orbital (valence electron configuration
93: 90: 75: 7692: 7690: 6120:
Hoffman, S.; et al. (2008). Probing shell effects at
5923:"The Status and Ambitions of the US Heavy Element Program" 5818:
Commission on Nomenclature of Inorganic Chemistry (1997).
3091:—the mutual interaction between the electrons' motion and 6736:"U.S. back in race to forge unknown, superheavy elements" 5729: 5727: 4618: 4616: 4614: 4612: 4610: 4608: 3116:
alkaline earth metals to reverse direction after barium.
84: 6621:"«Большинство наших партнеров гораздо мудрее политиков»" 6568:"Even the periodic table must bow to the reality of war" 5490:. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 5211: 5209: 4068:
The Chemistry of the Actinide and Transactinide Elements
7876:
Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017).
6652:"В ЛЯР ОИЯИ впервые в мире синтезирован ливерморий-288" 5855:
Folden III, C. M.; Mayorov, D. A.; et al. (2013).
3957:
Spontaneous fission was discovered by Soviet physicist
7646:
Nature's Building Blocks: An A-Z Guide to the Elements
7243:"JINR Publishing Department: Annual Reports (Archive)" 6194:
Hofmann, S.; Heinz, S.; Mann, R.; et al. (2016).
6144:"Superheavy Element Research: News from GSI and Mainz" 5975: 5029: 5996:
Overview and Perspectives of SHE Research at GSI SHIP
5017: 5005: 3699:
values are correlated for the alkaline earth metals.
3179:, very close to that of strontium (215 pm); the 2223:
of the production reactions and their probably short
110: 81: 69: 63: 6034:. Lawrence Livermore National Laboratory. April 2007 5576:
Grant, A. (2018). "Weighing the heaviest elements".
4835:
Faculty of Nuclear Sciences and Physical Engineering
4651:"Something new and superheavy at the periodic table" 4427:
Encyclopedia of Inorganic and Bioinorganic Chemistry
3531:) of unbinilium is predicted to be 150 kJ/mol. 87: 72: 2162:for nuclei with about 280 nucleons. The later 2010: 1783: 1772: 1767: 1757: 1732: 1727: 1714: 1697: 1669: 1655: 1636: 1631: 1614: 1593: 1580: 1563: 1542: 1537: 1526: 1509: 1494: 1481: 1469: 1450: 134: 126: 96: 78: 54: 49: 42: 7477:. In Schädel, Matthias; Shaughnessy, Dawn (eds.). 6509:Sokolova, Svetlana; Popeko, Andrei (24 May 2021). 2685:Neither element 119 nor element 120 was observed. 7878:"The NUBASE2016 evaluation of nuclear properties" 7481:(2nd ed.). Springer-Verlag. pp. 204–7. 5130:Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). 2905:of this nuclide makes its synthesis challenging. 2342:, Germany attempted to create unbinilium using a 2114:for each mode, but they can be tunneled through. 1918:, and while it should show the characteristic +2 7475:"Theoretical Chemistry of the Heaviest Elements" 6077: 6075: 5509:Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). 7995:Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). 7573:Recent Impact of Physics on Inorganic Chemistry 6969: 6967: 5993:Hofmann, Sigurd (2013). Greiner, Walter (ed.). 3324:. While these reactions would be expected from 2731:The team at the Heavy Ion Research Facility in 2227:, expected to be on the order of microseconds. 1952:reaction. Two nuclei fuse into one, emitting a 6189: 6187: 8074: 7623:(86th ed.). Boca Raton (FL): CRC Press. 6938:Considine, Glenn D.; Kulik, Peter H. (2002). 4833:Krása, A. (2010). "Neutron Sources for ADS". 4627:[Superheavy steps into the unknown]. 1809: 1500: 28:Chemical element with atomic number 120 (Ubn) 8: 7468: 7466: 7464: 7462: 7460: 7458: 7456: 7454: 7452: 7268: 7266: 7264: 6137: 6135: 5916: 5914: 5912: 4718:European Physical Journal Web of Conferences 4137: 4135: 4133: 4131: 4104:Bonchev, Danail; Kamenska, Verginia (1981). 4070:(3rd ed.). Dordrecht, The Netherlands: 3075:: thus the alkaline earth metals are rather 31: 7562: 7560: 7308: 7306: 7304: 6379: 6377: 5360:Fission properties of the heaviest elements 5227: 5188: 4116:(9). American Chemical Society: 1177–1186. 3790: pb), as estimated by the discoverers. 3367:character, due to the involvement of the 7p 2336:GSI Helmholtz Centre for Heavy Ion Research 8081: 8067: 8059: 7516: 7514: 7427:(6). American Institute of Physics: 2456. 6052:Itkis, M. G.; Oganessian, Yu. Ts. (2007). 5988: 5986: 5984: 3536:bond-dissociation energy and bond length. 3533: 3393: 3198: 2086:, and the time of the decay are measured. 2069:and thus display its chemical properties. 1816: 1802: 1744: 147: 19:"Ubn" redirects here. For other uses, see 8017: 7948:The Transuranium People: The Inside Story 7776: 7671:"transuranium element (chemical element)" 7440: 7201: 7148: 7095: 7042: 6987: 6840: 6773: 6419:International Journal of Modern Physics E 5876: 5850: 5848: 5536: 5454: 5333: 5165: 5147: 4748: 4738: 4099: 4097: 4095: 4093: 4091: 3488:molecules increase down the group from Ca 1871:of the elements, it is expected to be an 7862:. New York: Van Nostrand-Reinhold. 1979. 6854: 6852: 6594:"At seminar on synthesis of element 120" 6115: 6113: 5511:"A beachhead on the island of stability" 4186: 4184: 4182: 4180: 4178: 4176: 4174: 4172: 4061: 4059: 4057: 4055: 4053: 4051: 4049: 4047: 4045: 4043: 4041: 4039: 1792:Experiments and theoretical calculations 143: 9199: 7363:[Nuclear Chemistry] (in German) 6681:. Lawrence Berkeley National Laboratory 6166:"Searching for the island of stability" 4037: 4035: 4033: 4031: 4029: 4027: 4025: 4023: 4021: 4019: 4015: 3732: 3496:. On the other hand, their metal–metal 1972:of lighter nuclei. Two nuclei can only 1879:, and the second element in the eighth 9620: 9253: 9082: 8783: 7758: 7756: 7754: 7729:Keeler, James; Wothers, Peter (2003). 6940:Van Nostrand's scientific encyclopedia 6386:"Superheavy Element Research at TASCA" 6060:. Joint Institute for Nuclear Research 5682:"Экавольфрам" [Eka-tungsten]. 5431:"Chemistry of the superheavy elements" 5290: 5215: 5200: 5041: 4401:Lawrence Livermore National Laboratory 2726:Lawrence Livermore National Laboratory 2123:Flerov Laboratory of Nuclear Reactions 2007: 30: 9636: 9352: 9343: 9307: 9271: 9262: 9172: 9154: 9145: 8005:Journal of Physics: Conference Series 7621:CRC Handbook of Chemistry and Physics 7415:Fægri Jr., Knut; Saue, Trond (2001). 6511:"How are new chemical elements born?" 5865:Journal of Physics: Conference Series 5799:from the original on 25 November 2013 5745: 5733: 5314:Journal of Physics: Conference Series 4226: 4224: 2714:Lawrence Berkeley National Laboratory 2246:Following their success in obtaining 7: 9595: 9316: 9244: 9217: 9190: 8846: 8828: 8801: 8628: 8619: 7479:The Chemistry of Superheavy Elements 6942:(9th ed.). Wiley-Interscience. 5976:Zagrebaev, Karpov & Greiner 2013 5030:Zagrebaev, Karpov & Greiner 2013 4839:Czech Technical University in Prague 4305:The Chemistry of Superheavy Elements 3681:of unbinilium onto surfaces made of 2256:Joint Institute for Nuclear Research 1476:group 2 (alkaline earth metals) 9604: 9325: 9298: 9289: 9136: 9118: 9109: 9100: 8882: 8792: 8765: 8709: 8655: 8637: 8601: 8581: 8518: 8455: 8354: 8336: 8325: 8242: 7523:Physical Chemistry Chemical Physics 7190:Atomic Data and Nuclear Data Tables 7030:Atomic Data and Nuclear Data Tables 6760:Nelson, Felicity (15 August 2024). 6734:Service, Robert F. (23 July 2024). 6700:Bourzac, Katherine (23 July 2024). 6245:. Exotic Nuclei. pp. 155–164. 6142:Düllmann, C. E. (20 October 2011). 6029:"A New Block on the Periodic Table" 5018:Hoffman, Ghiorso & Seaborg 2000 5006:Hoffman, Ghiorso & Seaborg 2000 4789:Loveland, W. D.; Morrissey, D. J.; 4519:"The identification of element 108" 4397:"Discovery of Elements 113 and 115" 3316:gas. It should also react with the 2941:position of the next proton shell ( 2908:Given that element 120 fills the 2f 1684:2nd: 895–919 kJ/mol 9766: 9280: 9181: 9064: 9044: 9017: 9008: 8981: 8954: 8909: 8891: 8819: 8810: 8700: 8572: 8536: 8446: 8428: 8419: 8399: 8372: 4517:; Folger, H.; et al. (1984). 3355:electrons has been suggested in a 14: 9235: 9226: 9208: 9163: 9073: 8999: 8972: 8945: 8927: 8918: 8900: 8873: 8855: 8837: 8745: 8673: 8646: 8610: 8554: 8545: 8527: 8509: 8437: 8408: 8345: 8289: 8271: 8233: 8204: 6859:Kratz, J. V. (5 September 2011). 6619:Mayer, Anastasiya (31 May 2023). 6566:Ahuja, Anjana (18 October 2023). 6454:"Search for elements 119 and 120" 5871:(1). IOP Publishing Ltd. 012007. 5191:, pp. 030001-129–030001-138. 4625:"Сверхтяжелые шаги в неизвестное" 4193:Relativistic Methods for Chemists 4142:Fricke, B.; Waber, J. T. (1971). 3063:. Each of these elements has two 2873:half-lives of several unbinilium 1933:Superheavy element § Introduction 1678:1st: 563.3 kJ/mol 9589: 9362: 9337: 9127: 9091: 9053: 9038: 8936: 8864: 8774: 8754: 8739: 8682: 8664: 8592: 8566: 8491: 8482: 8473: 8393: 8316: 8310: 8227: 8215: 8198: 7382:Morita, K. (28 September 2007). 6536:Riegert, Marion (19 July 2021). 6266:Adcock, Colin (2 October 2015). 4371:"Explainer: superheavy elements" 3343:Unbinilium may also show the +4 2254:and Ca in 2006, the team at the 2154:(element 100). The earlier 2016: 1931:This section is an excerpt from 1865:systematic IUPAC name and symbol 59: 9026: 8727: 8718: 8381: 8363: 8280: 8262: 7860:Constants of Diatomic Molecules 7818:The Journal of Chemical Physics 7421:The Journal of Chemical Physics 7167:10.1016/j.nuclphysa.2007.04.001 6810:10.1140/epja/s10050-022-00811-w 6798:The European Physical Journal A 6340:The European Physical Journal A 6200:The European Physical Journal A 5614:Chemical & Engineering News 5357:Moller, P.; Nix, J. R. (1994). 