Knowledge

Unbiunium

Source 📝

2539:, one would expect the 5g subshell to begin filling at the unbiunium atom. However, while lanthanum does have significant 4f involvement in its chemistry, it does not yet have a 4f electron in its ground-state gas-phase configuration; a greater delay occurs for 5f, where neither actinium nor thorium atoms have a 5f electron although 5f contributes to their chemistry. It is predicted that a similar situation of delayed "radial" collapse might happen for unbiunium so that the 5g orbitals do not start filling until around element 125, even though some 5g chemical involvement may begin earlier. Because of the lack of radial nodes in the 5g orbitals, analogous to the 4f but not the 5f orbitals, the position of unbiunium in the periodic table is expected to be more akin to that of lanthanum than that of actinium among its congeners, and 2047: 1973: 2102:, expected to be on the order of microseconds. Heavier elements, beginning with element 121, would likely be too short-lived to be detected with current technology, decaying within a microsecond before reaching the detectors. Where this one-microsecond border of half-lives lies is not known, and this may allow the synthesis of some isotopes of elements 121 through 124, with the exact limit depending on the model chosen for predicting nuclide masses. It is also possible that element 120 is the last element reachable with current experimental techniques, and that elements from 121 onward will require new methods. 2318:
detected. For example, in a 2016 publication, the cross section of the aforementioned reaction between Es and Ti was predicted to be around 7 fb in the 4n channel, four times lower than the lowest measured cross section for a successful reaction. A 2021 calculation gives similarly low theoretical cross sections of 10 fb for the 3n channel and 0.6 fb for the 4n channel of this reaction, along with cross sections on the order of 1–10 fb for the reactions Bk+Cr, Es+Ti, and Md+Ca. However, Es and Md cannot currently be synthesized in sufficient quantities to form target material.
2888:, a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility. In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles. They thus preferred to link new isotopes to the already known ones by successive alpha decays. 1800: 2875:, the daughter nucleus would also receive a small velocity. The ratio of the two velocities, and accordingly the ratio of the kinetic energies, would thus be inverse to the ratio of the two masses. The decay energy equals the sum of the known kinetic energy of the alpha particle and that of the daughter nucleus (an exact fraction of the former). The calculations hold for an experiment as well, but the difference is that the nucleus does not move after the decay because it is tied to the detector. 2242: 2487:. This would present a grave problem for experiments aiming at synthesizing isotopes of unbiunium if true, because the isotopes whose alpha decay could be observed could not be reached by any presently usable combination of target and projectile. Calculations in 2016 and 2017 by the same authors on elements 123 and 125 suggest a less bleak outcome, with alpha decay chains from the more reachable nuclides Ubt passing through unbiunium and leading down to 2322:
and Am+Ca reactions. The multiplicity of excited states populated by the alpha decay of odd nuclei may however preclude clear cross-bombardment cases, as was seen in the controversial link between Ts and Mc. Heavier isotopes are expected to be more stable; Ubu is predicted to be the most stable unbiunium isotope, but there is no way to synthesize it with current technology as no combination of usable target and projectile could provide enough neutrons.
1873: 2298:(JINR) in Dubna has built a new superheavy element factory (SHE-factory) with improved detectors and the ability to work on a smaller scale, but even so, continuing beyond element 120 and perhaps 121 would be a great challenge. It is possible that the age of fusion–evaporation reactions to produce new superheavy elements is coming to an end due to the increasingly short half-lives to spontaneous fission and the looming proton 7737: 7510: 2364:) until it is discovered, the discovery is confirmed, and a permanent name chosen. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations are mostly ignored among scientists who work theoretically or experimentally on superheavy elements, who call it "element 121", with the symbol 1937:, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival. The transfer takes about 10 seconds; in order to be detected, the nucleus must survive this long. The nucleus is recorded again once its decay is registered, and the location, the 2913:. It was later shown that the identification was incorrect. The following year, RL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later. JINR insisted that they were the first to create the element and suggested a name of their own for the new element, 2917:; the Soviet name was also not accepted (JINR later referred to the naming of the element 102 as "hasty"). This name was proposed to IUPAC in a written response to their ruling on priority of discovery claims of elements, signed 29 September 1992. The name "nobelium" remained unchanged on account of its widespread usage. 2087:, they require emission of only one or two neutrons. However, hot fusion reactions tend to produce more neutron-rich products because the actinides have the highest neutron-to-proton ratios of any element that can presently be made in macroscopic quantities; it is currently the only method to produce the superheavy elements from 2026:
actinides and the predicted island are deformed, and gain additional stability from shell effects. Experiments on lighter superheavy nuclei, as well as those closer to the expected island, have shown greater than previously anticipated stability against spontaneous fission, showing the importance of shell effects on nuclei.
2601:
polarizabilities of the UbuF molecule are expected to continue the trend through scandium, yttrium, lanthanum, and actinium, all of which have three valence electrons above a noble gas core. The Ubu–F bond is expected to be strong and polarized, just like for the lanthanum and actinium monofluorides.
2600:
monofluoride (NhF) where it is bonding. Nihonium has the electron configuration 5f 6d 7s 7p, with an sp valence configuration. Unbiunium may hence be somewhat like lawrencium in having an anomalous sp configuration that does not affect its chemistry: the bond dissociation energies, bond lengths, and
2543:
proposed to rename the superactinides as "superlanthanides" for that reason. The lack of radial nodes in the 4f orbitals contribute to their core-like behavior in the lanthanide series, unlike the more valence-like 5f orbitals in the actinides; however, the relativistic expansion and destabilization
1956:
provided by the strong interaction increases linearly with the number of nucleons, whereas electrostatic repulsion increases with the square of the atomic number, i.e. the latter grows faster and becomes increasingly important for heavy and superheavy nuclei. Superheavy nuclei are thus theoretically
2851:
It was already known by the 1960s that ground states of nuclei differed in energy and shape as well as that certain magic numbers of nucleons corresponded to greater stability of a nucleus. However, it was assumed that there was no nuclear structure in superheavy nuclei as they were too deformed to
2050:
Chart of nuclide stability as used by the Dubna team in 2010. Characterized isotopes are shown with borders. Beyond element 118 (oganesson, the last known element), the line of known nuclides is expected to rapidly enter a region of instability, with no half-lives over one microsecond after element
2036:
The information available to physicists aiming to synthesize a superheavy element is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed
1992:
Alpha particles are commonly produced in radioactive decays because mass of an alpha particle per nucleon is small enough to leave some energy for the alpha particle to be used as kinetic energy to leave the nucleus. Spontaneous fission is caused by electrostatic repulsion tearing the nucleus apart
2591:
Despite the change in electron configuration and possibility of using the 5g shell, unbiunium is not expected to behave chemically very differently from lanthanum and actinium. A 2016 calculation on unbiunium monofluoride (UbuF) showed similarities between the valence orbitals of unbiunium in this
2321:
Should the synthesis of unbiunium isotopes in such a reaction be successful, the resulting nuclei would decay through isotopes of ununennium that could be produced by cross-bombardments in the Cm+V or Bk+Ti reactions, down through known isotopes of tennessine and moscovium synthesized in the Bk+Ca
2037:
caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.
2029:
Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be easily determined. (That all decays within a decay
1932:
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam. In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products) and transferred to a
2861:
Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for superheavy nuclei. The first direct measurement of mass of a
2703:
In 2009, a team at the JINR led by Oganessian published results of their attempt to create hassium in a symmetric Xe + Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as
2317:
The isotopes Ubu, Ubu, and Ubu, that could be produced in the reaction between Es and Ti via the 3n and 4n channels, are expected to be the only reachable unbiunium isotopes with half-lives long enough for detection. The cross sections would nevertheless push the limits of what can currently be
1851:
Coming close enough alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for about 10 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus. This happens because
2820:
This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle. Such separation can also be aided by a
2313:
target. This poses severe challenges due to the significant heating and damage of the target due to the high radioactivity of einsteinium-254, but it would nonetheless probably be the most promising approach. It would require working on a smaller scale due to the lower amount of Es that can be
2025:
in which nuclei will be more resistant to spontaneous fission and will primarily undergo alpha decay with longer half-lives. Subsequent discoveries suggested that the predicted island might be further than originally anticipated; they also showed that nuclei intermediate between the long-lived
3005:
Amador, Davi H. T.; de Oliveira, Heibbe C. B.; Sambrano, Julio R.; Gargano, Ricardo; de Macedo, Luiz Guilherme M. (12 September 2016). "4-Component correlated all-electron study on Eka-actinium Fluoride (E121F) including Gaunt interaction: Accurate analytical form, bonding and influence on
2475:, those from Ubu through Ubu would undergo alpha decay, and those from Ubu to Ubu would undergo spontaneous fission. Only the isotopes from Ubu to Ubu would have long enough alpha-decay lifetimes to be detected in laboratories, starting decay chains terminating in spontaneous fission at 2628:. Hence, the main oxidation state of unbiunium in its compounds should be +3, although the closeness of the valence subshells' energy levels may permit higher oxidation states, just like in elements 119 and 120. Relativistic effects appear to be small for the unbiunium trihalides, with 2862:
superheavy nucleus was reported in 2018 at LBNL. Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).