5242:The European Physical Journal A 4269:The Journal of Chemical Physics 4072:Springer Science+Business Media 3375:contribution to the bonding in 3118: 2334:In April 2007, the team at the 2055:IUPAC/IUPAP Joint Working Party 9828:Hypothetical chemical elements 8990: 8963: 8500: 8464: 8298: 8253: 8036:10.1088/1742-6596/420/1/012001 7339:10.1103/PhysRevLett.101.072701 6673:Biron, Lauren (23 July 2024). 5895:10.1088/1742-6596/420/1/012007 5335:10.1088/1742-6596/337/1/012005 4439:10.1002/9781119951438.eibc2632 3747:if its atomic number is high; 2893:(filled at element 114) and 2f 2796:Nuclear stability and isotopes 2026:Australian National University 1940:Synthesis of superheavy nuclei 1: 8691: 7916:(6th ed.). McGraw-Hill. 7905:10.1088/1674-1137/41/3/030001 7731:Why Chemical Reactions Happen 5111:Université libre de Bruxelles 5070:Université libre de Bruxelles 4793:(2005). "Nuclear Reactions". 4337:Journal of Chemical Education 4110:Journal of Physical Chemistry 3121: 2850:". This concept, proposed by 2699:Oak Ridge National Laboratory 1914:and be closer in behavior to 1490:(theoretical, extended table) 7795:10.1016/j.cplett.2012.11.013 5488:Biomodal spontaneous fission 5390:Oganessian, Yu. Ts. (2004). 4698:10.1016/0029-5582(59)90211-1 4247:10.26434/chemrxiv-2022-l798p 3389:standard reduction potential 130:element 120, eka-radium 6481:10.1103/PhysRevC.102.064602 4799:John Wiley & Sons, Inc. 4740:10.1051/epjconf/20158600061 4205:10.1007/978-1-4020-9975-5_2 3520:dissociation energies, the 3320:to form salts such as UbnCl 3308:), which would be a strong 3089:spin–orbit (SO) interaction 2741:Chinese Academy of Sciences 2737:Institute of Modern Physics 2735:, which is operated by the 2695:Russian invasion of Ukraine 2033:The resulting merger is an 1530:2, 8, 18, 32, 32, 18, 8, 2 9844: 9750: 9743: 9736: 9729: 9722: 9715: 9708: 9701: 9694: 9687: 9680: 9673: 9666: 9659: 9652: 9645: 9629: 9613: 9571: 9564: 9557: 9550: 9543: 9536: 9529: 9522: 9515: 9508: 9501: 9494: 9487: 9480: 9473: 9466: 9459: 9452: 9445: 9438: 9431: 9424: 9417: 9410: 9403: 9396: 9389: 9382: 9375: 9368: 8590: 8417: 8334: 8251: 8213: 8113: 7914:Concepts of modern physics 7473:Pershina, Valeria (2014). 7114:10.1103/PhysRevC.73.014612 7006:10.1103/PhysRevC.77.044603 6829:Pure and Applied Chemistry 6775:10.1021/acscentsci.4c01266 6714:10.1038/d41586-024-02416-3 6360:10.1140/epja/i2017-12307-5 6315:10.1142/9789814699464_0023 6220:10.1140/epja/i2016-16180-4 6104:10.1103/PhysRevC.79.024603 5827:Pure and Applied Chemistry 5770:Pure and Applied Chemistry 5711:Royal Society of Chemistry 5262:10.1140/epja/i2017-12348-8 5167:10.1103/physrevc.87.024320 4873:Pure and Applied Chemistry 4489:10.1103/PhysRevC.79.024608 4328:Seaborg, Glenn T. (1969). 3896:time-of-flight measurement 3500:generally increase from Ca 3498:bond-dissociation energies 2234: 1930: 439: 307: 247: 187: 162: 18: 9776: 9764: 9585: 9336: 9037: 8738: 8565: 8392: 8309: 8226: 8197: 8190: 8185: 8180: 8175: 8170: 8165: 8160: 8155: 8150: 8145: 8140: 8135: 8130: 8125: 8120: 8115: 8108: 8103: 8096: 7946:; Seaborg, G. T. (2000). 7702:Chemistry of the Elements 7700:; Earnshaw, Alan (1997). 7619:Lide, D. R., ed. (2005). 7575:. Structure and Bonding. 7567:Fricke, Burkhard (1975). 7487:10.1007/978-3-642-37466-1 7220:10.1016/j.adt.2008.01.003 7061:10.1016/j.adt.2008.01.003 6439:10.1142/S021830131001490X 6005:10.1007/978-3-319-00047-3 5410:10.1088/2058-7058/17/7/31 5368:University of North Texas 4940:10.1524/ract.1987.42.2.57 2015: 1948:A graphic depiction of a 1797: 1790: 1703:empirical: 200  1661:Pauling scale: 0.91 1427: 1247: 142: 7765:Chemical Physics Letters 6546:University of Strasbourg 5637:Robinson, A. E. (2019). 5586:10.1063/PT.6.1.20181113a 5320:(1): 012005-1–012005-6. 5308:Oganessian, Yu. (2012). 4922:; Keller, O. L. (1987). 4795:Modern Nuclear Chemistry 4526:Zeitschrift für Physik A 4001:azimuthal quantum number 2852:University of California 2815:azimuthal quantum number 2250:by the reaction between 2080:surface-barrier detector 8090:Extended periodic table 7735:Oxford University Press 7675:Encyclopædia Britannica 6842:10.1351/pac197951020381 5839:10.1351/pac199769122471 5782:10.1351/pac199365081815 4886:10.1351/pac199163060879 4807:10.1002/0471768626.ch10 3743:, an element is called 3522:enthalpy of sublimation 3186:Unbinilium should be a 1978:electrostatic repulsion 1778:systematic element name 6592:JINR (29 March 2022). 5456:10.1098/rsta.2014.0191 4592:Bloomberg Businessweek 3152: 3142: 2819: 2806: 2754:would call unbinilium 2237:Isotopes of unbinilium 2134: 1957: 1785:Isotopes of unbinilium 1511:Electron configuration 9823:Alkaline earth metals 7706:Butterworth-Heinemann 7698:Greenwood, Norman N. 7644:Emsley, John (2011). 6384:Yakushev, A. (2012). 6124: = 120 and 5486:Hulet, E. K. (1989). 5392:"Superheavy elements" 5230:, p. 030001-125. 4431:John Wiley & Sons 4003:for more information. 3474:dissociation energies 3150: 3126: 2932:In 2008, the team at 2812: 2803: 2191:Elements 114 to 118 ( 2150:(element 90) to 2142:(element 92) to 2120: 1947: 1720:206–210 pm 7295:10.1103/Physics.1.12 6164:GSI (5 April 2012). 5690:] (in Russian). 5429:Schädel, M. (2015). 3508:and then drop to Ubn 3478:van der Waals forces 3383:) and astatide (RaAt 3169:relativistic effects 2791:Predicted properties 2057:(JWP) states that a 1900:relativistic effects 1877:alkaline earth metal 1843:, is a hypothetical 21:UBN (disambiguation) 8028:2013JPhCS.420a2001Z 7912:Beiser, A. (2003). 7897:2017ChPhC..41c0001A 7830:1971JChPh..54..322K 7787:2013CPL...555...79S 7669:Seaborg (c. 2006). 7535:2011PCCP...13..161P 7433:2001JChPh.115.2456F 7331:2008PhRvL.101g2701M 7287:2008PhyOJ...1...12N 7212:2008ADNDT..94..781C 7159:2007NuPhA.789..142S 7106:2006PhRvC..73a4612C 7053:2008ADNDT..94..781C 6998:2008PhRvC..77d4603C 6909:10.1038/nature01541 6901:2003Natur.422..876D 6766:ACS Central Science 6473:2020PhRvC.102f4602K 6431:2010IJMPE..19..500S 6352:2017EPJA...53..123H 6307:2015exon.conf..213H 6212:2016EPJA...52..180H 6096:2009PhRvC..79b4603O 5887:2013JPhCS.420a2007F 5529:2015PhT....68h..32O 5496:1989nufi.rept...16H 5447:2015RSPTA.37340191S 5326:2012JPhCS.337a2005O 5254:2017EPJA...53..158A 5158:2013PhRvC..87b4320S 4986:Scientific American 4773:"Nuclear Reactions" 4731:2015EPJWC..8600061W 4690:1959NucPh..10..226K 4623:Ivanov, D. (2019). 4538:1984ZPhyA.317..235M 4471:Oganessian, Yu. Ts. 4369:Krämer, K. (2016). 4122:10.1021/j150609a021 3709:Island of stability 3537: 3396: 3213: 3175:to around 200  3031:Atomic and physical 2879:spontaneous fission 2848:island of stability 2813:Orbitals with high 2766:temporarily call it 2168:island of stability 2164:nuclear shell model 2108:spontaneous fission 2073:Decay and detection 1885:island of stability 1740:body-centered cubic 1671:Ionization energies 1648:), (+4), (+6) 1538:Physical properties 1527:Electrons per shell 44:Theoretical element 39: 7589:10.1007/BFb0116498 7543:10.1039/c0cp01575j 7241:JINR (1998–2014). 6823:Chatt, J. (1979). 5999:. pp. 23–32. 5607:Howes, L. (2019). 5441:(2037): 20140191. 5293:, p. 432–433. 5098:Pauli, N. (2019). 5057:Pauli, N. (2019). 4801:pp. 249–297. 4649:Hinde, D. (2017). 4585:(28 August 2019). 4546:10.1007/BF01421260 3534: 3480:. The metal–metal 3394: 3199: 3153: 3143: 2820: 2807: 2231:Synthesis attempts 2135: 2131:quadrupole magnets 2129:in the former and 1982:strong interaction 1958: 1863:are the temporary 1434: 1419: 135:Unbinilium in the 9805: 9804: 9798: 9797: 9759: 9758: 7987:978-3-319-75813-8 7961:978-1-78-326244-1 7923:978-0-07-244848-1 7885:Chinese Physics C 7838:10.1063/1.1674610 7744:978-0-19-924973-2 7715:978-0-08-037941-8 7655:978-0-19-960563-7 7598:978-3-540-07109-9 7496:978-3-642-37465-4 7442:10.1063/1.1385366 6976:Physical Review C 6949:978-0-471-33230-5 6895:(6934): 876–878. 6461:Physical Review C 6324:978-981-4699-45-7 6014:978-3-319-00046-6 5833:(12): 2471–2474. 5736:, pp. 38–39. 5538:10.1063/PT.3.2880 5136:Physical Review C 5100:"Nuclear fission" 4928:Radiochimica Acta 4816:978-0-471-76862-3 4476:Physical Review C 4448:978-1-119-95143-8 4433:. pp. 1–16. 4349:10.1021/ed046p626 4281:10.1063/1.3699232 4214:978-1-4020-9974-8 4151:Actinides Reviews 4081:978-1-4020-3555-5 3946:must be preserved 3911:is caused by the 3657: 3656: 3563:Bond-dissociation 3469: 3468: 3408:Bond-dissociation 3301: 3300: 3225:Bond-dissociation 3161:ionization energy 3157: 3156: 3065:valence electrons 3035:Being the second 2923: = 50, 2867:quantum tunneling 2832:radioactive decay 2761:. The 1979 IUPAC 2703:Grigory Trubnikov 2156:liquid drop model 2031: 2030: 1830: 1829: 1734:Crystal structure 1657:Electronegativity 1632:Atomic properties 1607:7 g/cm 1446: 1445: 1442: 1441: 1432: 1417: 1407: 1406: 1011: 1010: 735:Mercury (element) 127:Alternative names 33:Unbinilium,  9835: 9769: 9768: 9755: 9754: 9748: 9747: 9741: 9740: 9734: 9733: 9727: 9726: 9720: 9719: 9713: 9712: 9706: 9705: 9699: 9698: 9692: 9691: 9685: 9684: 9678: 9677: 9671: 9670: 9664: 9663: 9657: 9656: 9650: 9649: 9643: 9641: 9634: 9633: 9627: 9625: 9618: 9617: 9611: 9609: 9602: 9600: 9593: 9592: 9576: 9575: 9569: 9568: 9562: 9561: 9555: 9554: 9548: 9547: 9541: 9540: 9534: 9533: 9527: 9526: 9520: 9519: 9513: 9512: 9506: 9505: 9499: 9498: 9492: 9491: 9485: 9484: 9478: 9477: 9471: 9470: 9464: 9463: 9457: 9456: 9450: 9449: 9443: 9442: 9436: 9435: 9429: 9428: 9422: 9421: 9415: 9414: 9408: 9407: 9401: 9400: 9394: 9393: 9387: 9386: 9380: 9379: 9373: 9372: 9366: 9365: 9359: 9357: 9350: 9348: 9341: 9332: 9330: 9323: 9321: 9314: 9312: 9305: 9303: 9296: 9294: 9287: 9285: 9278: 9276: 9269: 9267: 9260: 9258: 9251: 9249: 9242: 9240: 9233: 9231: 9224: 9222: 9215: 9213: 9206: 9204: 9197: 9195: 9188: 9186: 9179: 9177: 9170: 9168: 9161: 9159: 9152: 9150: 9143: 9141: 9134: 9132: 9125: 9123: 9116: 9114: 9107: 9105: 9098: 9096: 9089: 9087: 9080: 9078: 9071: 9069: 9060: 9058: 9051: 9049: 9042: 9033: 9031: 9024: 9022: 9015: 9013: 9006: 9004: 8997: 8995: 8988: 8986: 8979: 8977: 8970: 8968: 8961: 8959: 8952: 8950: 8943: 8941: 8934: 8932: 8925: 8923: 8916: 8914: 8907: 8905: 8898: 8896: 8889: 8887: 8880: 8878: 8871: 8869: 8862: 8860: 8853: 8851: 8844: 8842: 8835: 8833: 8826: 8824: 8817: 8815: 8808: 8806: 8799: 8797: 8790: 8788: 8781: 8779: 8772: 8770: 8761: 8759: 8752: 8750: 8743: 8734: 8732: 8725: 8723: 8716: 8714: 8707: 8705: 8698: 8696: 8689: 8687: 8680: 8678: 8671: 8669: 8662: 8660: 8653: 8651: 8644: 8642: 8635: 8633: 8626: 8624: 8617: 8615: 8608: 8606: 8599: 8597: 8588: 8586: 8579: 8577: 8570: 8561: 8559: 8552: 8550: 8543: 8541: 8534: 8532: 8525: 8523: 8516: 8514: 8507: 8505: 8498: 8496: 8489: 8487: 8480: 8478: 8471: 8469: 8462: 8460: 8453: 8451: 8444: 8442: 8435: 8433: 8426: 8424: 8415: 8413: 8406: 8404: 8397: 8388: 8386: 8379: 8377: 8370: 8368: 8361: 8359: 8352: 8350: 8343: 8341: 8332: 8330: 8323: 8321: 8314: 8305: 8303: 8296: 8294: 8287: 8285: 8278: 8276: 8269: 8267: 8260: 8258: 8249: 8247: 8240: 8238: 8231: 8222: 8220: 8211: 8209: 8202: 8099: 8083: 8076: 8069: 8060: 8055: 8021: 8001: 7991: 7965: 7952:World Scientific 7935: 7908: 7882: 7864: 7863: 7856: 7850: 7849: 7813: 7807: 7806: 7780: 7760: 7749: 7748: 7726: 7720: 7719: 7704:(2nd ed.). 7694: 7685: 7684: 7682: 7681: 7666: 7660: 7659: 7641: 7635: 7634: 7616: 7610: 7609: 7607: 7605: 7564: 7555: 7554: 7518: 7509: 7508: 7470: 7447: 7446: 7444: 7412: 7406: 7405: 7403: 7401: 7395: 7389:. Archived from 7388: 7379: 7373: 7372: 7370: 7368: 7357: 7351: 7350: 7310: 7299: 7298: 7270: 7259: 7258: 7256: 7254: 7238: 7232: 7231: 7205: 7185: 7179: 7178: 7152: 7143:(1–4): 142–154. 7132: 7126: 7125: 7099: 7079: 7073: 7072: 7046: 7024: 7018: 7017: 6991: 6971: 6962: 6961: 6935: 6929: 6928: 6884: 6878: 6877: 6875: 6873: 6867: 6856: 6847: 6846: 6844: 6820: 6814: 6813: 6793: 6787: 6786: 6784: 6782: 6777: 6757: 6751: 6750: 6748: 6746: 6731: 6725: 6724: 6722: 6720: 6697: 6691: 6690: 6688: 6686: 6670: 6664: 6663: 6661: 6659: 6648: 6642: 6641: 6636: 6634: 6616: 6610: 6609: 6607: 6605: 6589: 6583: 6582: 6580: 6578: 6563: 6557: 6556: 6554: 6552: 6533: 6527: 6526: 6524: 6522: 6506: 6500: 6499: 6497: 6495: 6458: 6449: 6443: 6442: 6410: 6404: 6403: 6401: 6399: 6390: 6381: 6372: 6371: 6335: 6329: 6328: 6294: 6288: 6287: 6285: 6283: 6263: 6257: 6256: 6238: 6232: 6231: 6191: 6182: 6181: 6179: 6177: 6161: 6155: 6154: 6152: 6150: 6139: 6130: 6129: 6117: 6108: 6107: 6079: 6070: 6069: 6067: 6065: 6049: 6043: 6042: 6040: 6039: 6033: 6025: 6019: 6018: 5990: 5979: 5973: 5962: 5961: 5959: 5957: 5918: 5907: 5906: 5880: 5852: 5843: 5842: 5824: 5815: 5809: 5808: 5806: 5804: 5798: 5776:(8): 1815–1824. 5767: 5758: 5749: 5743: 5737: 5731: 5722: 5721: 5719: 5718: 5702: 5696: 5695: 5679: 5677: 5676: 5661: 5655: 5654: 5652: 5651: 5634: 5625: 5624: 5622: 5621: 5604: 5598: 5597: 5573: 5567: 5566: 5540: 5506: 5500: 5499: 5483: 5477: 5476: 5458: 5426: 5420: 5419: 5417: 5416: 5387: 5378: 5377: 5375: 5374: 5365: 5354: 5348: 5347: 5337: 5305: 5294: 5288: 5282: 5281: 5237: 5231: 5228:Audi et al. 2017 5225: 5219: 5213: 5204: 5198: 5192: 5189:Audi et al. 2017 5186: 5180: 5179: 5169: 5151: 5127: 5121: 5120: 5118: 5117: 5104: 5095: 5080: 5079: 5077: 5076: 5063: 5054: 5045: 5039: 5033: 5027: 5021: 5015: 5009: 5003: 4997: 4996: 4994: 4993: 4973: 4960: 4959: 4915: 4906: 4905: 4869: 4857: 4851: 4850: 4830: 4821: 4820: 4786: 4784: 4783: 4777: 4769: 4763: 4762: 4752: 4742: 4708: 4702: 4701: 4673: 4667: 4666: 4664: 4663: 4656:The Conversation 4646: 4640: 4639: 4637: 4636: 4620: 4603: 4602: 4600: 4599: 4579: 4573: 4572: 4570: 4568: 4562: 4556:. Archived from 4523: 4507: 4501: 4500: 4467: 4461: 4460: 4422: 4416: 4415: 4413: 4412: 4403:. Archived from 4393: 4387: 4386: 4384: 4383: 4366: 4360: 4359: 4357: 4355: 4334: 4325: 4319: 4318: 4300: 4294: 4284: 4264: 4258: 4257: 4255: 4253: 4228: 4219: 4218: 4188: 4167: 4166: 4164: 4162: 4148: 4139: 4126: 4125: 4101: 4086: 4085: 4063: 4004: 3997: 3991: 3976:Stockholm County 3968: 3962: 3955: 3949: 3942: 3936: 3932: 3926: 3922: 3916: 3913:weak interaction 3905: 3899: 3891: 3885: 3882: 3876: 3874: 3873: 3872: 3865: 3864: 3855: 3854: 3853: 3846: 3845: 3836: 3835: 3834: 3827: 3826: 3817: 3816: 3815: 3808: 3807: 3797: 3791: 3789: 3788: 3774: 3768: 3737: 3538: 3410:energy (kJ/mol) 3397: 3312:, and releasing 3214: 3119: 3037:period 8 element 3004: 3003: 3002: 2995: 2994: 2985: 2984: 2983: 2976: 2975: 2966: 2965: 2964: 2957: 2956: 2712:The team at the 2680: 2679: 2678: 2671: 2670: 2661: 2660: 2659: 2652: 2651: 2642: 2641: 2640: 2633: 2632: 2621: 2620: 2619: 2612: 2611: 2602: 2601: 2600: 2593: 2592: 2583: 2582: 2581: 2574: 2573: 2549: 2548: 2547: 2540: 2539: 2530: 2529: 2528: 2521: 2520: 2511: 2510: 2509: 2502: 2501: 2477: 2476: 2475: 2468: 2467: 2458: 2457: 2456: 2449: 2448: 2439: 2438: 2437: 2430: 2429: 2409: 2408: 2407: 2400: 2399: 2390: 2389: 2388: 2381: 2380: 2371: 2370: 2369: 2362: 2361: 2329: 2328: 2327: 2320: 2319: 2310: 2309: 2308: 2301: 2300: 2291: 2290: 2289: 2282: 2281: 2059:chemical element 2039:compound nucleus 2020: 2019: 2008: 1847:; it has symbol 1845:chemical element 1835:, also known as 1818: 1811: 1804: 1763:54143-58-7 1748: 1728:Other properties 1647: 1638:Oxidation states 1604: 1553: 1552: 1502: 1462: 1461: 1402: 1395: 1388: 1381: 1374: 1367: 1360: 1353: 1346: 1339: 1332: 1325: 1318: 1311: 1304: 1297: 1290: 1283: 1276: 1269: 1262: 1255: 1238: 1231: 1224: 1217: 1210: 1203: 1196: 1189: 1182: 1175: 1168: 1161: 1154: 1147: 1140: 1133: 1126: 1119: 1112: 1105: 1098: 1091: 1084: 1077: 1070: 1063: 1056: 1049: 1042: 1035: 1026: 1019: 1013: 1012: 1006: 999: 992: 985: 978: 971: 964: 957: 950: 943: 936: 929: 922: 915: 908: 901: 894: 887: 880: 873: 866: 859: 852: 845: 838: 831: 824: 817: 810: 803: 794: 787: 778: 771: 764: 757: 750: 743: 736: 729: 722: 715: 708: 701: 694: 687: 680: 673: 666: 659: 652: 645: 638: 631: 624: 617: 610: 603: 596: 589: 582: 575: 566: 559: 550: 543: 536: 529: 522: 515: 508: 501: 494: 487: 480: 473: 466: 459: 452: 445: 434: 427: 418: 411: 404: 397: 390: 383: 376: 369: 362: 355: 348: 341: 334: 327: 320: 313: 304: 297: 288: 281: 274: 267: 260: 253: 244: 237: 228: 221: 214: 207: 200: 193: 184: 177: 168: 159: 153: 152: 148: 144: 122: 117: 113: 105: 103: 102: 99: 98: 95: 92: 89: 86: 83: 80: 77: 74: 71: 68: 65: 40: 38: 9843: 9842: 9838: 9837: 9836: 9834: 9833: 9832: 9808: 9807: 9806: 9801: 9800: 9799: 9760: 9752: 9751: 9745: 9744: 9738: 9737: 9731: 9730: 9724: 9723: 9717: 9716: 9710: 9709: 9703: 9702: 9696: 9695: 9689: 9688: 9682: 9681: 9675: 9674: 9668: 9667: 9661: 9660: 9654: 9653: 9647: 9646: 9639: 9637: 9631: 9630: 9623: 9621: 9615: 9614: 9607: 9605: 9598: 9596: 9590: 9573: 9572: 9566: 9565: 9559: 9558: 9552: 9551: 9545: 9544: 9538: 9537: 9531: 9530: 9524: 9523: 9517: 9516: 9510: 9509: 9503: 9502: 9496: 9495: 9489: 9488: 9482: 9481: 9475: 9474: 9468: 9467: 9461: 9460: 9454: 9453: 9447: 9446: 9440: 9439: 9433: 9432: 9426: 9425: 9419: 9418: 9412: 9411: 9405: 9404: 9398: 9397: 9391: 9390: 9384: 9383: 9377: 9376: 9370: 9369: 9363: 9355: 9353: 9346: 9344: 9328: 9326: 9319: 9317: 9310: 9308: 9301: 9299: 9292: 9290: 9283: 9281: 9274: 9272: 9265: 9263: 9256: 9254: 9247: 9245: 9238: 9236: 9229: 9227: 9220: 9218: 9211: 9209: 9202: 9200: 9193: 9191: 9184: 9182: 9175: 9173: 9166: 9164: 9157: 9155: 9148: 9146: 9139: 9137: 9130: 9128: 9121: 9119: 9112: 9110: 9103: 9101: 9094: 9092: 9085: 9083: 9076: 9074: 9067: 9065: 9056: 9054: 9047: 9045: 9029: 9027: 9020: 9018: 9011: 9009: 9002: 9000: 8993: 8991: 8984: 8982: 8975: 8973: 8966: 8964: 8957: 8955: 8948: 8946: 8939: 8937: 8930: 8928: 8921: 8919: 8912: 8910: 8903: 8901: 8894: 8892: 8885: 8883: 8876: 8874: 8867: 8865: 8858: 8856: 8849: 8847: 8840: 8838: 8831: 8829: 8822: 8820: 8813: 8811: 8804: 8802: 8795: 8793: 8786: 8784: 8777: 8775: 8768: 8766: 8757: 8755: 8748: 8746: 8730: 8728: 8721: 8719: 8712: 8710: 8703: 8701: 8694: 8692: 8685: 8683: 8676: 8674: 8667: 8665: 8658: 8656: 8649: 8647: 8640: 8638: 8631: 8629: 8622: 8620: 8613: 8611: 8604: 8602: 8595: 8593: 8584: 8582: 8575: 8573: 8557: 8555: 