2329:
and at JINR have listed the synthesis of element 121 among their future plans. These two laboratories are best suited to these experiments as they are the only ones in the world where long beam times are accessible for reactions with such low predicted cross-sections.
1856:—the probability that fusion will occur if two nuclei approach one another expressed in terms of the transverse area that the incident particle must hit in order for the fusion to occur. This fusion may occur as a result of the quantum effect in which nuclei can 2030:
chain were indeed related to each other is established by the location of these decays, which must be in the same place.) The known nucleus can be recognized by the specific characteristics of decay it undergoes such as decay energy (or more specifically, the
2289:
Currently, the beam intensities at superheavy element facilities result in about 10 projectiles hitting the target per second; this cannot be increased without burning the target and the detector, and producing larger amounts of the increasingly unstable
1993:
and produces various nuclei in different instances of identical nuclei fissioning. As the atomic number increases, spontaneous fission rapidly becomes more important: spontaneous fission partial half-lives decrease by 23 orders of magnitude from
2302:, so that new techniques such as nuclear transfer reactions (for example, firing uranium nuclei at each other and letting them exchange protons, potentially producing products with around 120 protons) would be required to reach the superactinides. 2137:-64. This, however, has the drawback of resulting in more symmetrical fusion reactions that are colder and less likely to succeed. For example, the reaction between Am and Fe is expected to have a cross section on the order of 0.5 2515:
in analogy to the earlier actinides. While its behavior is not likely to be very distinct from lanthanum and actinium, it is likely to pose a limit to the applicability of the periodic law; from element 121, the 5g, 6f, 7d, and
2551:
orbital due to its relativistic stabilization, with a configuration of 8s 8p. Nevertheless, the 7d 8s configuration, which would be analogous to lanthanum and actinium, is expected to be a low-lying excited state at only
2281:= 198, but it is separated from the mainland of nuclides that may be obtained with current techniques. The white ring denotes the expected location of the island of stability; the two squares outlined in white denote 2062:
can be divided into "hot" and "cold" fusion, depending on the excitation energy of the compound nucleus produced. In hot fusion reactions, very light, high-energy projectiles are accelerated toward very heavy targets
2568:, . The 8p electron of unbiunium is expected to be very loosely bound, so that its predicted ionization energy of 4.45 eV is lower than that of ununennium (4.53 eV) and all known elements except for the 2694:
series). Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
1843:
in order to make such repulsion insignificant compared to the velocity of the beam nucleus. The energy applied to the beam nuclei to accelerate them can cause them to reach speeds as high as one-tenth of the
1965:. Almost all alpha emitters have over 210 nucleons, and the lightest nuclide primarily undergoing spontaneous fission has 238. In both decay modes, nuclei are inhibited from decaying by corresponding 2083:), the fused nuclei produced have a relatively low excitation energy (~10–20 MeV), which decreases the probability that these products will undergo fission reactions. As the fused nuclei cool to the 2309:
of these fusion-evaporation reactions increase with the asymmetry of the reaction, titanium would be a better projectile than chromium for the synthesis of element 121, though this necessitates an
5187:
JINR is currently building the first factory of superheavy elements in the world to synthesize elements 119, 120 and 121, and to study in depth the properties of previously obtained elements.
3076: 6226: 2926:
Despite the name, "cold fusion" in the context of superheavy element synthesis is a distinct concept from the idea that nuclear fusion can be achieved in room temperature conditions (see
1777:, but this is not predicted to affect its chemistry much. It would on the other hand significantly lower its first ionization energy beyond what would be expected from periodic trends. 5901:
Pinheiro, Alan Sena; Gargano, Ricardo; dos Santos, Paulo Henrique Gomes; de Macedo, Luiz Guilherme Machado (26 August 2021). "Fully relativistic study of polyatomic closed shell E121X
2141:, several orders of magnitude lower than measured cross sections in successful reactions; such an obstacle would make this and similar reactions infeasible for producing unbiunium. 1852:
during the attempted formation of a single nucleus, electrostatic repulsion tears apart the nucleus that is being formed. Each pair of a target and a beam is characterized by its
1860:
through electrostatic repulsion. If the two nuclei can stay close past that phase, multiple nuclear interactions result in redistribution of energy and an energy equilibrium.
5200: 1811:. Reactions that created new elements to this moment were similar, with the only possible difference that several singular neutrons sometimes were released, or none at all. 2802:
reaction, cross section changes smoothly from 370 mb at 12.3 MeV to 160 mb at 18.3 MeV, with a broad peak at 13.5 MeV with the maximum value of 380 mb.
1722:
Unbiunium has not yet been synthesized. It is expected to be one of the last few reachable elements with current technology; the limit could be anywhere between element
4288: 2532:(the last for which complete calculations have been conducted) is expected to be so similar that their position in the periodic table would be purely a formal matter. 2388:, element 96, whose half-life is four orders of magnitude longer than that of any currently known higher-numbered element. All isotopes with an atomic number above 6219: 2556:, and the expected 5g 8s configuration from the Madelung rule should be at 2.48 eV. The electron configurations of the ions of unbiunium are expected to be 2471:
A 2016 calculation of the half-lives of the isotopes of unbiunium from Ubu to Ubu suggested that those from Ubu to Ubu would not be bound and would decay through
3198: 1653: 5270:
de Marcillac, Pierre; Coron, Noël; Dambier, Gérard; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth".
4318: 2909:. There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, 2034:
of the emitted particle). Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.
2969:
Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.).
1644: 5795:
Eliav, Ephraim; Shmulyian, Sergei; Kaldor, Uzi; Ishikawa, Yasuyuki (1998). "Transition energies of lanthanum, actinium, and eka-actinium (element 121)".
4679:
Folden III, C. M.; Mayorov, D. A.; Werke, T. A.; et al. (2013). "Prospects for the discovery of the next new element: Influence of projectiles with
1944:
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, its influence on the outermost
6212: 3266: 2678:(element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 2604:
The non-bonding electrons on unbiunium in UbuF are expected to be able to bond to extra atoms or groups, resulting in the formation of the unbiunium
3084: 2158: 1908:. This happens in about 10 seconds after the initial nuclear collision and results in creation of a more stable nucleus. The definition by the 1952:
and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, and its range is not limited. Total
7968: 3660: 2690:; sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical 2400:) have stable isotopes. Nevertheless, for reasons not yet well understood, there is a slight increase of nuclear stability around atomic numbers 1823:, the greater the possibility that the two react. The material made of the heavier nuclei is made into a target, which is then bombarded by the 3080: 1977: 1819:
is created in a nuclear reaction that combines two other nuclei of unequal size into one; roughly, the more unequal the two nuclei in terms of
6158: 6079: 6060: 6034: 5996: 5885: 5330: 4825: 3494: 3126: 2982: 5905:(X = F, Cl, Br) molecules: effects of Gaunt interaction, relativistic effects and advantages of an exact-two component (X2C) hamiltonian". 3518: 2295: 1730:. It will also likely be far more difficult to synthesize than the elements known so far up to 118, and still more difficult than elements 4473: 4902: 2520:
orbitals are expected to fill up together due to their very close energies, and around the elements in the late 150s and 160s, the 9s, 9p
3153:; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction Xe + Xe". 2071:) that may fission or evaporate several (3 to 5) neutrons. In cold fusion reactions (which use heavier projectiles, typically from the 2726:
The amount of energy applied to the beam particle to accelerate it can also influence the value of cross section. For example, in the
2413: 2121:= 99) targets being currently considered, the practical synthesis of elements beyond oganesson requires heavier projectiles, such as 2708:. In comparison, the reaction that resulted in hassium discovery, Pb + Fe, had a cross section of ~20 pb (more specifically, 19 1904:, which would carry away the excitation energy; if the latter is not sufficient for a neutron expulsion, the merger would produce a 1536: 96: 4443:"Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" 2339: 6052: 2974: 6174: 5212: 3790: 3749: 2822: 1909: 1637: 2585: 1880: 1762: 1750:, Russia have indicated plans to attempt the synthesis of element 121 in the future after they attempt elements 119 and 120. 4293: 4736:
Gan, ZaiGuo; Zhou, XiaoHong; Huang, MingHui; et al. (August 2011). "Predictions of synthesizing element 119 and 120".
3391:
Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.).
2245:
Predicted decay modes of superheavy nuclei. The line of synthesized proton-rich nuclei is expected to be broken soon after
4779:
Jiang, J.; Chai, Q.; Wang, B.; et al. (2013). "Investigation of production cross sections for superheavy nuclei with
3397: 2456:= 228), explains why superheavy elements last longer than predicted. In fact, the very existence of elements heavier than 1972: 1966: 3105:
Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.).