8548: 8546: 8539: 8537: 8530: 8528: 8521: 8519: 8512: 8510: 8503: 8501: 8494: 8492: 8485: 8483: 8476: 8474: 8467: 8465: 8458: 8456: 8449: 8447: 8440: 8438: 8431: 8429: 8422: 8420: 8411: 8409: 8402: 8400: 8384: 8382: 8375: 8373: 8366: 8364: 8357: 8355: 8348: 8346: 8339: 8337: 8328: 8326: 8319: 8317: 8301: 8299: 8292: 8290: 8283: 8281: 8274: 8272: 8265: 8263: 8256: 8254: 8245: 8243: 8236: 8234: 8218: 8216: 8207: 8205: 8092: 8087: 7999: 7994: 7988: 7968: 7962: 7938: 7924: 7911: 7880: 7875: 7872: 7867: 7858: 7857: 7853: 7815: 7814: 7810: 7762: 7761: 7752: 7745: 7728: 7727: 7723: 7716: 7696: 7695: 7688: 7679: 7677: 7668: 7667: 7663: 7656: 7643: 7642: 7638: 7631: 7618: 7617: 7613: 7603: 7601: 7599: 7566: 7565: 7558: 7520: 7519: 7512: 7497: 7472: 7471: 7450: 7414: 7413: 7409: 7399: 7397: 7396:on 3 April 2015 7393: 7386: 7381: 7380: 7376: 7366: 7364: 7359: 7358: 7354: 7319:Phys. Rev. Lett 7312: 7311: 7302: 7272: 7271: 7262: 7252: 7250: 7240: 7239: 7235: 7187: 7186: 7182: 7150:nucl-th/0703086 7134: 7133: 7129: 7097:nucl-th/0507054 7081: 7080: 7076: 7026: 7025: 7021: 6973: 6972: 6965: 6950: 6937: 6936: 6932: 6886: 6885: 6881: 6871: 6869: 6865: 6858: 6857: 6850: 6822: 6821: 6817: 6795: 6794: 6790: 6780: 6778: 6759: 6758: 6754: 6744: 6742: 6733: 6732: 6728: 6718: 6716: 6699: 6698: 6694: 6684: 6682: 6672: 6671: 6667: 6657: 6655: 6650: 6649: 6645: 6632: 6630: 6618: 6617: 6613: 6603: 6601: 6591: 6590: 6586: 6576: 6574: 6572:Financial Times 6565: 6564: 6560: 6550: 6548: 6535: 6534: 6530: 6520: 6518: 6508: 6507: 6503: 6493: 6491: 6456: 6451: 6450: 6446: 6412: 6411: 6407: 6397: 6395: 6393:asrc.jaea.go.jp 6388: 6383: 6382: 6375: 6337: 6336: 6332: 6325: 6296: 6295: 6291: 6281: 6279: 6278:on 18 July 2023 6265: 6264: 6260: 6253: 6240: 6239: 6235: 6193: 6192: 6185: 6175: 6173: 6163: 6162: 6158: 6148: 6146: 6141: 6140: 6133: 6119: 6118: 6111: 6081: 6080: 6073: 6063: 6061: 6051: 6050: 6046: 6037: 6035: 6031: 6027: 6026: 6022: 6015: 5992: 5991: 5982: 5974: 5965: 5955: 5953: 5935:10.2172/1896856 5920: 5919: 5910: 5854: 5853: 5846: 5822: 5817: 5816: 5812: 5802: 5800: 5796: 5765: 5760: 5759: 5752: 5744: 5740: 5732: 5725: 5716: 5714: 5704: 5703: 5699: 5681: 5680:Reprinted from 5674: 5672: 5663: 5662: 5658: 5649: 5647: 5636: 5635: 5628: 5619: 5617: 5606: 5605: 5601: 5575: 5574: 5570: 5508: 5507: 5503: 5485: 5484: 5480: 5428: 5427: 5423: 5414: 5412: 5389: 5388: 5381: 5372: 5370: 5363: 5356: 5355: 5351: 5307: 5306: 5297: 5289: 5285: 5239: 5238: 5234: 5226: 5222: 5214: 5207: 5199: 5195: 5187: 5183: 5142:(2): 024320–1. 5129: 5128: 5124: 5115: 5113: 5102: 5097: 5096: 5083: 5074: 5072: 5061: 5056: 5055: 5048: 5040: 5036: 5028: 5024: 5016: 5012: 5004: 5000: 4991: 4989: 4977:Chemistry World 4975: 4974: 4963: 4917: 4916: 4909: 4867: 4859: 4858: 4854: 4832: 4831: 4824: 4817: 4788: 4781: 4779: 4775: 4771: 4770: 4766: 4710: 4709: 4705: 4678:Nuclear Physics 4675: 4674: 4670: 4661: 4659: 4648: 4647: 4643: 4634: 4632: 4622: 4621: 4606: 4597: 4595: 4583:Subramanian, S. 4581: 4580: 4576: 4566: 4564: 4560: 4521: 4509: 4508: 4504: 4469: 4468: 4464: 4449: 4424: 4423: 4419: 4410: 4408: 4395: 4394: 4390: 4381: 4379: 4376:Chemistry World 4368: 4367: 4363: 4353: 4351: 4343:(10): 626–634. 4332: 4327: 4326: 4322: 4315: 4302: 4301: 4297: 4292: 4288: 4266: 4265: 4261: 4251: 4249: 4230: 4229: 4222: 4215: 4190: 4189: 4170: 4160: 4158: 4146: 4141: 4140: 4129: 4103: 4102: 4089: 4082: 4065: 4064: 4017: 4013: 4008: 4007: 3998: 3994: 3969: 3965: 3956: 3952: 3943: 3939: 3933: 3929: 3923: 3919: 3906: 3902: 3892: 3888: 3883: 3879: 3871: 3869: 3868: 3867: 3863: 3860: 3859: 3858: 3857: 3852: 3850: 3849: 3848: 3844: 3841: 3840: 3839: 3838: 3833: 3831: 3830: 3829: 3825: 3822: 3821: 3820: 3819: 3814: 3812: 3811: 3810: 3806: 3803: 3802: 3801: 3800: 3798: 3794: 3787: 3784: 3783: 3782: 3775: 3771: 3741:nuclear physics 3738: 3734: 3729: 3705: 3698: 3691: 3676:chromatographic 3669: 3564: 3559: 3557: 3552: 3550: 3545: 3530: 3519: 3515: 3511: 3507: 3503: 3495: 3491: 3487: 3409: 3404: 3386: 3382: 3377:radium fluoride 3374: 3370: 3362: 3354: 3350: 3345:oxidation state 3326:periodic trends 3323: 3307: 3291: 3277: 3263: 3249: 3235: 3226: 3221: 3211: 3207: 3203: 3197: 3114: 3073:oxidation state 3033: 3001: 2999: 2998: 2997: 2993: 2990: 2989: 2988: 2987: 2982: 2980: 2979: 2978: 2974: 2971: 2970: 2969: 2968: 2963: 2961: 2960: 2959: 2955: 2952: 2951: 2950: 2949: 2911: 2896: 2892: 2887:proton orbitals 2798: 2793: 2763:recommendations 2749: 2691: 2677: 2675: 2674: 2673: 2669: 2666: 2665: 2664: 2663: 2658: 2656: 2655: 2654: 2650: 2647: 2646: 2645: 2644: 2639: 2637: 2636: 2635: 2631: 2628: 2627: 2626: 2625: 2618: 2616: 2615: 2614: 2610: 2607: 2606: 2605: 2604: 2599: 2597: 2596: 2595: 2591: 2588: 2587: 2586: 2585: 2580: 2578: 2577: 2576: 2572: 2569: 2568: 2567: 2566: 2546: 2544: 2543: 2542: 2538: 2535: 2534: 2533: 2532: 2527: 2525: 2524: 2523: 2519: 2516: 2515: 2514: 2513: 2508: 2506: 2505: 2504: 2500: 2497: 2496: 2495: 2494: 2474: 2472: 2471: 2470: 2466: 2463: 2462: 2461: 2460: 2455: 2453: 2452: 2451: 2447: 2444: 2443: 2442: 2441: 2436: 2434: 2433: 2432: 2428: 2425: 2424: 2423: 2422: 2406: 2404: 2403: 2402: 2398: 2395: 2394: 2393: 2392: 2387: 2385: 2384: 2383: 2379: 2376: 2375: 2374: 2373: 2368: 2366: 2365: 2364: 2360: 2357: 2356: 2355: 2354: 2326: 2324: 2323: 2322: 2318: 2315: 2314: 2313: 2312: 2307: 2305: 2304: 2303: 2299: 2296: 2295: 2294: 2293: 2288: 2286: 2285: 2284: 2280: 2277: 2276: 2275: 2274: 2244: 2239: 2233: 2189: 2184: 2183: 2160:fission barrier 2112:energy barriers 2075: 2017: 2011:External videos 1942: 1936: 1928: 1920:oxidation state 1904:periodic trends 1822: 1750: 1749: 1716:Covalent radius 1693: 1643: 1620:8.03–8.58  1598: 1546: 1455: 1451: 1422: 1420: 1416: 1414: 1408: 1400: 1393: 1386: 1379: 1372: 1365: 1358: 1351: 1344: 1337: 1330: 1323: 1316: 1309: 1302: 1295: 1288: 1281: 1274: 1267: 1260: 1253: 1236: 1229: 1222: 1215: 1208: 1201: 1194: 1187: 1180: 1173: 1166: 1159: 1152: 1145: 1138: 1131: 1124: 1117: 1110: 1103: 1096: 1089: 1082: 1075: 1068: 1061: 1054: 1047: 1040: 1033: 1024: 1017: 1004: 997: 990: 983: 976: 969: 962: 955: 948: 941: 934: 927: 920: 913: 906: 899: 892: 885: 878: 871: 864: 857: 850: 843: 836: 829: 822: 815: 808: 801: 792: 785: 776: 769: 762: 755: 748: 741: 734: 727: 720: 713: 706: 699: 692: 685: 678: 671: 664: 657: 650: 643: 636: 629: 622: 615: 608: 601: 594: 587: 580: 573: 564: 557: 548: 541: 534: 527: 520: 513: 506: 499: 492: 485: 478: 471: 464: 457: 450: 443: 432: 425: 416: 409: 402: 395: 388: 381: 374: 367: 360: 353: 346: 339: 332: 325: 318: 311: 302: 295: 286: 279: 272: 265: 258: 251: 242: 235: 226: 219: 212: 205: 198: 191: 182: 175: 166: 157: 115: 111: 107: 62: 58: 36: 32: 29: 24: 17: 12: 11: 5: 9841: 9839: 9831: 9830: 9825: 9820: 9810: 9809: 9803: 9802: 9796: 9795: 9790: 9785: 9780: 9775: 9767: 9765: 9762: 9761: 9757: 9756: 9749: 9742: 9735: 9728: 9721: 9714: 9707: 9700: 9693: 9686: 9679: 9672: 9665: 9658: 9651: 9644: 9635: 9628: 9619: 9612: 9603: 9594: 9587: 9583: 9582: 9578: 9577: 9570: 9563: 9556: 9549: 9542: 9535: 9528: 9521: 9514: 9507: 9500: 9493: 9486: 9479: 9472: 9465: 9458: 9451: 9444: 9437: 9430: 9423: 9416: 9409: 9402: 9395: 9388: 9381: 9374: 9367: 9360: 9351: 9342: 9334: 9333: 9324: 9315: 9306: 9297: 9288: 9279: 9270: 9261: 9252: 9243: 9234: 9225: 9216: 9207: 9198: 9189: 9180: 9171: 9162: 9153: 9144: 9135: 9126: 9117: 9108: 9099: 9090: 9081: 9072: 9063: 9061: 9052: 9043: 9035: 9034: 9025: 9016: 9007: 8998: 8989: 8980: 8971: 8962: 8953: 8944: 8935: 8926: 8917: 8908: 8899: 8890: 8881: 8872: 8863: 8854: 8845: 8836: 8827: 8818: 8809: 8800: 8791: 8782: 8773: 8764: 8762: 8753: 8744: 8736: 8735: 8726: 8717: 8708: 8699: 8690: 8681: 8672: 8663: 8654: 8645: 8636: 8627: 8618: 8609: 8600: 8591: 8589: 8580: 8571: 8563: 8562: 8553: 8544: 8535: 8526: 8517: 8508: 8499: 8490: 8481: 8472: 8463: 8454: 8445: 8436: 8427: 8418: 8416: 8407: 8398: 8390: 8389: 8380: 8371: 8362: 8353: 8344: 8335: 8333: 8324: 8315: 8307: 8306: 8297: 8288: 8279: 8270: 8261: 8252: 8250: 8241: 8232: 8224: 8223: 8214: 8212: 8203: 8195: 8194: 8189: 8184: 8179: 8174: 8169: 8164: 8159: 8154: 8149: 8144: 8139: 8134: 8129: 8124: 8119: 8114: 8112: 8107: 8102: 8097: 8094: 8093: 8088: 8086: 8085: 8078: 8071: 8063: 8057: 8056: 7992: 7986: 7966: 7960: 7940:Hoffman, D. C. 7936: 7922: 7909: 7871: 7868: 7866: 7865: 7851: 7824:(1): 322–329. 7808: 7750: 7743: 7737:. p. 74. 7721: 7714: 7708:. p. 28. 7686: 7661: 7654: 7636: 7629: 7611: 7597: 7556: 7510: 7495: 7448: 7407: 7374: 7352: 7300: 7260: 7233: 7196:(6): 781–806. 7180: 7127: 7074: 7037:(6): 781–806. 7019: 6963: 6948: 6930: 6879: 6848: 6835:(2): 381–384. 6815: 6788: 6752: 6726: 6692: 6665: 6643: 6611: 6584: 6558: 6528: 6501: 6444: 6405: 6373: 6330: 6323: 6289: 6258: 6251: 6233: 6183: 6156: 6131: 6109: 6071: 6044: 6020: 6013: 5980: 5963: 5908: 5844: 5810: 5750: 5738: 5723: 5697: 5656: 5626: 5599: 5568: 5501: 5478: 5421: 5379: 5349: 5295: 5283: 5232: 5220: 5218:, p. 433. 5205: 5203:, p. 439. 5193: 5181: 5122: 5081: 5046: 5044:, p. 432. 5034: 5022: 5020:, p. 335. 5010: 5008:, p. 334. 4998: 4961: 4920:Hoffman, D. C. 4907: 4861:Wapstra, A. H. 4852: 4822: 4815: 4791:Seaborg, G. T. 4778:. pp. 7–8 4764: 4703: 4668: 4641: 4604: 4574: 4563:on 7 June 2015 4532:(2): 235–236. 4515:Armbruster, P. 4511:Münzenberg, G. 4502: 4462: 4447: 4417: 4388: 4361: 4320: 4313: 4295: 4290: 4286: 4259: 4220: 4213: 4168: 4127: 4087: 4080: 4014: 4012: 4009: 4006: 4005: 3992: 3963: 3950: 3937: 3927: 3917: 3900: 3886: 3877: 3870: 3861: 3851: 3842: 3832: 3823: 3813: 3804: 3792: 3785: 3769: 3731: 3730: 3728: 3725: 3724: 3723: 3704: 3701: 3696: 3689: 3667: 3655: 3654: 3651: 3648: 3645: 3642: 3636: 3635: 3632: 3629: 3626: 3623: 3617: 3616: 3614: 3612: 3610: 3608: 3605: 3604: 3601: 3598: 3595: 3592: 3586: 3585: 3582: 3579: 3576: 3573: 3567: 3566: 3561: 3558:anharmonicity, 3554: 3547: 3542: 3528: 3517: 3513: 3509: 3505: 3501: 3493: 3489: 3485: 3467: 3466: 3463: 3460: 3456: 3455: 3452: 3449: 3445: 3444: 3441: 3438: 3434: 3433: 3430: 3427: 3423: 3422: 3419: 3416: 3412: 3411: 3406: 3401: 3384: 3380: 3372: 3368: 3360: 3352: 3348: 3321: 3305: 3299: 3298: 3295: 3292: 3289: 3285: 3284: 3281: 3278: 3275: 3271: 3270: 3267: 3264: 3261: 3257: 3256: 3253: 3250: 3247: 3243: 3242: 3239: 3236: 3233: 3229: 3228: 3223: 3218: 3212:is predicted. 3209: 3205: 3201: 3196: 3193: 3155: 3154: 3144: 3138:, measured in 3112: 3105:quantum number 3097:speed of light 3032: 3029: 3007: 3006: 3000: 2991: 2981: 2972: 2962: 2953: 2909: 2894: 2890: 2797: 2794: 2792: 2789: 2748: 2745: 2690: 2687: 2683: 2682: 2676: 2667: 2657: 2648: 2638: 2629: 2623: 2617: 2608: 2598: 2589: 2579: 2570: 2552: 2551: 2545: 2536: 2526: 2517: 2507: 2498: 2480: 2479: 2473: 2464: 2454: 2445: 2435: 2426: 2412: 2411: 2405: 2396: 2386: 2377: 2367: 2358: 2332: 2331: 2325: 2316: 2306: 2297: 2287: 2278: 2243: 2240: 2235:Main article: 2232: 2229: 2221:cross sections 2188: 2185: 2177:kinetic energy 2133:in the latter. 2099:binding energy 2074: 2071: 2029: 2028: 2013: 2012: 1991:speed of light 1962:atomic nucleus 1950:nuclear fusion 1941: 1938: 1937: 1929: 1927: 1924: 1869:periodic table 1828: 1827: 1821: 1820: 1813: 1806: 1798: 1795: 1794: 1788: 1787: 1781: 1780: 1774: 1770: 1769: 1765: 1764: 1761: 1755: 1754: 1752:(extrapolated) 1743: 1738: ​ 1736: 1730: 1729: 1725: 1724: 1722:(extrapolated) 1718: 1712: 1711: 1701: 1695: 1694: 1692: 1691: 1688: 1686:(extrapolated) 1682: 1675: 1673: 1667: 1666: 1659: 1653: 1652: 1640: 1634: 1633: 1629: 1628: 1626:(extrapolated) 1618: 1616:Heat of fusion 1612: 1611: 1605: 1591: 1590: 1584: 1578: 1577: 1567: 1561: 1560: 1554: 1540: 1539: 1535: 1534: 1528: 1524: 1523: 1519:] 8s 1513: 1507: 1506: 1498: 1492: 1491: 1485: 1479: 1478: 1473: 1467: 1466: 1463: 1448: 1447: 1444: 1443: 1440: 1439: 1425: 1424: 1409: 1405: 1404: 1397: 1390: 1383: 1376: 1369: 1362: 1355: 1348: 1341: 1334: 1327: 1320: 1313: 1306: 1299: 1292: 1285: 1278: 1271: 1264: 1257: 1250: 1248: 1245: 1244: 1241: 1240: 1233: 1226: 1219: 1212: 1205: 1198: 1191: 1184: 1177: 1170: 1163: 1156: 1149: 1142: 1135: 1128: 1121: 1114: 1107: 1100: 1093: 1086: 1079: 1072: 1065: 1058: 1051: 1044: 1037: 1030: 1028: 1021: 1009: 1008: 1001: 994: 987: 980: 973: 966: 959: 952: 945: 938: 931: 924: 917: 910: 903: 896: 889: 882: 875: 868: 861: 854: 847: 840: 833: 826: 819: 812: 805: 798: 796: 789: 781: 780: 773: 766: 759: 752: 745: 738: 731: 724: 717: 710: 703: 696: 689: 682: 675: 668: 661: 654: 647: 640: 633: 626: 619: 612: 605: 598: 591: 584: 577: 570: 568: 561: 553: 552: 545: 538: 531: 524: 517: 510: 503: 496: 489: 482: 475: 468: 461: 454: 447: 440: 438: 436: 429: 421: 420: 413: 406: 399: 392: 385: 378: 371: 364: 357: 350: 343: 336: 329: 322: 315: 308: 306: 299: 291: 290: 283: 276: 269: 262: 255: 248: 246: 239: 231: 230: 223: 216: 209: 202: 195: 188: 186: 179: 171: 170: 163: 161: 151: 140: 139: 137:periodic table 132: 131: 128: 124: 123: 56: 52: 51: 47: 46: 34: 27: 15: 13: 10: 9: 6: 4: 3: 2: 9840: 9829: 9826: 9824: 9821: 9819: 9816: 9815: 9813: 9794: 9791: 9789: 9786: 9784: 9781: 9779: 9774: 9771: 9770: 9763: 9642: 9626: 9610: 9601: 9588: 9584: 9580: 9579: 9361: 9358: 9349: 9340: 9335: 9331: 9322: 9313: 9304: 9295: 9286: 9277: 9268: 9259: 9250: 9241: 9232: 9223: 9214: 9205: 9196: 9187: 9178: 9169: 9160: 9151: 9142: 9133: 9124: 9115: 9106: 9097: 9088: 9079: 9070: 9062: 9059: 9050: 9041: 9036: 9032: 9023: 9014: 9005: 8996: 8987: 8978: 8969: 8960: 8951: 8942: 8933: 8924: 8915: 8906: 8897: 8888: 8879: 8870: 8861: 8852: 8843: 8834: 8825: 8816: 8807: 8798: 8789: 8780: 8771: 8763: 8760: 8751: 8742: 8737: 8733: 8724: 8715: 8706: 8697: 8688: 8679: 8670: 8661: 8652: 8643: 8634: 8625: 8616: 8607: 8598: 8587: 8578: 8569: 8564: 8560: 8551: 8542: 8533: 8524: 8515: 8506: 8497: 8488: 8479: 8470: 8461: 8452: 8443: 8434: 8425: 8414: 8405: 8396: 8391: 8387: 8378: 8369: 8360: 8351: 8342: 8331: 8322: 8313: 8308: 8304: 8295: 8286: 8277: 8268: 8259: 8248: 8239: 8230: 8225: 8221: 8210: 8201: 8196: 8193: 8188: 8183: 8178: 8173: 8168: 8163: 8158: 8153: 8148: 8143: 8138: 8133: 8128: 8123: 8118: 8111: 8106: 8101: 8100: 8095: 8091: 8084: 8079: 8077: 8072: 8070: 8065: 8064: 8061: 8053: 8049: 8045: 8041: 8037: 8033: 8029: 8025: 8020: 8015: 8012:(1). 012001. 8011: 8007: 8006: 7998: 7993: 7989: 7983: 7979: 7975: 7971: 7967: 7963: 7957: 7953: 7949: 7945: 7941: 7937: 7933: 7929: 7925: 7919: 7915: 7910: 7906: 7902: 7898: 7894: 7891:(3): 030001. 7890: 7886: 7879: 7874: 7873: 7869: 7861: 7855: 7852: 7847: 7843: 7839: 7835: 7831: 7827: 7823: 7819: 7812: 7809: 7804: 7800: 7796: 7792: 7788: 7784: 7779: 7774: 7770: 7766: 7759: 7757: 7755: 7751: 7746: 7740: 7736: 7732: 7725: 7722: 7717: 7711: 7707: 7703: 7699: 7693: 7691: 7687: 7676: 7672: 7665: 7662: 7657: 7651: 7647: 7640: 7637: 7632: 7630:0-8493-0486-5 7626: 7622: 7615: 7612: 7600: 7594: 7590: 7586: 7582: 7578: 7574: 7570: 7563: 7561: 7557: 7552: 7548: 7544: 7540: 7536: 7532: 7528: 7524: 7517: 7515: 7511: 7506: 7502: 7498: 7492: 7488: 7484: 7480: 7476: 7469: 7467: 7465: 7463: 7461: 7459: 7457: 7455: 7453: 7449: 7443: 7438: 7434: 7430: 7426: 7422: 7418: 7411: 7408: 7392: 7385: 7378: 7375: 7362: 7356: 7353: 7348: 7344: 7340: 7336: 7332: 7328: 7325:(7). 072701. 7324: 7320: 7316: 7309: 7307: 7305: 7301: 7296: 7292: 7288: 7284: 7280: 7276: 7269: 7267: 7265: 7261: 7248: 7244: 7237: 7234: 7229: 7225: 7221: 7217: 7213: 7209: 7204: 7199: 7195: 7191: 7184: 7181: 7176: 7172: 7168: 7164: 7160: 7156: 7151: 7146: 7142: 7138: 7137:Nucl. Phys. A 7131: 7128: 7123: 7119: 7115: 7111: 7107: 7103: 7098: 7093: 7090:(1). 014612. 7089: 7085: 7078: 7075: 7070: 7066: 7062: 7058: 7054: 7050: 7045: 7040: 7036: 7032: 7031: 7023: 7020: 7015: 7011: 7007: 7003: 6999: 6995: 6990: 6985: 6982:(4): 044603. 6981: 6977: 6970: 6968: 6964: 6959: 6955: 6951: 6945: 6941: 6934: 6931: 6926: 6922: 6918: 6914: 6910: 6906: 6902: 6898: 6894: 6890: 6883: 6880: 6864: 6863: 6855: 6853: 6849: 6843: 6838: 6834: 6830: 6826: 6819: 6816: 6811: 6807: 6803: 6799: 6792: 6789: 6776: 6771: 6767: 6763: 6756: 6753: 6741: 6737: 6730: 6727: 6715: 6711: 6707: 6703: 6696: 6693: 6680: 6676: 6669: 6666: 6653: 6647: 6644: 6640: 6628: 6627: 6622: 6615: 6612: 6599: 6595: 6588: 6585: 6573: 6569: 6562: 6559: 6547: 6543: 6542:en.unistra.fr 6539: 6532: 6529: 6516: 6512: 6505: 6502: 6490: 6486: 6482: 6478: 6474: 6470: 6467:(6): 064602. 6466: 6462: 6455: 6448: 6445: 6440: 6436: 6432: 6428: 6424: 6420: 6416: 6409: 6406: 6394: 6387: 6380: 6378: 6374: 6369: 6365: 6361: 6357: 6353: 6349: 6345: 6341: 6334: 6331: 6326: 6320: 6316: 6312: 6308: 6304: 6300: 6299:Exotic Nuclei 6293: 6290: 6277: 6273: 6269: 6262: 6259: 6254: 6252:9789813226555 6248: 6244: 6237: 6234: 6229: 6225: 6221: 6217: 6213: 6209: 6205: 6201: 6197: 6190: 6188: 6184: 6171: 6167: 6160: 6157: 6145: 6138: 6136: 6132: 6127: 6123: 6116: 6114: 6110: 6105: 6101: 6097: 6093: 6090:(2). 024603. 6089: 6085: 6078: 6076: 6072: 6059: 6055: 6048: 6045: 6030: 6024: 6021: 6016: 6010: 6006: 6002: 5998: 5997: 5989: 5987: 5985: 5981: 5977: 5972: 5970: 5968: 5964: 5952: 5948: 5944: 5940: 5936: 5932: 5928: 5924: 5917: 5915: 5913: 5909: 5904: 5900: 5896: 5892: 5888: 5884: 5879: 5874: 5870: 5866: 5862: 5860: 5851: 5849: 5845: 5840: 5836: 5832: 5828: 5821: 5814: 5811: 5795: 5791: 5787: 5783: 5779: 5775: 5771: 5764: 5757: 5755: 5751: 5748:, p. 40. 5747: 5742: 5739: 5735: 5730: 5728: 5724: 5713: 5712: 5707: 5701: 5698: 5693: 5689: 5685: 5670: 5666: 5660: 5657: 5646: 5645: 5644:Distillations 5640: 5633: 5631: 5627: 5616: 5615: 5610: 5603: 5600: 5595: 5591: 5587: 5583: 5579: 5578:Physics Today 5572: 5569: 5564: 5560: 5556: 5552: 5548: 5544: 5539: 5534: 5530: 5526: 5522: 5518: 5517: 5516:Physics Today 5512: 5505: 5502: 5497: 5493: 5489: 5482: 5479: 5474: 5470: 5466: 5462: 5457: 5452: 5448: 5444: 5440: 5436: 5432: 5425: 5422: 5411: 5407: 5403: 5399: 5398: 5397:Physics World 5393: 5386: 5384: 5380: 5369: 5362: 5361: 5353: 5350: 5345: 5341: 5336: 5331: 5327: 5323: 5319: 5315: 5311: 5304: 5302: 5300: 5296: 5292: 5287: 5284: 5279: 5275: 5271: 5267: 5263: 5259: 5255: 5251: 5247: 5243: 5236: 5233: 5229: 5224: 5221: 5217: 5212: 5210: 5206: 5202: 5197: 5194: 5190: 5185: 5182: 5177: 5173: 5168: 5163: 5159: 5155: 5150: 5145: 5141: 5137: 5133: 5126: 5123: 5112: 5108: 5101: 5094: 5092: 5090: 5088: 5086: 5082: 5071: 5067: 5060: 5059:"Alpha decay" 5053: 5051: 5047: 5043: 5038: 5035: 5031: 5026: 5023: 5019: 5014: 5011: 5007: 5002: 4999: 4988: 4987: 4982: 4978: 4972: 4970: 4968: 4966: 4962: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4929: 4925: 4921: 4918:Hyde, E. K.; 4914: 4912: 4908: 4903: 4899: 4895: 4891: 4887: 4883: 4879: 4875: 4874: 4866: 4862: 4856: 4853: 4848: 4844: 4840: 4836: 4829: 4827: 4823: 4818: 4812: 4808: 4804: 4800: 4796: 4792: 4787:Published as 4774: 4768: 4765: 4760: 4756: 4751: 4746: 4741: 4736: 4732: 4728: 4724: 4720: 4719: 4714: 4707: 4704: 4699: 4695: 4691: 4687: 4683: 4679: 4672: 4669: 4658: 4657: 4652: 4645: 4642: 4630: 4626: 4619: 4617: 4615: 4613: 4611: 4609: 4605: 4594: 4593: 4588: 4584: 4578: 4575: 4559: 4555: 4551: 4547: 4543: 4539: 4535: 4531: 4527: 4520: 4516: 4512: 4506: 4503: 4498: 4494: 4490: 4486: 4483:(2): 024608. 