1976:
Scheme of an apparatus for creation of superheavy elements, based on the Dubna Gas-Filled Recoil Separator set up in the
4970: 3452: 2643: 5952: 4647: 3330: 1831:
into one if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to
5496:
Santhosh, K. P.; Nithya, C. (28 December 2016). "Theoretical predictions on the decay properties of superheavy nuclei
5116: 3237: 2465: 1699:
respectively, which are used until the element is discovered, confirmed, and a permanent name is decided upon. In the
3920:
Aksenov, N. V.; Steinegger, P.; Abdullin, F. Sh.; et al. (2017). "On the volatility of nihonium (Nh, Z = 113)".
4038: 3050: 4390: 3552: 3478: 3335: 1630: 5435:
Santhosh, K. P.; Nithya, C. (27 September 2016). "Predictions on the alpha decay chains of superheavy nuclei with
2046: 1957:
predicted and have so far been observed to predominantly decay via decay modes that are caused by such repulsion:
4047: 5739: 4323: 1839:
can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly
5067: 2871:
If the decay occurred in a vacuum, then since total momentum of an isolated system before and after the decay
3356:
Kern, B. D.; Thompson, W. E.; Ferguson, J. M. (1959). "Cross sections for some (n, p) and (n, α) reactions".
2499:
might be a significant decay mode in competition with alpha decay and spontaneous fission in the region past
6235: 3190: 2350: 2306: 2095: 1853: 1708: 1696: 1620: 1468: 2285:
and Cn, predicted to be the longest-lived nuclides on the island with half-lives of centuries or millennia.
3271: 1953: 1934: 1770: 1716: 1496: 1489: 1481: 1455: 3812:"Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory" 2094:
Attempts to synthesize elements 119 and 120 push the limits of current technology, due to the decreasing
5695:(2011). "A suggested periodic table up to Z ≤ 172, based on Dirac–Fock calculations on atoms and ions". 2544:
of the 5g orbitals should partially compensate for their lack of radial nodes and hence smaller extent.
2511:
Unbiunium is predicted to be the first element of an unprecedentedly long transition series, called the
5660: 2825:
and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.
6255: 6183: 6098: 6072:"Future of superheavy element research: Which nuclei could be synthesized within the next few years?" 5967: 5843: 5804: 5704: 5626: 5564: 5513: 5462: 5409: 5394: 5367: 5279: 5082: 5015: 4940: 4857: 4842: 4745: 4702: 4204: 4171: 4122: 4001: 3929: 3833: 3406: 3365: 3213: 3110: 3015: 2314:
produced. This small-scale work could in the near future only be carried out in Dubna's SHE-factory.
1840: 4553:
Fleischmann, Martin; Pons, Stanley (1989). "Electrochemically induced nuclear fusion of deuterium".
2241: 6014: 5356:"Single-Particle Levels of Spherical Nuclei in the Superheavy and Extremely Superheavy Mass Region" 3665: 3599: 3262: 2461: 2421: 2409: 2022: 2018: 1962: 1712: 1602: 4115:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
1920:
within 10 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire
1753:
The position of unbiunium in the periodic table suggests that it would have similar properties to
7963: 6122: 6088: 5930: 5770: 5529: 5478: 5452: 5303: 5031: 4873: 4761: 4718: 4692: 4604: 4465: 4269: 4238: 3953: 3823: 3631: 3577: 3522: 3229: 3132: 2897:
For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in
2059: 2013:
thus suggested that spontaneous fission would occur nearly instantly due to disappearance of the
1980:
in JINR. The trajectory within the detector and the beam focusing apparatus changes because of a
1857: 1836: 1787: 4927:
Siwek-Wilczyńska, K.; Cap, T.; Wilczyński, J. (April 2010). "How can one synthesize the element
4817: 4811: 4442: 2273:= 130. Beyond this is a region of slightly increased stability of second-living nuclides around 1900:
without formation of a more stable nucleus. Alternatively, the compound nucleus may eject a few
5170: 4499: 3544: 7120: 6154: 6114: 6056: 6030: 6002: 5992: 5922: 5881: 5762: 5720: 5336: 5326: 5295: 4821: 4581: 4371: 4230: 4222: 4148: 4140: 4019: 3945: 3851: 3623: 3569: 3545:"Criteria that must be satisfied for the discovery of a new chemical element to be recognized" 3490: 3434: 3172: 3155: 3122: 2978: 2503:= 120, which would pose yet another hurdle for experimental identification of these nuclides. 2393: 2299: 2266: 2010: 1985: 1917: 1765:
may cause some of its properties to differ from those expected from a straight application of
1574: 1535: 720: 3779: 3738: 2811:
This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.
7484: 7185: 6886: 6713: 6540: 6457: 6374: 6345: 6307: 6302: 6297: 6191: 6146: 6106: 6026: 5975: 5914: 5851: 5812: 5754: 5712: 5634: 5595: 5572: 5521: 5470: 5417: 5375: 5287: 5250: 5125: 5090: 5023: 4948: 4865: 4792: 4753: 4710: 4596: 4562: 4514: 4457: 4261: 4212: 4130: 4085: 4009: 3937: 3841: 3615: 3561: 3482: 3470: 3424: 3414: 3373: 3221: 3194: 3164: 3114: 3031: 3023: 2902: 2839: 2536: 2354: 2072: 1913: 1893: 1832: 1673: 1473: 50: 6292: 6287: 6282: 6277: 6272: 6267: 6262: 5001:"Synthesis and decay process of superheavy nuclei with Z=119-122 via hot fusion reactions" 4385: 3656: 3540: 3150: 3055: 2667: 2472: 2014: 1981: 1897: 1799: 1677: 1555: 1543: 6110: 5740:"The role of radial nodes of atomic orbitals for chemical bonding and the periodic table" 5692: 4869: 4714: 4014: 3989: 2540: 6196: 6187: 6169: 6102: 5979: 5971: 5847: 5808: 5708: 5630: 5568: 5517: 5466: 5413: 5371: 5283: 5086: 5019: 4944: 4861: 4749: 4706: 4208: 4175: 4126: 4005: 3933: 3837: 3410: 3369: 3217: 3019: 6018: 5831: 5068:"A new assessment of the alleged link between element 115 and element 117 decay chains" 4648:"Superheavy Nuclei: which regions of nuclear map are accessible in the nearest studies" 2448: 2396:
with half-lives of less than 30 hours. No elements with atomic numbers above 82 (after
2055: 2031: 1845: 1828: 1816: 1804: 1766: 1700: 1530: 1460: 123: 5199:
Hagino, Kouichi; Hofmann, Sigurd; Miyatake, Hiroari; Nakahara, Hiromichi (July 2012).
4622:
Armbruster, Peter & Munzenberg, Gottfried (1989). "Creating superheavy elements".
2592:
molecule and those of actinium in actinium monofluoride (AcF); in both molecules, the
2253:= 124, the increasing contribution of spontaneous fission instead of alpha decay from 2051:
121. The elliptical region encloses the predicted location of the island of stability.
1896:—and thus it is very unstable. To reach a more stable state, the temporary merger may 7957: 7347: 5934: 5614: 5590:
Poenaru, Dorin N.; Gherghescu, R. A.; Greiner, W.; Shakib, Nafiseh (September 2014).