4482: 4478: 4477: 4472: 4466: 4463: 4458: 4454: 4450: 4444: 4440: 4436: 4432: 4428: 4421: 4418: 4407:on 2015-09-11 4406: 4402: 4398: 4392: 4389: 4378: 4377: 4372: 4365: 4362: 4350: 4346: 4342: 4338: 4331: 4324: 4321: 4316: 4314:9783642374661 4310: 4306: 4299: 4296: 4282: 4278: 4274: 4270: 4263: 4260: 4248: 4244: 4240: 4239: 4234: 4227: 4225: 4221: 4216: 4210: 4206: 4202: 4198: 4194: 4187: 4185: 4183: 4181: 4179: 4177: 4175: 4173: 4169: 4156: 4152: 4145: 4138: 4136: 4134: 4132: 4128: 4123: 4119: 4115: 4111: 4107: 4100: 4098: 4096: 4094: 4092: 4088: 4083: 4077: 4073: 4069: 4062: 4060: 4058: 4056: 4054: 4052: 4050: 4048: 4046: 4044: 4042: 4040: 4038: 4036: 4034: 4032: 4030: 4028: 4026: 4024: 4022: 4020: 4016: 4010: 4002: 3996: 3993: 3989: 3985: 3981: 3977: 3973: 3967: 3964: 3960: 3959:Georgy Flerov 3954: 3951: 3947: 3941: 3938: 3931: 3928: 3921: 3918: 3914: 3910: 3904: 3901: 3897: 3890: 3887: 3881: 3878: 3796: 3793: 3780: 3773: 3770: 3766: 3765:superactinide 3762: 3758: 3754: 3750: 3746: 3742: 3736: 3733: 3726: 3722: 3718: 3714: 3710: 3707: 3706: 3702: 3700: 3695: 3688: 3684: 3680: 3677: 3673: 3666: 3662: 3652: 3649: 3646: 3643: 3641: 3638: 3637: 3633: 3630: 3627: 3624: 3622: 3619: 3618: 3615: 3613: 3611: 3609: 3607: 3606: 3602: 3599: 3596: 3593: 3591: 3588: 3587: 3583: 3580: 3577: 3574: 3572: 3569: 3568: 3562: 3555: 3548: 3543: 3540: 3539: 3532: 3527: 3523: 3499: 3483: 3479: 3475: 3464: 3461: 3458: 3457: 3453: 3450: 3447: 3446: 3442: 3439: 3436: 3435: 3431: 3428: 3425: 3424: 3420: 3417: 3414: 3413: 3407: 3402: 3399: 3398: 3392: 3390: 3378: 3366: 3358: 3346: 3341: 3339: 3335: 3331: 3327: 3319: 3315: 3311: 3296: 3293: 3287: 3286: 3282: 3279: 3273: 3272: 3268: 3265: 3259: 3258: 3254: 3251: 3245: 3244: 3240: 3237: 3231: 3230: 3224: 3219: 3216: 3215: 3194: 3192: 3189: 3184: 3182: 3178: 3174: 3173:atomic radius 3170: 3166: 3165:hydrogen-like 3162: 3149: 3145: 3141: 3137: 3133: 3129: 3125: 3120: 3117: 3109: 3106: 3102: 3098: 3094: 3090: 3085: 3083: 3078: 3074: 3070: 3066: 3062: 3058: 3054: 3050: 3046: 3042: 3038: 3030: 3028: 3026: 3022: 3018: 3013: 2948: 2947: 2946: 2944: 2939: 2935: 2930: 2928: 2927: 2922: 2921: 2916: 2906: 2904: 2903:cross section 2900: 2888: 2884: 2880: 2876: 2872: 2868: 2864: 2859: 2857: 2856:Glenn Seaborg 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2825: 2816: 2811: 2802: 2795: 2790: 2788: 2786: 2782: 2778: 2774: 2770: 2767: 2764: 2760: 2759: 2753: 2746: 2744: 2742: 2739:(IMP) of the 2738: 2734: 2729: 2727: 2723: 2719: 2715: 2710: 2708: 2704: 2700: 2696: 2688: 2686: 2624: 2565: 2564: 2563: 2561: 2556: 2493: 2492: 2491: 2488: 2486: 2421: 2420: 2419: 2416: 2353: 2352: 2351: 2349: 2346:target and a 2345: 2341: 2337: 2273: 2272: 2271: 2269: 2265: 2261: 2257: 2253: 2249: 2241: 2238: 2230: 2228: 2226: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2186: 2180: 2178: 2172: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2132: 2128: 2127:dipole magnet 2124: 2119: 2115: 2113: 2109: 2105: 2100: 2096: 2092: 2087: 2085: 2081: 2072: 2070: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2035:excited state 2027: 2023: 2022:Visualization 2014: 2009: 2006: 2004: 2000: 1999:cross section 1994: 1992: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1960:A superheavy 1955: 1951: 1946: 1939: 1934: 1925: 1923: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1892: 1888: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1853:atomic number 1850: 1846: 1842: 1838: 1834: 1826: 1823: | 1819: 1814: 1812: 1807: 1805: 1800: 1799: 1796: 1793: 1789: 1786: 1782: 1779: 1775: 1771: 1766: 1762: 1760: 1756: 1753: 1747: 1741: 1737: 1735: 1731: 1726: 1723: 1719: 1717: 1713: 1710: 1706: 1702: 1700: 1699:Atomic radius 1696: 1689: 1687: 1683: 1681: 1677: 1676: 1674: 1672: 1668: 1664: 1660: 1658: 1654: 1651: 1646: 1641: 1639: 1635: 1630: 1627: 1623: 1619: 1617: 1613: 1610: 1606: 1602: 1596: 1592: 1589: 1585: 1583: 1582:Boiling point 1579: 1576: 1572: 1568: 1566: 1565:Melting point 1562: 1559: 1555: 1551: 1545: 1541: 1536: 1533: 1529: 1525: 1522: 1518: 1514: 1512: 1508: 1505: 1499: 1497: 1493: 1489: 1488:period 8 1486: 1484: 1480: 1477: 1474: 1472: 1468: 1464: 1459: 1454: 1453:Atomic number 1449: 1438: 1430: 1426: 1413: 1410: 1403: 1398: 1396: 1391: 1389: 1384: 1382: 1377: 1375: 1370: 1368: 1363: 1361: 1356: 1354: 1349: 1347: 1342: 1340: 1335: 1333: 1328: 1326: 1321: 1319: 1314: 1312: 1307: 1305: 1300: 1298: 1293: 1291: 1286: 1284: 1279: 1277: 1272: 1270: 1265: 1263: 1258: 1256: 1251: 1249: 1246: 1243: 1242: 1239: 1234: 1232: 1227: 1225: 1220: 1218: 1213: 1211: 1206: 1204: 1199: 1197: 1192: 1190: 1185: 1183: 1178: 1176: 1171: 1169: 1164: 1162: 1157: 1155: 1150: 1148: 1143: 1141: 1136: 1134: 1132:Unpentseptium 1129: 1127: 1122: 1120: 1118:Unpentpentium 1115: 1113: 1111:Unpentquadium 1108: 1106: 1101: 1099: 1094: 1092: 1087: 1085: 1080: 1078: 1073: 1071: 1066: 1064: 1062:Unquadseptium 1059: 1057: 1052: 1050: 1048:Unquadpentium 1045: 1043: 1041:Unquadquadium 1038: 1036: 1031: 1029: 1027: 1022: 1020: 1015: 1014: 1007: 1002: 1000: 995: 993: 988: 986: 981: 979: 974: 972: 967: 965: 960: 958: 953: 951: 946: 944: 939: 937: 932: 930: 925: 923: 918: 916: 911: 909: 907:Rutherfordium 904: 902: 897: 895: 890: 888: 883: 881: 876: 874: 869: 867: 862: 860: 855: 853: 848: 846: 841: 839: 834: 832: 827: 825: 820: 818: 813: 811: 806: 804: 799: 797: 795: 790: 788: 783: 782: 779: 774: 772: 767: 765: 760: 758: 753: 751: 746: 744: 739: 737: 732: 730: 725: 723: 718: 716: 711: 709: 704: 702: 697: 695: 690: 688: 683: 681: 676: 674: 669: 667: 662: 660: 655: 653: 648: 646: 641: 639: 634: 632: 627: 625: 620: 618: 613: 611: 606: 604: 599: 597: 592: 590: 585: 583: 578: 576: 571: 569: 567: 562: 560: 555: 554: 551: 546: 544: 539: 537: 532: 530: 525: 523: 518: 516: 511: 509: 504: 502: 497: 495: 490: 488: 483: 481: 476: 474: 469: 467: 462: 460: 455: 453: 448: 446: 441: 437: 435: 430: 428: 423: 422: 419: 414: 412: 407: 405: 400: 398: 393: 391: 386: 384: 379: 377: 372: 370: 365: 363: 358: 356: 351: 349: 344: 342: 337: 335: 330: 328: 323: 321: 316: 314: 309: 305: 300: 298: 293: 292: 289: 284: 282: 277: 275: 270: 268: 263: 261: 256: 254: 249: 245: 240: 238: 233: 232: 229: 224: 222: 217: 215: 210: 208: 203: 201: 196: 194: 189: 185: 180: 178: 173: 172: 169: 164: 160: 155: 154: 150: 149: 146: 145: 141: 138: 133: 129: 125: 120: 119: 101: 57: 55:Pronunciation 53: 48: 45: 41: 26: 22: 9354: 8009: 8003: 7973: 7947: 7913: 7888: 7884: 7870:Bibliography 7859: 7854: 7821: 7817: 7811: 7768: 7764: 7730: 7724: 7701: 7678:. Retrieved 7674: 7664: 7645: 7639: 7620: 7614: 7602:. Retrieved 7576: 7572: 7529:(1): 161–8. 7526: 7522: 7478: 7424: 7420: 7410: 7400:23 September 7398:. Retrieved 7391:the original 7377: 7367:23 September 7365:. Retrieved 7361:"Kernchemie" 7355: 7322: 7318: 7278: 7274: 7253:23 September 7251:. Retrieved 7246: 7236: 7193: 7189: 7183: 7140: 7136: 7130: 7087: 7084:Phys. Rev. C 7083: 7077: 7034: 7028: 7022: 6979: 6975: 6939: 6933: 6892: 6888: 6882: 6870:. Retrieved 6861: 6832: 6828: 6818: 6801: 6797: 6791: 6781:13 September 6779:. Retrieved 6765: 6755: 6743:. Retrieved 6739: 6729: 6717:. Retrieved 6705: 6695: 6683:. Retrieved 6678: 6668: 6656:. Retrieved 6646: 6638: 6631:. Retrieved 6629:(in Russian) 6624: 6614: 6602:. Retrieved 6597: 6587: 6575:. Retrieved 6571: 6561: 6549:. Retrieved 6541: 6531: 6519:. Retrieved 6514: 6504: 6492:. Retrieved 6464: 6460: 6447: 6422: 6418: 6414: 6408: 6398:23 September 6396:. Retrieved 6392: 6346:(123): 123. 6343: 6339: 6333: 6298: 6292: 6282:23 September 6280:. Retrieved 6276:the original 6271: 6261: 6242: 6236: 6203: 6199: 6176:23 September 6174:. Retrieved 6169: 6159: 6149:23 September 6147:. Retrieved 6125: 6121: 6087: 6084:Phys. Rev. C 6083: 6064:23 September 6062:. Retrieved 6057: 6047: 6036:. Retrieved 6023: 5995: 5954:. Retrieved 5926: 5868: 5864: 5858: 5830: 5826: 5813: 5801:. Retrieved 5773: 5769: 5741: 5715:. Retrieved 5709: 5700: 5687: 5683: 5673:. Retrieved 5671:(in Russian) 5668: 5659: 5648:. Retrieved 5642: 5618:. Retrieved 5612: 5602: 5577: 5571: 5523:(8): 32–38. 5520: 5514: 5504: 5487: 5481: 5438: 5434: 5424: 5413:. Retrieved 5404:(7): 25–29. 5401: 5395: 5371:. Retrieved 5359: 5352: 5317: 5313: 5286: 5245: 5241: 5235: 5223: 5196: 5184: 5139: 5135: 5125: 5114:. Retrieved 5106: 5073:. Retrieved 5065: 5037: 5032:, p. 3. 