5533: 5482: 5355: 5035: 5000: 4877: 4765: 4722: 4566: 4273: 4242: 4195: 4076: 3957: 3377: 3233: 3136: 2885: 2691: 2671: 2512: 2496: 2457: 2426: 2417: 1889: 1824: 1774: 1704: 1684: 1437: 1117: 1103: 1096: 1047: 1033: 1026: 892: 6126: 5774: 4608: 4469: 4089: 3635: 3581: 3526: 3304: 7401: 7230: 6931: 6317: 6250: 5547:
Santhosh, K. P.; Sukumaran, Indu (25 January 2017). "Decay of heavy particles from
5421: 5307: 5129: 5094: 4796: 3118: 2569: 2553: 2401: 2384:
The stability of nuclei decreases greatly with the increase in atomic number after
2084: 2068: 1938: 1372: 1351: 1337: 1330: 1208: 1187: 1173: 1166: 1131: 1124: 1110: 1068: 1061: 1054: 1040: 934: 801: 573: 5594:. Nuclear Physics: Present and Future FIAS Interdisciplinary Science Series 2015. 5203:[Implementation of the 2011 Research Achievement Review (Interim Review)] 5124:. Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements. 4071: 4046:. Dai 2 Kai Hadoron Tataikei no Simulation Symposium, Tokai-mura, Ibaraki, Japan. 3419: 3392: 5599: 5525: 5027: 4319:"The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War" 3941: 3027: 2149:
The synthesis of unbiunium was first attempted in 1977 by bombarding a target of
7768: 7455: 7419: 7410: 7320: 7302: 7293: 6312: 6044: 2927: 2687: 2439: 2389: 2310: 2282: 2150: 2138: 2114: 2106: 1958: 1727: 1379: 1365: 1358: 1344: 1302: 1281: 1267: 1260: 1215: 1201: 1194: 1180: 1138: 1089: 1075: 1019: 976: 948: 941: 871: 857: 850: 5918: 5638: 5239:"Recommendations for the naming of elements of atomic numbers greater than 100" 3846: 3811: 3661:"How to Make Superheavy Elements and Finish the Periodic Table [Video]" 3603: 3168: 1711:. It has attracted attention because of some predictions that it may be in the 7784: 7500: 7491: 7464: 7392: 7365: 7338: 6994: 6976: 6949: 6776: 6767: 6502: 6150: 6071: 5576: 5474: 5144: 4952: 4757: 3619: 3393:"Comparing Experimental and Theoretical Quasifission Mass Angle Distributions" 2835: 2679: 2581: 2484: 2480: 2443: 2431: 1876: 1735: 1731: 1723: 1413: 1386: 1323: 1309: 1295: 1288: 1274: 1222: 1159: 1145: 1082: 1010: 1003: 983: 927: 906: 885: 622: 608: 587: 457: 450: 251: 6118: 5340: 4600: 4265: 4226: 4144: 4023: 3949: 3855: 3627: 3573: 3438: 3176: 2528:
subshells join in, so that the chemistry of the elements just beyond 121 and
7473: 7446: 7437: 7284: 7266: 7257: 7248: 7030: 6940: 6913: 6857: 6803: 6785: 6749: 6729: 6666: 6603: 6547: 6484: 6473: 6390: 6337: 6327: 6322: 6006: 5255: 5238: 4518: 4461: 4368:
Popular library of chemical elements. Silver through nielsbohrium and beyond
3565: 3486: 2898: 2605: 2593: 2573: 2476: 2408:, which leads to the appearance of what is known in nuclear physics as the " 2405: 2162: 2099: 2088: 1905: 1754: 1502: 1316: 1253: 1152: 990: 969: 962: 843: 829: 822: 815: 650: 580: 559: 520: 478: 464: 436: 418: 374: 325: 281: 237: 228: 168: 5926: 5766: 5724: 5379: 5299: 4580:
Barber, Robert C.; Gäggeler, Heinz W.; Karol, Paul J.; et al. (2009).
4347:[Popular library of chemical elements. Seaborgium (eka-tungsten)]. 4152: 4135: 4110: 2067:), giving rise to compound nuclei at high excitation energies (~40–50  1848:. However, if too much energy is applied, the beam nucleus can fall apart. 6204: 4582:"Discovery of the element with atomic number 112 (IUPAC Technical Report)" 2682:(although there are other definitions, such as atomic number greater than 1773:, instead of the sd of lanthanum and actinium or the sg expected from the 7752: 7428: 7329: 7212: 7192: 7165: 7156: 7129: 7102: 7066: 7057: 7039: 6967: 6958: 6848: 6720: 6684: 6594: 6585: 6576: 6567: 6520: 6437: 6419: 6352: 6244: 5855: 4500:"Names and symbols of transfermium elements (IUPAC Recommendations 1997)" 3787:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
3746:
Introductory Nuclear, Atomic and Molecular Physics (Nuclear Physics Part)
2872: 2705: 2642:
having very similar bonding, though the former should be more ionic. The
2597: 2577: 2529: 2492: 2435: 2345: 2291: 2258: 2126: 2122: 2064: 1998: 1921: 1758: 1421: 1246: 955: 878: 787: 771: 755: 748: 727: 706: 678: 671: 657: 601: 594: 513: 411: 388: 318: 311: 304: 297: 265: 205: 191: 143: 6049:
From Transuranic to Superheavy Elements: A Story of Dispute and Creation
5291: 4364:Популярная библиотека химических элементов. Серебро – Нильсборий и далее 3035: 2834:
Not all decay modes are caused by electrostatic repulsion. For example,
2596:
is expected to be non-bonding, unlike in the superficially more similar
7938: 7933: 7928: 7923: 7918: 7383: 7374: 7356: 7311: 7239: 7221: 7147: 7093: 7075: 7048: 7021: 7003: 6985: 6893: 6821: 6794: 6758: 6740: 6702: 6693: 6675: 6657: 6556: 6493: 6381: 6332: 5716: 4555:
Journal of Electroanalytical Chemistry and Interfacial Electrochemistry
3429: 3225: 2683: 2488: 2166: 2080: 2006: 2002: 1994: 1945: 1901: 1808: 920: 913: 899: 864: 808: 794: 741: 699: 685: 664: 643: 629: 615: 543: 492: 471: 443: 429: 402: 395: 381: 367: 288: 244: 161: 5758: 4646:
Karpov, Alexander; Zagrebaev, Valery; Greiner, Walter (1 April 2015).
4441:
Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993).
4386:"Nobelium - Element information, properties and uses | Periodic Table" 4234: 4217: 4190: 7275: 7201: 7084: 7012: 6922: 6902: 6866: 6830: 6812: 6639: 6630: 6621: 6511: 6464: 6428: 6410: 6363: 6141:
Kaldor, U. (2005). "Superheavy Elements—Chemistry and Spectroscopy".
5816: 5066:
Forsberg, U.; Rudolph, D.; Fahlander, C.; et al. (9 July 2016).
5050: 4536: 4534: 4532: 4530: 4528: 2906: 2385: 2154: 2134: 2105:
Because of the current impossibility of synthesizing elements beyond
1949: 836: 778: 692: 636: 566: 550: 527: 499: 485: 353: 346: 339: 258: 221: 198: 184: 152: 4436: 4434: 4345:"Популярная библиотека химических элементов. Сиборгий (экавольфрам)" 4289:"Exploring the superheavy elements at the end of the periodic table" 5457: 4312: 4310: 3732: 3730: 3267:"Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist" 7174: 6875: 6529: 6401: 6093: 4697: 4065: 4063: 3983: 3981: 3979: 3828: 3593: 3591: 3508: 3506: 2326: 2240: 2045: 1971: 1798: 1747: 1739: 762: 534: 272: 177: 3651: 3649: 3647: 3645: 3604:"A History and Analysis of the Discovery of Elements 104 and 105" 2580:. A similar large reduction in ionization energy is also seen in 2460:
can be attested to shell effects and the island of stability, as
2021:
suggested that nuclei with about 300 nucleons would form an
7138: 7111: 6648: 6612: 6446: 5613:
Poenaru, Dorin N.; Gherghescu, R. A.; Greiner, W. (March 2012).
5395:"The limits of the nuclear chart set by fission and alpha decay" 4344: 3773: 3771: 3769: 3767: 3765: 2675: 2397: 2130: 2076: 1916:
can only be recognized as discovered if a nucleus of it has not
1820: 1743: 734: 713: 360: 332: 212: 6208: 1879:
of unsuccessful nuclear fusion, based on calculations from the
6839: 2584:, another element having an anomalous sp configuration due to 2340:
Mendeleev's nomenclature for unnamed and undiscovered elements
506: 4843:"Nuclei: superheavy–superneutronic–strange–and of antimatter" 71: 56: 5555:= 295–325 using different versions of proximity potential". 3990:"Nuclei in the "Island of Stability" of Superheavy Elements" 2001:(element 102), and by 30 orders of magnitude from 80: 77: 65: 6170:"Elements Beyond 100, Present Status and Future Prospects" 5878:
Computational Methods in Lanthanide and Actinide Chemistry
5115:
Forsberg, Ulrika; Fahlander, Claes; Rudolph, Dirk (2016).
4498:
Commission on Nomenclature of Inorganic Chemistry (1997).
1769:. For example, unbiunium is expected to have a sp valence 4409: 4407: 3298: 3296: 3294: 3292: 3290: 3288: 2249:= 120, because of the shortening half-lives until around 5118:
Congruence of decay chains of elements 113, 115, and 117
4903:"Beyond element 118: the next row of the periodic table" 4170:. 50th Anniversary of Nuclear Fission, Leningrad, USSR. 3891: 3889: 2971:
The Chemistry of the Actinide and Transactinide Elements
2420:
and stemming from the stabilizing effects of the closed
2113:= 98) in sufficient quantities to create a target, with 5951:
Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017).
2884:
Spontaneous fission was discovered by Soviet physicist
1703:
of the elements, it is expected to be the first of the
4540: 3709: 2294:
needed for the target is impractical. The team at the
5055:. DAE Symposium on Nuclear Physics. pp. 205–206. 3697: 3685: 2464:
would rapidly cause such nuclei to disintegrate in a
2098:
of the production reactions and their probably short
97: 74: 59: 53: 4256:
Grant, A. (2018). "Weighing the heaviest elements".