5025: 5013: 5001: 4990:. Retrieved 4984: 4934:(2): 67–68. 4931: 4927: 4877: 4871: 4855: 4834: 4794: 4780:. Retrieved 4767: 4722: 4716: 4706: 4681: 4677: 4671: 4660:. Retrieved 4654: 4644: 4633:. Retrieved 4631:(in Russian) 4628: 4596:. Retrieved 4590: 4577: 4565:. Retrieved 4558:the original 4529: 4525: 4505: 4480: 4474: 4465: 4426: 4420: 4409:. Retrieved 4405:the original 4391: 4380:. Retrieved 4374: 4364: 4352:. Retrieved 4340: 4336: 4323: 4304: 4298: 4272: 4268: 4262: 4250:. Retrieved 4241:(preprint). 4236: 4196: 4192: 4159:. Retrieved 4154: 4150: 4113: 4109: 4067: 3995: 3987: 3983: 3966: 3953: 3940: 3930: 3920: 3903: 3889: 3880: 3795: 3772: 3735: 3716: 3693: 3686: 3683:noble metals 3664: 3658: 3639: 3620: 3589: 3570: 3565:energy (eV) 3525: 3482:bond lengths 3470: 3357:hexafluoride 3342: 3302: 3227:energy (eV) 3185: 3181:ionic radius 3158: 3136:ninth period 3107: 3086: 3068: 3034: 3023:but not for 3016: 3008: 2942: 2931: 2924: 2918: 2907: 2899:doubly magic 2863:microseconds 2860: 2821: 2784: 2780: 2776: 2772: 2768: 2755: 2750: 2730: 2711: 2692: 2684: 2681:* → no atoms 2622:* → no atoms 2557: 2553: 2550:* → no atoms 2489: 2484: 2481: 2478:* → no atoms 2417: 2413: 2410:* → no atoms 2333: 2330:* → no atoms 2245: 2190: 2173: 2136: 2088: 2076: 2032: 1995: 1959: 1926:Introduction 1893: 1889: 1875:element, an 1860: 1856: 1848: 1840: 1836: 1832: 1831: 1791: 1751: 1721: 1708: 1685: 1679: 1662: 1649: 1644: 1625: 1608: 1587: 1574: 1557: 1531: 1520: 1457: 1387:Unquadnilium 1366:Untriseptium 1352:Untripentium 1345:Untriquadium 1223:Unseptnilium 1202:Unhexseptium 1188:Unhexpentium 1181:Unhexquadium 1146:Unpentennium 1139:Unpentoctium 1125:Unpenthexium 1083:Unpentnilium 1076:Unquadennium 1069:Unquadoctium 1055:Unquadhexium 1023: 949:Darmstadtium 816:Protactinium 588:Praseodymium 43: 25: 7944:Ghiorso, A. 6658:18 November 6551:20 February 6301:: 213–224. 6206:(52): 180. 5956:13 November 5803:7 September 5291:Beiser 2003 5216:Beiser 2003 5201:Beiser 2003 5042:Beiser 2003 4750:1885/148847 4684:: 226–234. 4354:22 February 4252:16 November 3556:Vibrational 3544:Bond length 3403:Bond length 3338:ionic radii 3220:Bond length 3021:element 124 3005:* → fission 2883:copernicium 2871:alpha-decay 2560:element 119 2266:beam and a 2213:einsteinium 2205:californium 2104:alpha decay 1986:accelerated 1898:; however, 1841:element 120 1709:(predicted) 1680:(predicted) 1663:(predicted) 1650:(predicted) 1609:(predicted) 1599:(near  1588:(predicted) 1575:(predicted) 1558:(predicted) 1532:(predicted) 1521:(predicted) 1394:Unquadunium 1380:Untriennium 1373:Untrioctium 1359:Untrihexium 1317:Untrinilium 1296:Unbiseptium 1282:Unbipentium 1275:Unbiquadium 1230:Unseptunium 1216:Unhexennium 1209:Unhexoctium 1195:Unhexhexium 1153:Unhexnilium 1104:Unpenttrium 1090:Unpentunium 1034:Unquadtrium 991:Livermorium 963:Copernicium 956:Roentgenium 886:Mendelevium 872:Einsteinium 865:Californium 9818:Unbinilium 9812:Categories 7680:2010-03-16 6577:20 October 6521:4 November 6494:25 January 6425:(4): 500. 6170:www.gsi.de 6038:2008-01-18 5746:Kragh 2018 5734:Kragh 2018 5717:2020-03-01 5675:2020-01-07 5650:2020-02-22 5620:2020-01-27 5415:2020-02-16 5373:2020-02-16 5248:(7): 158. 5116:2020-02-16 5075:2020-02-16 4992:2020-01-27 4880:(6): 883. 4782:2020-01-27 4662:2020-01-30 4635:2020-02-02 4598:2020-01-18 4567:20 October 4411:2020-03-15 4382:2020-03-15 4275:(134317). 4011:References 3909:beta decay 3721:unbihexium 3717:unbinilium 3679:adsorption 3551:frequency, 3484:in these M 3330:reactivity 2854:professor 2769:unbinilium 2722:California 2716:(LBNL) in 2258:(JINR) in 2225:half-lives 2209:calcium-48 2037:—termed a 1857:Unbinilium 1837:eka-radium 1833:Unbinilium 1825:references 1759:CAS Number 1433:unbinilium 1429:ununennium 1401:Unquadbium 1338:Untritrium 1324:Untriunium 1310:Unbiennium 1303:Unbioctium 1289:Unbihexium 1237:Unseptbium 1174:Unhextrium 1160:Unhexunium 1097:Unpentbium 1025:Unbinilium 1018:Ununennium 998:Tennessine 942:Meitnerium 921:Seaborgium 900:Lawrencium 637:Dysprosium 623:Gadolinium 602:Promethium 472:Technetium 465:Molybdenum 266:Phosphorus 50:Unbinilium 8044:1742-6588 8019:1207.5700 7970:Kragh, H. 7846:0021-9606 7778:1202.3527 7771:: 79–83. 7604:4 October 7505:122675117 7203:0802.4161 7122:118739116 7044:0802.4161 7014:119207807 6989:0802.3837 6958:223349096 6872:27 August 6633:15 August 6626:Vedomosti 6489:229401931 6417:= 120?". 6368:125886824 6228:124362890 5951:253391052 5903:119275964 5878:1209.0498 5594:239775403 5563:119531411 5547:0031-9228 5465:1364-503X 5344:1742-6596 5278:125849923 5270:1434-6001 5176:0556-2813 5149:1208.1215 4948:2193-3405 4894:1365-3075 4759:2100-014X 4725:: 00061. 4629:nplus1.ru 4554:123288075 4497:0556-2813 4457:127060181 4157:: 433–485 3988:joliotium 3972:Stockholm 3925:form one. 3777:2.5  3713:flerovium 3541:Compound 3400:Compound 3217:Compound 3140:angstroms 3128:Empirical 3101:azimuthal 3082:congeners 3053:strontium 3045:magnesium 3041:beryllium 3025:flerovium 2938:half-life 2340:Darmstadt 2248:oganesson 2201:plutonium 2197:oganesson 2193:flerovium 2067:electrons 2051:gamma ray 1916:strontium 1896:congeners 1569:953  1437:unbiunium 1331:Untribium 1268:Unbitrium 1254:Unbiunium 1167:Unhexbium 1005:Oganesson 984:Moscovium 977:Flerovium 858:Berkelium 844:Americium 837:Plutonium 830:Neptunium 665:Ytterbium 595:Neodymium 574:Lanthanum 535:Tellurium 493:Palladium 479:Ruthenium 451:Zirconium 433:Strontium 389:Germanium 340:Manganese 296:Potassium 252:Aluminium 243:Magnesium 183:Beryllium 9586:‍ 9581:‍ 9339:⑧ 9040:⑦ 8741:⑥ 8568:⑤ 8395:④ 8312:③ 8229:② 8200:① 8052:55434734 7978:Springer 7972:(2018). 7932:48965418 7803:96581438 7551:20967377 7347:18764526 7228:96718440 7069:96718440 6917:12712201 6604:17 April 5927:osti.gov 5861:> 20" 5794:Archived 5790:95069384 5473:25666065 4979:(2016). 4956:99193729 4902:95737691 4863:(1991). 4847:28796927 4238:ChemRxiv 4161:7 August 3984:nobelium 3703:See also 3659:The Ubn– 3549:Harmonic 3365:covalent 3334:metallic 3318:halogens 3314:hydrogen 3304:(Ubn(OH) 3195:Chemical 3077:reactive 2875:isotopes 2830:undergo 2771:(symbol 2718:Berkeley 2203:through 2195:through 2144:nobelium 2091:nucleons 2047:neutrons 1547:at  1261:Unbibium 970:Nihonium 893:Nobelium 802:Actinium 786:Francium 770:Astatine 763:Polonium 742:Thallium 721:Platinum 693:Tungsten 686:Tantalum 672:Lutetium 616:Europium 609:Samarium 528:Antimony 426:Rubidium 403:Selenium 333:Chromium 326:Vanadium 319:Titanium 312:Scandium 280:Chlorine 220:Fluorine 206:Nitrogen 158:Hydrogen 9793:p-block 9788:d-block 9783:f-block 9778:g-block 9773:s-block 8024:Bibcode 7893:Bibcode 7826:Bibcode 7783:Bibcode 7531:Bibcode 7429:Bibcode 7327:Bibcode 7283:Bibcode 7275:Physics 7247:jinr.ru 7208:Bibcode 7175:7496348 7155:Bibcode 7102:Bibcode 7049:Bibcode 6994:Bibcode 6925:4415582 6897:Bibcode 6804:(158). 6745:24 July 6740:Science 6719:24 July 6685:24 July 6679:lbl.gov 6598:jinr.ru 6515:jinr.ru 6469:Bibcode 6427:Bibcode 6348:Bibcode 6303:Bibcode 6208:Bibcode 6092:Bibcode 6058:jinr.ru 5943:1896856 5883:Bibcode 5694:. 1977. 5555:1337838 5525:Bibcode 5492:Bibcode 5443:Bibcode 5322:Bibcode 5250:Bibcode 5154:Bibcode 4841:: 4–8. 4727:Bibcode 4686:Bibcode 4534:Bibcode 4293:− 1.37. 4289:= 1.35χ 3685:. The Δ 3208:and Ubn 3134:to the 3049:calcium 2881:around 2865:. In a 2733:Lanzhou 2689:Planned 2217:fermium 2187:History 2152:fermium 2148:thorium 2140:uranium 2095:protons 2063:decayed 2043:fission 1954:neutron 1873:s-block 1768:History 1642:(+1), ( 1595:Density 1504:s-block 935:Hassium 928:Bohrium 914:Dubnium 879:Fermium 823:Uranium 809:Thorium 756:Bismuth 714:Iridium 700:Rhenium 679:Hafnium 658:Thulium 644:Holmium 630:Terbium 558:Caesium 507:Cadmium 486:Rhodium 458:Niobium 444:Yttrium 417:Krypton 410:Bromine 396:Arsenic 382:Gallium 303:Calcium 259:Silicon 176:Lithium 106:​ 8050:  8042:  7984:  7958:  7930:  7920:  7844:  7801:  7741:  7712:  7652:  7627:  7595:  7581:89–144 7549:  7503:  7493:  7345:  7281:: 12. 7249:. JINR 7226:  7173:  7120:  7067:  7012:  6956:  6946:  6923:  6915:  6889:Nature 6706:Nature 6600:. JINR 6517:. JINR 6487:  6366:  6321:  6272:JPhys+ 6249:  6226:  6011:  5949:  5941:  5901:  5788:  5669:n-t.ru 5592:  5561:  5553:  5545:  5471:  5463:  5342:  5276:  5268:  5174:  4954:  4946:  4900:  4892:  4845:  4813:  4757:  4552:  4495:  4455:  4445:  4311:  4211:  4199:: 84. 