3515:
Faculty of Nuclear Sciences and Physical Engineering
3331:"Something new and superheavy at the periodic table" 3107:
Encyclopedia of Inorganic and Bioinorganic Chemistry
62: 4999:Ghahramany, Nader; Ansari, Ahmad (September 2016). 4971:"Actinide Targets for Super-Heavy Element Research" 2017:for nuclei with about 280 nucleons. The later 1865: 1616: 1611: 1601: 1596: 1573: 1554: 1549: 1529: 1524: 1512: 1495: 1480: 1467: 1454: 1435: 121: 113: 83: 68: 44: 39: 32: 5832:"Electronic Configurations of Superheavy Elements" 5169:Sokolova, Svetlana; Popeko, Andrei (24 May 2021). 5953:"The NUBASE2016 evaluation of nuclear properties" 3810:Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). 1969:for each mode, but they can be tunneled through. 4189:Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). 6070:Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). 5592:How Rare Is Cluster Decay of Superheavy Nuclei? 1807:reaction. Two nuclei fuse into one, emitting a 4738:Science China Physics, Mechanics and Astronomy 6220: 5687: 5685: 5670:. 2015 National Nuclear Physics Summer School 5321:Considine, Glenn D.; Kulik, Peter H. (2002). 3513:Krása, A. (2010). "Neutron Sources for ADS". 3307:[Superheavy steps into the unknown]. 1715:. It is also likely to be the first of a new 1638: 1486: 18:Chemical element with atomic number 121 (Ubu) 8: 3398:European Physical Journal Web of Conferences 2973:(3rd ed.). Dordrecht, The Netherlands: 21: 4040:Fission properties of the heaviest elements 3907: 3868: 2717: pb), as estimated by the discoverers. 6227: 6213: 6205: 4964: 4962: 4896: 4894: 1941:, and the time of the decay are measured. 1924:and thus display its chemical properties. 1645: 1631: 134: 6195: 6092: 6023:The Transuranium People: The Inside Story 5830:Umemoto, Koichiro; Saito, Susumu (1996). 5557:International Journal of Modern Physics E 5456: 5445:International Journal of Modern Physics E 5254: 4933:International Journal of Modern Physics E 4696: 4674: 4672: 4641: 4639: 4637: 4216: 4134: 4013: 3845: 3827: 3428: 3418: 5836:Journal of the Physical Society of Japan 5360:Journal of the Physical Society of Japan 4783:= 116~121 in dinuclear system concept". 4191:"A beachhead on the island of stability" 3000: 2998: 2996: 2994: 2638: 2631: 2624: 2617: 2610: 130: 7345: 6143:Encyclopedia of Computational Chemistry 2964: 2962: 2960: 2958: 2956: 2954: 2952: 2950: 2948: 2946: 2942: 2659: 1827:of lighter nuclei. Two nuclei can only 7766: 7399: 7228: 6929: 5551:= 125 superheavy nuclei in the region 5323:Van Nostrand's scientific encyclopedia 4362:"Экавольфрам" [Eka-tungsten]. 4111:"Chemistry of the superheavy elements" 3970: 3895: 3880: 3721: 3081:Lawrence Livermore National Laboratory 1978:Flerov Laboratory of Nuclear Reactions 1862: 1707:, and the third element in the eighth 20: 7782: 7498: 7489: 7453: 7417: 7408: 7318: 7300: 7291: 6080:Journal of Physics: Conference Series 5880:. John Wiley & Sons. p. 35. 5171:"How are new chemical elements born?" 5052:Synthesis of superheavy element Z=121 5049:Safoora, V.; Santhosh, K. P. (2021). 4850:Journal of Physics: Conference Series 4685:Journal of Physics: Conference Series 4479:from the original on 25 November 2013 4425: 4413: 3994:Journal of Physics: Conference Series 2159:Gesellschaft für Schwerionenforschung 7: 7741: 7462: 7390: 7363: 7336: 6992: 6974: 6947: 6774: 6765: 5615:"Cluster decay of superheavy nuclei" 5325:(9th ed.). Wiley-Interscience. 5211:(in Japanese). RIKEN. Archived from 4541:Zagrebaev, Karpov & Greiner 2013 3710:Zagrebaev, Karpov & Greiner 2013 3519:Czech Technical University in Prague 2650:couple is predicted as −2.1 V. 2547:Unbiunium is expected to fill the 8p 2296:Joint Institute for Nuclear Research 7750: 7471: 7444: 7435: 7282: 7264: 7255: 7246: 7028: 6938: 6911: 6855: 6801: 6783: 6747: 6727: 6664: 6601: 6500: 6482: 6471: 6388: 6197:10.1146/annurev.ns.18.120168.000413 5697:Physical Chemistry Chemical Physics 5661:"The Quest for Superheavy Elements" 4901:Krämer, Katrina (29 January 2016). 3698:Hoffman, Ghiorso & Seaborg 2000 3686:Hoffman, Ghiorso & Seaborg 2000 3469:Loveland, W. D.; Morrissey, D. J.; 3199:"The identification of element 108" 3077:"Discovery of Elements 113 and 115" 7912: 7426: 7327: 7210: 7190: 7163: 7154: 7127: 7100: 7055: 7037: 6965: 6956: 6846: 6718: 6682: 6592: 6574: 6565: 6545: 6518: 5747:Journal of Computational Chemistry 5143:Morita, Kōsuke (5 February 2016). 3197:; Folger, H.; et al. (1984). 2594:highest occupied molecular orbital 2495:. It has also been suggested that 14: 7381: 7372: 7354: 7309: 7219: 7145: 7118: 7091: 7073: 7064: 7046: 7019: 7001: 6983: 6891: 6819: 6792: 6756: 6700: 6691: 6673: 6655: 6583: 6554: 6491: 6435: 6417: 6379: 6350: 5738:Kaupp, Martin (1 December 2006). 3871:, pp. 030001-129–030001-138. 3305:"Сверхтяжелые шаги в неизвестное" 1788:Superheavy element § Introduction 7735: 7508: 7483: 7273: 7237: 7199: 7184: 7082: 7010: 6920: 6900: 6885: 6828: 6810: 6738: 6712: 6637: 6628: 6619: 6539: 6462: 6456: 6373: 6361: 6344: 6175:Annual Review of Nuclear Science 5201:"平成23年度 研究業績レビュー(中間レビュー)の実施について" 4969:Roberto, J. B. (31 March 2015). 4816:. Taylor & Francis. p.  3051:"Explainer: superheavy elements" 2009:(element 100). The earlier 1871: 1786:This section is an excerpt from 1697:systematic IUPAC name and symbol 49: 7172: 6873: 6864: 6527: 6509: 6426: 6408: 5797:The Journal of Chemical Physics 5506:The European Physical Journal A 4294:Chemical & Engineering News 4037:Moller, P.; Nix, J. R. (1994). 3922:The European Physical Journal A 2975:Springer Science+Business Media 2380:Nuclear stability and isotopes 2342:, unbiunium should be known as 2261:onward until it dominates from 2075:, and lighter targets, usually 1910:IUPAC/IUPAP Joint Working Party 7969:Hypothetical chemical elements 7136: 7109: 6646: 6610: 6444: 6399: 6111:10.1088/1742-6596/420/1/012001 5145:"The Discovery of Element 113" 5095:10.1016/j.physletb.2016.07.008 4870:10.1088/1742-6596/413/1/012002 4797:10.11804/NuclPhysRev.30.04.391 4715:10.1088/1742-6596/420/1/012007 4015:10.1088/1742-6596/337/1/012005 3119:10.1002/9781119951438.eibc2632 2674:if its atomic number is high; 2237:Prospects for future synthesis 1881:Australian National University 1795:Synthesis of superheavy nuclei 1: 6837: 5991:(6th ed.). McGraw-Hill. 5980:10.1088/1674-1137/41/3/030001 5907:Journal of Molecular Modeling 5439:= 121 within the range 290 ≤ 5354:Koura, H.; Chiba, S. (2013). 3791:Université libre de Bruxelles 3750:Université libre de Bruxelles 3473:(2005). "Nuclear Reactions". 2412:". This concept, proposed by 1621:IUPAC systematic element name 1476:(theoretical, extended table) 5600:10.1007/978-3-319-10199-6_13 5422:10.1051/epjconf/201613103002 5130:10.1051/epjconf/201613102003 4980:. Texas A & M University 4657:. Texas A & M University 4567:10.1016/0022-0728(89)80006-3 4168:Biomodal spontaneous fission 4070:Oganessian, Yu. Ts. (2004). 3378:10.1016/0029-5582(59)90211-1 3028:10.1016/j.cplett.2016.09.025 2644:standard electrode potential 5008:European Physical Journal A 3479:John Wiley & Sons, Inc. 3420:10.1051/epjconf/20158600061 1888:The resulting merger is an 117:eka-actinium, superactinium 7985: 7896: 7889: 7882: 7875: 7868: 7861: 7854: 7847: 7840: 7833: 7826: 7819: 7812: 7805: 7798: 7791: 7775: 7759: 7717: 7710: 7703: 7696: 7689: 7682: 7675: 7668: 7661: 7654: 7647: 7640: 7633: 7626: 7619: 7612: 7605: 7598: 7591: 7584: 7577: 7570: 7563: 7556: 7549: 7542: 7535: 7528: 7521: 7514: 6736: 6563: 6480: 6397: 6359: 6259: 5989:Concepts of modern physics 5919:10.1007/s00894-021-04861-7 5639:10.1103/PhysRevC.85.034615 5526:10.1140/epja/i2016-16371-y 5500:= 123 in the region 297 ≤ 5243:Pure and Applied Chemistry 5028:10.1140/epja/i2016-16287-6 4589:Pure and Applied Chemistry 4507:Pure and Applied Chemistry 4450:Pure and Applied Chemistry 4391:Royal Society of Chemistry 3942:10.1140/epja/i2017-12348-8 3847:10.1103/physrevc.87.024320 3553:Pure and Applied Chemistry 3169:10.1103/PhysRevC.79.024608 2823:time-of-flight measurement 2233:No atoms were identified. 1785: 1516:2, 8, 18, 32, 32, 18, 8, 3 426: 294: 234: 174: 149: 7922: 7910: 7731: 7482: 7183: 6884: 6711: 6538: 6455: 6372: 6343: 6336: 6331: 6326: 6321: 6316: 6311: 6306: 6301: 6296: 6291: 6286: 6281: 6276: 6271: 6266: 6261: 6254: 6249: 6242: 6151:10.1002/0470845015.cu0044 6021:; Seaborg, G. T. (2000). 5659:Loveland, Walter (2015). 5577:10.1142/S0218301317500033 5475:10.1142/S0218301316500798 4953:10.1142/S021830131001490X 4758:10.1007/s11433-011-4436-4 4090:10.1088/2058-7058/17/7/31 4048:University of North Texas 3620:10.1524/ract.1987.42.2.57 2468:neglecting such factors. 2452:= 184 (and possibly also 1870: 1803:A graphic depiction of a 1626: 1412: 1234: 129: 4841:Greiner, Walter (2013). 4810:Hofmann, Sigurd (2002). 4601:10.1351/PAC-REP-08-03-05 4317:Robinson, A. E. (2019). 4266:10.1063/PT.6.1.20181113a 4000:(1): 012005-1–012005-6. 3988:Oganessian, Yu. (2012). 3602:; Keller, O. L. (1987). 3475:Modern Nuclear Chemistry 3206:Zeitschrift für Physik A 3008:Chemical Physics Letters 3006:rovibrational spectra". 2414:University of California 2353:, the element should be 1935:surface-barrier detector 6236:Extended periodic table 6168:Seaborg, G. T. (1968). 5256:10.1351/pac197951020381 4519:10.1351/pac199769122471 4462:10.1351/pac199365081815 3566:10.1351/pac199163060879 3487:10.1002/0471768626.ch10 2670:, an element is called 2349:. Using the 1979 IUPAC 1833:electrostatic repulsion 5876:Dolg, Michael (2015). 5668:www.int.washington.edu 5402:EPJ Web of Conferences 5380:10.7566/JPSJ.82.014201 4785:Nuclear Physics Review 4136:10.1098/rsta.2014.0191 3272:Bloomberg Businessweek 2286: 2265:= 125, and the proton 2145:Past synthesis attempt 2091:(element 114) onward. 2052: 1989: 1812: 1771:electron configuration 1497:Electron configuration 4166:Hulet, E. K. (1989). 4072:"Superheavy elements" 3910:, p. 030001-125. 3111:John Wiley & Sons 2244: 2049: 2005:(element 90) to 1997:(element 92) to 1975: 1802: 5856:10.1143/JPSJ.65.3175 4370:] (in Russian). 4109:Schädel, M. (2015). 2586:relativistic effects 2058:reactions producing 1912:(JWP) states that a 1763:relativistic effects 1742:in Japan and at the 1672:, is a hypothetical 6188:1968ARNPS..18...53S 6103:2013JPhCS.420a2001Z 5987:Beiser, A. (2003). 5972:2017ChPhC..41c0001A 5848:1996JPSJ...65.3175U 5809:1998JChPh.109.3954E 5709:2011PCCP...13..161P 5631:2012PhRvC..85c4615P 5569:2017IJMPE..2650003S 5518:2016EPJA...52..371S 5467:2016IJMPE..2550079S 5414:2016EPJWC.13103002M 5393:Möller, P. (2016). 5372:2013JPSJ...82a4201K 5292:10.1038/nature01541 5284:2003Natur.422..876D 5087:2016PhLB..760..293F 5020:2016EPJA...52..287G 4945:2010IJMPE..19..500S 4862:2013JPhCS.413a2002G 4750:2011SCPMA..54S..61G 4707:2013JPhCS.420a2007F 4624:Scientific American 4209:2015PhT....68h..32O 4176:1989nufi.rept...16H 4127:2015RSPTA.37340191S 4006:2012JPhCS.337a2005O 3934:2017EPJA...53..158A 3838:2013PhRvC..87b4320S 3666:Scientific American 3453:"Nuclear Reactions" 3411:2015EPJWC..8600061W 3370:1959NucPh..10..226K 3303:Ivanov, D. (2019). 3218:1984ZPhyA.317..235M 3151:Oganessian, Yu. Ts. 3049:Krämer, K. (2016). 3020:2016CPL...662..169A 2507:Predicted chemistry 2462:spontaneous fission 2430:= 114 (or possibly 2410:island of stability 2060:superheavy elements 2023:island of stability 2019:nuclear shell model 1963:spontaneous fission 1928:Decay and detection 1713:island of stability 1575:Ionization energies 1525:Physical properties 1513:Electrons per shell 34:Theoretical element 29: 5717:10.1039/c0cp01575j 5237:Chatt, J. (1979). 4978:cyclotron.tamu.edu 4655:cyclotron.tamu.edu 4287:Howes, L. (2019). 4121:(2037): 20140191. 3973:, p. 432–433. 3778:Pauli, N. (2019). 3737:Pauli, N. (2019). 3481:pp. 249–297. 3329:Hinde, D. (2017). 3265:(28 August 2019). 3226:10.1007/BF01421260 2355:temporarily called 2287: 2053: 1990: 1986:quadrupole magnets 1984:in the former and 1837:strong interaction 1813: 1695:are the temporary 1586: kJ/mol 1419: 1404: 7951: 7950: 7944: 7943: 7905: 7904: 6160:978-0-470-84501-1 6062:978-3-319-75813-8 6036:978-1-78-326244-1 5998:978-0-07-244848-1 5960:Chinese Physics C 5887:978-1-118-68829-8 5842:(10): 3175–3179. 5759:10.1002/jcc.20522 5619:Physical Review C 5332:978-0-471-33230-5 5278:(6934): 876–878. 5081:(2016): 293–296. 5075:Physics Letters B 4827:978-0-415-28496-7 4813:On Beyond Uranium 4513:(12): 2471–2474. 4416:, pp. 38–39. 