4078:  3980:Sweden 3692:and −Δ 3672:silver 3492:to Ubn 3462:3.050 3459:UbnAu 3451:2.995 3440:2.869 3429:2.808 3359:, UbnF 3266:4.831 3252:4.498 3238:4.277 3061:radium 3059:, and 3057:barium 2824:curium 2758:radium 2747:Naming 2350:beam: 2084:energy 2003:tunnel 1980:. The 1912:radium 1908:barium 1881:period 1776:IUPAC 1773:Naming 1707: 1690: 1665: 1624: 1622:kJ/mol 1597: 1556:solid 1501:  1483:Period 851:Curium 793:Radium 707:Osmium 651:Erbium 581:Cerium 565:Barium 542:Iodine 514:Indium 500:Silver 368:Copper 361:Nickel 354:Cobalt 273:Sulfur 236:Sodium 213:Oxygen 199:Carbon 167:Helium 118:-ee-əm 104: 8048:S2CID 8014:arXiv 8000:(PDF) 7881:(PDF) 7799:S2CID 7773:arXiv 7501:S2CID 7394:(PDF) 7387:(PDF) 7224:S2CID 7198:arXiv 7171:S2CID 7145:arXiv 7118:S2CID 7092:arXiv 7065:S2CID 7039:arXiv 7010:S2CID 6984:arXiv 6921:S2CID 6866:(PDF) 6485:S2CID 6457:(PDF) 6389:(PDF) 6364:S2CID 6224:S2CID 6172:. GSI 6032:(PDF) 5947:S2CID 5899:S2CID 5873:arXiv 5823:(PDF) 5797:(PDF) 5786:S2CID 5766:(PDF) 5692:Nauka 5686:[ 5590:S2CID 5559:S2CID 5364:(PDF) 5274:S2CID 5144:arXiv 5103:(PDF) 5062:(PDF) 4952:S2CID 4898:S2CID 4868:(PDF) 4843:S2CID 4776:(PDF) 4561:(PDF) 4550:S2CID 4522:(PDF) 4453:S2CID 4333:(PDF) 4147:(PDF) 3745:heavy 3727:Notes 3653:2.84 3650:0.18 3644:2.91 3634:1.80 3631:0.13 3625:3.03 3621:UbnAu 3603:2.06 3600:14.5 3597:1168 3594:2.23 3584:1.00 3581:20.1 3578:1070 3575:2.38 3504:to Ba 3465:1.90 3454:2.56 3448:RaAu 3443:3.01 3437:BaAu 3432:2.63 3426:SrAu 3421:2.55 3418:2.67 3415:CaAu 3297:0.02 3294:5.65 3283:0.11 3280:5.19 3269:0.23 3255:0.13 3241:0.14 3188:solid 3132:third 3012:IUPAC 2934:GANIL 2781:(120) 2260:Dubna 2207:with 1855:120. 1742:(bcc) 1544:Phase 1515:[ 1496:Block 1471:Group 777:Radon 549:Xenon 287:Argon 192:Boron 8040:ISSN 7982:ISBN 7956:ISBN 7928:OCLC 7918:ISBN 7842:ISSN 7739:ISBN 7710:ISBN 7650:ISBN 7625:ISBN 7606:2013 7593:ISBN 7547:PMID 7491:ISBN 7402:2016 7369:2016 7343:PMID 7255:2016 6954:OCLC 6944:ISBN 6913:PMID 6874:2013 6783:2024 6747:2024 6721:2024 6687:2024 6660:2023 6635:2023 6606:2022 6579:2023 6553:2022 6523:2021 6496:2021 6400:2016 6319:ISBN 6284:2016 6247:ISBN 6204:2016 6178:2016 6151:2016 6066:2016 6009:ISBN 5958:2022 5939:OSTI 5805:2016 5551:OSTI 5543:ISSN 5469:PMID 5461:ISSN 5340:ISSN 5266:ISSN 5172:ISSN 4944:ISSN 4890:ISSN 4811:ISBN 4755:ISSN 4569:2012 4493:ISSN 4443:ISBN 4356:2018 4309:ISBN 4254:2022 4209:ISBN 4163:2013 4076:ISBN 3749:lead 3647:129 3640:BaAu 3628:100 3571:UbnH 3546:(Å) 3405:(Å) 3379:(RaF 3336:and 3310:base 3222:(Å) 3204:, Ra 3093:spin 2836:lead 2777:E120 2756:eka- 2242:Past 2215:and 2106:and 1974:fuse 1970:beam 1966:mass 1910:and 1859:and 1851:and 1817:edit 1810:talk 1803:view 1601:r.t. 749:Lead 728:Gold 375:Zinc 347:Iron 227:Neon 114:-by- 9753:142 9746:141 9739:140 9732:139 9725:138 9718:137 9711:136 9704:135 9697:134 9690:133 9683:132 9676:131 9669:130 9662:129 9655:128 9648:127 9640:126 9632:125 9624:124 9616:123 9608:122 9599:121 9574:172 9567:171 9560:170 9553:169 9546:168 9539:167 9532:166 9525:165 9518:164 9511:163 9504:162 9497:161 9490:160 9483:159 9476:158 9469:157 9462:156 9455:155 9448:154 9441:153 9434:152 9427:151 9420:150 9413:149 9406:148 9399:147 9392:146 9385:145 9378:144 9371:143 9356:120 9347:119 8032:doi 8010:420 7901:doi 7834:doi 7791:doi 7769:555 7585:doi 7539:doi 7483:doi 7437:doi 7425:115 7335:doi 7323:101 7291:doi 7216:doi 7163:doi 7141:789 7110:doi 7057:doi 7002:doi 6905:doi 6893:422 6837:doi 6806:doi 6770:doi 6710:doi 6477:doi 6465:102 6435:doi 6356:doi 6311:doi 6216:doi 6100:doi 6001:doi 5931:doi 5891:doi 5869:420 5835:doi 5778:doi 5582:doi 5533:doi 5451:doi 5439:373 5406:doi 5330:doi 5318:337 5258:doi 5162:doi 4936:doi 4882:doi 4803:doi 4745:hdl 4735:doi 4694:doi 4542:doi 4530:317 4485:doi 4435:doi 4345:doi 4277:doi 4273:136 4243:doi 4201:doi 4118:doi 3786:-11 3761:112 3759:or 3757:100 3753:103 3739:In 3697:ads 3690:sub 3668:ads 3590:BaH 3560:cm 3553:cm 3529:sub 3514:3/2 3373:3/2 3369:3/2 3353:3/2 3349:3/2 3288:Ubn 3113:3/2 2996:Ubn 2992:120 2910:5/2 2895:5/2 2891:7/2 2844:114 2840:110 2828:101 2785:120 2783:or 2773:Ubn 2672:Ubn 2668:120 2613:Uue 2609:119 2541:Ubn 2537:120 2469:Ubn 2465:120 2401:Ubn 2397:120 2338:in 2321:Ubn 2317:120 1861:Ubn 1849:Ubn 1839:or 1550:STP 1465:120 1418:Ubn 521:Tin 116:NIL 112:OON 37:Ubn 35:120 9814:: 9329:Og 9320:Ts 9311:Lv 9302:Mc 9293:Fl 9284:Nh 9275:Cn 9266:Rg 9257:Ds 9248:Mt 9239:Hs 9230:Bh 9221:Sg 9212:Db 9203:Rf 9194:Lr 9185:No 9176:Md 9167:Fm 9158:Es 9149:Cf 9140:Bk 9131:Cm 9122:Am 9113:Pu 9104:Np 9086:Pa 9077:Th 9068:Ac 9057:Ra 9048:Fr 9030:Rn 9021:At 9012:Po 9003:Bi 8994:Pb 8985:Tl 8976:Hg 8967:Au 8958:Pt 8949:Ir 8940:Os 8931:Re 8913:Ta 8904:Hf 8895:Lu 8886:Yb 8877:Tm 8868:Er 8859:Ho 8850:Dy 8841:Tb 8832:Gd 8823:Eu 8814:Sm 8805:Pm 8796:Nd 8787:Pr 8778:Ce 8769:La 8758:Ba 8749:Cs 8731:Xe 8713:Te 8704:Sb 8695:Sn 8686:In 8677:Cd 8668:Ag 8659:Pd 8650:Rh 8641:Ru 8632:Tc 8623:Mo 8614:Nb 8605:Zr 8585:Sr 8576:Rb 8558:Kr 8549:Br 8540:Se 8531:As 8522:Ge 8513:Ga 8504:Zn 8495:Cu 8486:Ni 8477:Co 8468:Fe 8459:Mn 8450:Cr 8432:Ti 8423:Sc 8412:Ca 8385:Ar 8376:Cl 8349:Si 8340:Al 8329:Mg 8320:Na 8302:Ne 8246:Be 8237:Li 8219:He 8192:18 8187:17 8182:16 8177:15 8172:14 8167:13 8162:12 8157:11 8152:10 8046:. 8038:. 8030:. 8022:. 8008:. 8002:. 7980:. 7976:. 7954:. 7950:. 7942:; 7926:. 7899:. 7889:41 7887:. 7883:. 7840:. 7832:. 7822:54 7820:. 7797:. 7789:. 7781:. 7767:. 7753:^ 7733:. 7689:^ 7673:. 7591:. 7583:. 7579:: 7577:21 7571:. 7559:^ 7545:. 7537:. 7527:13 7525:. 7513:^ 7499:. 7489:. 7451:^ 7435:. 7423:. 7419:. 7341:. 7333:. 7321:. 7317:. 7303:^ 7289:. 7277:. 7263:^ 7245:. 7222:. 7214:. 7206:. 7194:94 7192:. 7169:. 7161:. 7153:. 7139:. 7116:. 7108:. 7100:. 7088:73 7086:. 7063:. 7055:. 7047:. 7035:94 7033:. 7008:. 7000:. 6992:. 6980:77 6978:. 6966:^ 6952:. 6919:. 6911:. 6903:. 6891:. 6851:^ 6833:51 6831:. 6827:. 6802:58 6800:. 6768:. 6764:. 6738:. 6708:. 6704:. 6677:. 6637:. 6596:. 6570:. 6544:. 6540:. 6513:. 6483:. 6475:. 6463:. 6459:. 6433:. 6423:19 6421:. 6391:. 6376:^ 6362:. 6354:. 6344:53 6342:. 6317:. 6309:. 6270:. 6222:. 6214:. 6202:. 6198:. 6186:^ 6168:. 6134:^ 6112:^ 6098:. 6088:79 6086:. 6074:^ 6056:. 6007:. 5983:^ 5966:^ 5945:. 5937:. 5929:. 5925:. 5911:^ 5897:. 5889:. 5881:. 5867:. 5863:. 5847:^ 5831:69 5829:. 5825:. 5792:. 5784:. 5774:65 5772:. 5768:. 5753:^ 5726:^ 5708:. 5641:. 5629:^ 5611:. 5588:. 5580:. 5557:. 5549:. 5541:. 5531:. 5521:68 5519:. 5513:. 5467:. 5459:. 5449:. 5437:. 5433:. 5402:17 5400:. 5394:. 5382:^ 5338:. 5328:. 5316:. 5312:. 5298:^ 5272:. 5264:. 5256:. 5246:53 5244:. 5208:^ 5170:. 5160:. 5152:. 5140:87 5138:. 5134:. 5109:. 5105:. 5084:^ 5068:. 5064:. 5049:^ 4983:. 4964:^ 4950:. 4942:. 4932:42 4930:. 4926:. 4910:^ 4896:. 4888:. 4878:63 4876:. 4870:. 4837:. 4825:^ 4809:. 4797:. 4753:. 4743:. 4733:. 4723:86 4721:. 4715:. 4692:. 4682:10 4680:. 4653:. 4607:^ 4589:. 4548:. 4540:. 4528:. 4524:. 4513:; 4491:. 4481:79 4479:. 4451:. 4441:. 4429:. 4399:. 4373:. 4341:46 4339:. 4335:. 4271:. 4235:. 4223:^ 4207:. 4197:10 4171:^ 4153:. 4149:. 4130:^ 4114:85 4112:. 4108:. 4090:^ 4074:. 4018:^ 3978:, 3974:, 3856:+ 3847:Al 3843:13 3837:→ 3818:+ 3809:Si 3805:14 3779:pb 3711:: 3661:Au 3524:(Δ 3274:Ra 3260:Ba 3246:Sr 3232:Ca 3177:pm 3111:7p 3103:) 3055:, 3051:, 3047:, 3043:, 2986:→ 2977:Ni 2973:28 2967:+ 2954:92 2915:Sn 2889:2f 2787:. 2779:, 2720:, 2707:Lv 2662:→ 2653:Ti 2649:22 2643:+ 2634:Cf 2630:98 2603:→ 2594:Ti 2590:22 2584:+ 2575:Bk 2571:97 2531:→ 2522:Ti 2518:22 2512:+ 2503:Cf 2499:98 2459:→ 2450:Cr 2446:24 2440:+ 2431:Cm 2427:96 2391:→ 2382:Ni 2378:28 2372:+ 2359:92 2348:Ni 2311:→ 2302:Fe 2298:26 2292:+ 2283:Pu 2279:94 2268:Pu 2264:Fe 2252:Cf 1887:. 1705:pm 1645:+2 1517:Og 1435:→ 1431:← 1423:— 1412:Ra 76:aɪ 67:uː 9095:U 8922:W 8722:I 8596:Y 8441:V 8403:K 8367:S 8358:P 8293:F 8284:O 8275:N 8266:C 8257:B 8208:H 8147:9 8142:8 8137:7 8132:6 8127:5 8122:4 8117:3 8110:2 8105:1 8082:e 8075:t 8068:v 8054:. 8034:: 8026:: 8016:: 7990:. 7964:. 7934:. 7907:. 7903:: 7895:: 7848:. 7836:: 7828:: 7805:. 7793:: 7785:: 7775:: 7747:. 7718:. 7683:. 7658:. 7633:. 7608:. 7587:: 7553:. 7541:: 7533:: 7507:. 7485:: 7445:. 7439:: 7431:: 7404:. 7371:. 7349:. 7337:: 7329:: 7297:. 7293:: 7285:: 7279:1 7257:. 7230:. 7218:: 7210:: 7200:: 7177:. 7165:: 7157:: 7147:: 7124:. 7112:: 7104:: 7094:: 7071:. 7059:: 7051:: 7041:: 7016:. 7004:: 6996:: 6986:: 6960:. 6927:. 6907:: 6899:: 6876:. 6845:. 6839:: 6812:. 6808:: 6785:. 6772:: 6749:. 6723:. 6712:: 6689:. 6662:. 6608:. 6581:. 6555:. 6525:. 6498:. 6479:: 6471:: 6441:. 6437:: 6429:: 6415:Z 6402:. 6370:. 6358:: 6350:: 6327:. 6313:: 6305:: 6286:. 6255:. 6230:. 6218:: 6210:: 6180:. 6153:. 6126:N 6122:Z 6106:. 6102:: 6094:: 6068:. 6041:. 6017:. 6003:: 5978:. 5960:. 5933:: 5905:. 5893:: 5885:: 5875:: 5859:Z 5841:. 5837:: 5807:. 5780:: 5720:. 5678:. 5653:. 5623:. 5596:. 5584:: 5565:. 5535:: 5527:: 5498:. 5494:: 5475:. 5453:: 5445:: 5418:. 5408:: 5376:. 5346:. 5332:: 5324:: 5280:. 5260:: 5252:: 5178:. 5164:: 5156:: 5146:: 5119:. 5078:. 4995:. 4958:. 4938:: 4904:. 4884:: 4849:. 4819:. 4805:: 4785:. 4761:. 4747:: 4737:: 4729:: 4700:. 4696:: 4688:: 4665:. 4638:. 4601:. 4571:. 4544:: 4536:: 4499:. 4487:: 4459:. 4437:: 4414:. 4385:. 4358:. 4347:: 4317:. 4291:M 4287:P 4283:. 4279:: 4256:. 4245:: 4217:. 4203:: 4165:. 4155:1 4124:. 4120:: 4084:. 3915:. 3866:p 3862:1 3828:n 3824:0 3719:– 3715:– 3694:H 3687:H 3665:H 3526:H 3518:2 3510:2 3506:2 3502:2 3494:2 3490:2 3486:2 3385:2 3381:2 3361:6 3322:2 3306:2 3290:2 3276:2 3262:2 3248:2 3234:2 3210:2 3206:2 3202:2 3108:l 3069:n 3017:Z 2958:U 2943:Z 2926:N 2920:Z 2917:( 2842:– 2485:N 2363:U 2344:U 2093:( 1935:. 1603:) 1571:K 1460:) 1458:Z 1456:( 1421:↓ 1415:↑ 121:) 108:( 100:/ 97:m 94:ə 91:i 88:l 85:ɪ 82:n 79:ˈ 73:b 70:n 64:ˌ 61:/ 23:.

Index

UBN (disambiguation)
/ˌnbˈnɪliəm/
OON-by-NIL-ee-əm
periodic table
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminium
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.