4218:10.1063/PT.3.2880 3816:Physical Review C 3780:"Nuclear fission" 3608:Radiochimica Acta 3496:978-0-471-76862-3 3156:Physical Review C 3128:978-1-119-95143-8 3113:. pp. 1–16. 2984:978-1-4020-3555-5 2873:must be preserved 2838:is caused by the 2394:radioactive decay 2011:liquid drop model 1886: 1885: 1659: 1658: 1550:Atomic properties 1505:] 8s 8p 1431: 1430: 1427: 1426: 1417: 1402: 1394: 1393: 998: 997: 722:Mercury (element) 122:Unbiunium in the 114:Alternative names 7976: 7915: 7914: 7901: 7900: 7894: 7893: 7887: 7886: 7880: 7879: 7873: 7872: 7866: 7865: 7859: 7858: 7852: 7851: 7845: 7844: 7838: 7837: 7831: 7830: 7824: 7823: 7817: 7816: 7810: 7809: 7803: 7802: 7796: 7795: 7789: 7787: 7780: 7779: 7773: 7771: 7764: 7763: 7757: 7755: 7748: 7746: 7739: 7738: 7722: 7721: 7715: 7714: 7708: 7707: 7701: 7700: 7694: 7693: 7687: 7686: 7680: 7679: 7673: 7672: 7666: 7665: 7659: 7658: 7652: 7651: 7645: 7644: 7638: 7637: 7631: 7630: 7624: 7623: 7617: 7616: 7610: 7609: 7603: 7602: 7596: 7595: 7589: 7588: 7582: 7581: 7575: 7574: 7568: 7567: 7561: 7560: 7554: 7553: 7547: 7546: 7540: 7539: 7533: 7532: 7526: 7525: 7519: 7518: 7512: 7511: 7505: 7503: 7496: 7494: 7487: 7478: 7476: 7469: 7467: 7460: 7458: 7451: 7449: 7442: 7440: 7433: 7431: 7424: 7422: 7415: 7413: 7406: 7404: 7397: 7395: 7388: 7386: 7379: 7377: 7370: 7368: 7361: 7359: 7352: 7350: 7343: 7341: 7334: 7332: 7325: 7323: 7316: 7314: 7307: 7305: 7298: 7296: 7289: 7287: 7280: 7278: 7271: 7269: 7262: 7260: 7253: 7251: 7244: 7242: 7235: 7233: 7226: 7224: 7217: 7215: 7206: 7204: 7197: 7195: 7188: 7179: 7177: 7170: 7168: 7161: 7159: 7152: 7150: 7143: 7141: 7134: 7132: 7125: 7123: 7116: 7114: 7107: 7105: 7098: 7096: 7089: 7087: 7080: 7078: 7071: 7069: 7062: 7060: 7053: 7051: 7044: 7042: 7035: 7033: 7026: 7024: 7017: 7015: 7008: 7006: 6999: 6997: 6990: 6988: 6981: 6979: 6972: 6970: 6963: 6961: 6954: 6952: 6945: 6943: 6936: 6934: 6927: 6925: 6918: 6916: 6907: 6905: 6898: 6896: 6889: 6880: 6878: 6871: 6869: 6862: 6860: 6853: 6851: 6844: 6842: 6835: 6833: 6826: 6824: 6817: 6815: 6808: 6806: 6799: 6797: 6790: 6788: 6781: 6779: 6772: 6770: 6763: 6761: 6754: 6752: 6745: 6743: 6734: 6732: 6725: 6723: 6716: 6707: 6705: 6698: 6696: 6689: 6687: 6680: 6678: 6671: 6669: 6662: 6660: 6653: 6651: 6644: 6642: 6635: 6633: 6626: 6624: 6617: 6615: 6608: 6606: 6599: 6597: 6590: 6588: 6581: 6579: 6572: 6570: 6561: 6559: 6552: 6550: 6543: 6534: 6532: 6525: 6523: 6516: 6514: 6507: 6505: 6498: 6496: 6489: 6487: 6478: 6476: 6469: 6467: 6460: 6451: 6449: 6442: 6440: 6433: 6431: 6424: 6422: 6415: 6413: 6406: 6404: 6395: 6393: 6386: 6384: 6377: 6368: 6366: 6357: 6355: 6348: 6245: 6229: 6222: 6215: 6206: 6201: 6199: 6164: 6130: 6096: 6076: 6066: 6040: 6027:World Scientific 6010: 5983: 5957: 5939: 5938: 5898: 5892: 5891: 5873: 5867: 5866: 5864: 5862: 5827: 5821: 5820: 5817:10.1063/1.476995 5792: 5786: 5785: 5783: 5781: 5744: 5735: 5729: 5728: 5689: 5680: 5679: 5677: 5675: 5665: 5656: 5650: 5649: 5647: 5645: 5610: 5604: 5603: 5587: 5581: 5580: 5544: 5538: 5537: 5493: 5487: 5486: 5460: 5432: 5426: 5425: 5399: 5390: 5384: 5383: 5351: 5345: 5344: 5318: 5312: 5311: 5267: 5261: 5260: 5258: 5234: 5228: 5227: 5225: 5223: 5217: 5206: 5196: 5190: 5189: 5184: 5182: 5166: 5160: 5159: 5157: 5155: 5140: 5134: 5133: 5123: 5112: 5106: 5105: 5103: 5101: 5072: 5063: 5057: 5056: 5046: 5040: 5039: 5005: 4996: 4990: 4989: 4987: 4985: 4975: 4966: 4957: 4956: 4924: 4918: 4917: 4915: 4913: 4898: 4889: 4888: 4886: 4884: 4847: 4838: 4832: 4831: 4807: 4801: 4800: 4776: 4770: 4769: 4733: 4727: 4726: 4700: 4676: 4667: 4666: 4664: 4662: 4652: 4643: 4632: 4631: 4619: 4613: 4612: 4586: 4577: 4571: 4570: 4550: 4544: 4538: 4523: 4522: 4504: 4495: 4489: 4488: 4486: 4484: 4478: 4456:(8): 1815–1824. 4447: 4438: 4429: 4423: 4417: 4411: 4402: 4401: 4399: 4398: 4382: 4376: 4375: 4359: 4357: 4356: 4341: 4335: 4334: 4332: 4331: 4314: 4305: 4304: 4302: 4301: 4284: 4278: 4277: 4253: 4247: 4246: 4220: 4186: 4180: 4179: 4163: 4157: 4156: 4138: 4106: 4100: 4099: 4097: 4096: 4067: 4058: 4057: 4055: 4054: 4045: 4034: 4028: 4027: 4017: 3985: 3974: 3968: 3962: 3961: 3917: 3911: 3908:Audi et al. 2017 3905: 3899: 3893: 3884: 3878: 3872: 3869:Audi et al. 2017 3866: 3860: 3859: 3849: 3831: 3807: 3801: 3800: 3798: 3797: 3784: 3775: 3760: 3759: 3757: 3756: 3743: 3734: 3725: 3719: 3713: 3707: 3701: 3695: 3689: 3683: 3677: 3676: 3674: 3673: 3653: 3640: 3639: 3595: 3586: 3585: 3549: 3537: 3531: 3530: 3510: 3501: 3500: 3466: 3464: 3463: 3457: 3449: 3443: 3442: 3432: 3422: 3388: 3382: 3381: 3353: 3347: 3346: 3344: 3343: 3336:The Conversation 3326: 3320: 3319: 3317: 3316: 3300: 3283: 3282: 3280: 3279: 3259: 3253: 3252: 3250: 3248: 3242: 3236:. Archived from 3203: 3187: 3181: 3180: 3147: 3141: 3140: 3102: 3096: 3095: 3093: 3092: 3083:. Archived from 3073: 3067: 3066: 3064: 3063: 3046: 3040: 3039: 3002: 2989: 2988: 2966: 2931: 2924: 2918: 2903:Stockholm County 2895: 2889: 2882: 2876: 2869: 2863: 2859: 2853: 2849: 2843: 2840:weak interaction 2832: 2826: 2818: 2812: 2809: 2803: 2801: 2800: 2799: 2792: 2791: 2782: 2781: 2780: 2773: 2772: 2763: 2762: 2761: 2754: 2753: 2744: 2743: 2742: 2735: 2734: 2724: 2718: 2716: 2715: 2701: 2695: 2664: 2649: 2641: 2634: 2627: 2620: 2613: 2567: 2563: 2559: 2537:Aufbau principle 2228: 2227: 2226: 2219: 2218: 2209: 2208: 2207: 2200: 2199: 2190: 2189: 2188: 2181: 2180: 2157:-65 ions at the 1914:chemical element 1894:compound nucleus 1875: 1874: 1863: 1674:chemical element 1664:, also known as 1647: 1640: 1633: 1607:54500-70-8 1597:Other properties 1582:1st: 429.4 1565: 1556:Oxidation states 1540: 1539: 1488: 1463:(no number) 1447: 1446: 1389: 1382: 1375: 1368: 1361: 1354: 1347: 1340: 1333: 1326: 1319: 1312: 1305: 1298: 1291: 1284: 1277: 1270: 1263: 1256: 1249: 1242: 1225: 1218: 1211: 1204: 1197: 1190: 1183: 1176: 1169: 1162: 1155: 1148: 1141: 1134: 1127: 1120: 1113: 1106: 1099: 1092: 1085: 1078: 1071: 1064: 1057: 1050: 1043: 1036: 1029: 1022: 1013: 1006: 1000: 999: 993: 986: 979: 972: 965: 958: 951: 944: 937: 930: 923: 916: 909: 902: 895: 888: 881: 874: 867: 860: 853: 846: 839: 832: 825: 818: 811: 804: 797: 790: 781: 774: 765: 758: 751: 744: 737: 730: 723: 716: 709: 702: 695: 688: 681: 674: 667: 660: 653: 646: 639: 632: 625: 618: 611: 604: 597: 590: 583: 576: 569: 562: 553: 546: 537: 530: 523: 516: 509: 502: 495: 488: 481: 474: 467: 460: 453: 446: 439: 432: 421: 414: 405: 398: 391: 384: 377: 370: 363: 356: 349: 342: 335: 328: 321: 314: 307: 300: 291: 284: 275: 268: 261: 254: 247: 240: 231: 224: 215: 208: 201: 194: 187: 180: 171: 164: 155: 146: 140: 139: 135: 131: 109: 104: 100: 92: 90: 89: 86: 85: 82: 79: 76: 73: 70: 67: 64: 61: 58: 55: 30: 28: 23:Unbiunium,  7984: 7983: 7979: 7978: 7977: 7975: 7974: 7973: 7954: 7953: 7952: 7947: 7946: 7945: 7906: 7898: 7897: 7891: 7890: 7884: 7883: 7877: 7876: 7870: 7869: 7863: 7862: 7856: 7855: 7849: 7848: 7842: 7841: 7835: 7834: 7828: 7827: 7821: 7820: 7814: 7813: 7807: 7806: 7800: 7799: 7793: 7792: 7785: 7783: 7777: 7776: 7769: 7767: 7761: 7760: 7753: 7751: 7744: 7742: 7736: 7719: 7718: 7712: 7711: 7705: 7704: 7698: 7697: 7691: 7690: 7684: 7683: 7677: 7676: 7670: 7669: 7663: 7662: 7656: 7655: 7649: 7648: 7642: 7641: 7635: 7634: 7628: 7627: 7621: 7620: 7614: 7613: 7607: 7606: 7600: 7599: 7593: 7592: 7586: 7585: 7579: 7578: 7572: 7571: 7565: 7564: 7558: 7557: 7551: 7550: 7544: 7543: 7537: 7536: 7530: 7529: 7523: 7522: 7516: 7515: 7509: 7501: 7499: 7492: 7490: 7474: 7472: 7465: 7463: 7456: 7454: 7447: 7445: 7438: 7436: 7429: 7427: 7420: 7418: 7411: 7409: 7402: 7400: 7393: 7391: 7384: 7382: 7375: 7373: 7366: 7364: 7357: 7355: 7348: 7346: 7339: 7337: 7330: 7328: 7321: 7319: 7312: 7310: 7303: 7301: 7294: 7292: 7285: 7283: 7276: 7274: 7267: 7265: 7258: 7256: 7249: 7247: 7240: 7238: 7231: 7229: 7222: 7220: 7213: 7211: 7202: 7200: 7193: 7191: 7175: 7173: 7166: 7164: 7157: 7155: 7148: 7146: 7139: 7137: 7130: 7128: 7121: 7119: 7112: 7110: 7103: 7101: 7094: 7092: 7085: 7083: 7076: 7074: 7067: 7065: 7058: 7056: 7049: 7047: 7040: 7038: 7031: 7029: 7022: 7020: 7013: 7011: 7004: 7002: 6995: 6993: 6986: 6984: 6977: 6975: 6968: 6966: 6959: 6957: 6950: 6948: 6941: 6939: 6932: 6930: 6923: 6921: 6914: 6912: 6903: 6901: 6894: 6892: 6876: 6874: 6867: 6865: 6858: 6856: 6849: 6847: 6840: 6838: 6831: 6829: 6822: 6820: 6813: 6811: 6804: 6802: 6795: 6793: 6786: 6784: 6777: 6775: 6768: 6766: 6759: 6757: 6750: 6748: 6741: 6739: 6730: 6728: 6721: 6719: 6703: 6701: 6694: 6692: 6685: 6683: 6676: 6674: 6667: 6665: 6658: 6656: 6649: 6647: 6640: 6638: 6631: 6629: 6622: 6620: 6613: 6611: 6604: 6602: 6595: 6593: 6586: 6584: 6577: 6575: 6568: 6566: 6557: 6555: 6548: 6546: 6530: 6528: 6521: 6519: 6512: 6510: 6503: 6501: 6494: 6492: 6485: 6483: 6474: 6472: 6465: 6463: 6447: 6445: 6438: 6436: 6429: 6427: 6420: 6418: 6411: 6409: 6402: 6400: 6391: 6389: 6382: 6380: 6364: 6362: 6353: 6351: 6238: 6233: 6167: 6161: 6140: 6137: 6135:Further reading 6074: 6069: 6063: 6043: 6037: 6013: 5999: 5986: 5955: 5950: 5947: 5942: 5904: 5900: 5899: 5895: 5888: 5875: 5874: 5870: 5860: 5858: 5829: 5828: 5824: 5794: 5793: 5789: 5779: 5777: 5742: 5737: 5736: 5732: 5691: 5690: 5683: 5673: 5671: 5663: 5658: 5657: 5653: 5643: 5641: 5612: 5611: 5607: 5589: 5588: 5584: 5546: 5545: 5541: 5495: 5494: 5490: 5451:(10). 1650079. 5434: 5433: 5429: 5397: 5392: 5391: 5387: 5353: 5352: 5348: 5333: 5320: 5319: 5315: 5269: 5268: 5264: 5236: 5235: 5231: 5221: 5219: 5215: 5204: 5198: 5197: 5193: 5180: 5178: 5168: 5167: 5163: 5153: 5151: 5142: 5141: 5137: 5121: 5114: 5113: 5109: 5099: 5097: 5070: 5065: 5064: 5060: 5048: 5047: 5043: 5003: 4998: 4997: 4993: 4983: 4981: 4973: 4968: 4967: 4960: 4926: 4925: 4921: 4911: 4909: 4907:Chemistry World 4900: 4899: 4892: 4882: 4880: 4845: 4840: 4839: 4835: 4828: 4809: 4808: 4804: 4778: 4777: 4773: 4735: 4734: 4730: 4678: 4677: 4670: 4660: 4658: 4650: 4645: 4644: 4635: 4621: 4620: 4616: 4584: 4579: 4578: 4574: 4552: 4551: 4547: 4539: 4526: 4502: 4497: 4496: 4492: 4482: 4480: 4476: 4445: 4440: 4439: 4432: 4424: 4420: 4412: 4405: 4396: 4394: 4384: 4383: 4379: 4361: 4360:Reprinted from 4354: 4352: 4343: 4342: 4338: 4329: 4327: 4316: 4315: 4308: 4299: 4297: 4286: 4285: 4281: 4255: 4254: 4250: 4188: 4187: 4183: 4165: 4164: 4160: 4108: 4107: 4103: 4094: 4092: 4069: 4068: 4061: 4052: 4050: 4043: 4036: 4035: 4031: 3987: 3986: 3977: 3969: 3965: 3919: 3918: 3914: 3906: 3902: 3894: 3887: 3879: 3875: 3867: 3863: 3822:(2): 024320–1. 3809: 3808: 3804: 3795: 3793: 3782: 3777: 3776: 3763: 3754: 3752: 3741: 3736: 3735: 3728: 3720: 3716: 3708: 3704: 3696: 3692: 3684: 3680: 3671: 3669: 3657:Chemistry World 3655: 3654: 3643: 3597: 3596: 3589: 3547: 3539: 3538: 3534: 3512: 3511: 3504: 3497: 3468: 3461: 3459: 3455: 3451: 3450: 3446: 3390: 3389: 3385: 3358:Nuclear Physics 3355: 3354: 3350: 3341: 3339: 3328: 3327: 3323: 3314: 3312: 3302: 3301: 3286: 3277: 3275: 3263:Subramanian, S. 3261: 3260: 3256: 3246: 3244: 3240: 3201: 3189: 3188: 3184: 3149: 3148: 3144: 3129: 3104: 3103: 3099: 3090: 3088: 3075: 3074: 3070: 3061: 3059: 3056:Chemistry World 3048: 3047: 3043: 3004: 3003: 2992: 2985: 2968: 2967: 2944: 2940: 2935: 2934: 2925: 2921: 2896: 2892: 2883: 2879: 2870: 2866: 2860: 2856: 2850: 2846: 2833: 2829: 2819: 2815: 2810: 2806: 2798: 2796: 2795: 2794: 2790: 2787: 2786: 2785: 2784: 2779: 2777: 2776: 2775: 2771: 2768: 2767: 2766: 2765: 2760: 2758: 2757: 2756: 2752: 2749: 2748: 2747: 2746: 2741: 2739: 2738: 2737: 2733: 2730: 2729: 2728: 2727: 2725: 2721: 2714: 2711: 2710: 2709: 2702: 2698: 2668:nuclear physics 2665: 2661: 2656: 2647: 2640: 2636: 2633: 2629: 2626: 2622: 2619: 2615: 2614:, analogous to 2612: 2608: 2565: 2561: 2557: 2550: 2527: 2523: 2519: 2509: 2473:proton emission 2382: 2351:recommendations 2336: 2239: 2225: 2223: 2222: 2221: 2217: 2214: 2213: 2212: 2211: 2206: 2204: 2203: 2202: 2198: 2195: 2194: 2193: 2192: 2187: 2185: 2184: 2183: 2179: 2176: 2175: 2174: 2173: 2147: 2044: 2039: 2038: 2015:fission barrier 1967:energy barriers 1930: 1872: 1866:External videos 1797: 1791: 1783: 1767:periodic trends 1738:. The teams at 1651: 1592: 1561: 1533: 1517: 1440: 1436: 1407: 1405: 1401: 1399: 1395: 1387: 1380: 1373: 1366: 1359: 1352: 1345: 1338: 1331: 1324: 1317: 1310: 1303: 1296: 1289: 1282: 1275: 1268: 1261: 1254: 1247: 1240: 1223: 1216: 1209: 1202: 1195: 1188: 1181: 1174: 1167: 1160: 1153: 1146: 1139: 1132: 1125: 1118: 1111: 1104: 1097: 1090: 1083: 1076: 1069: 1062: 1055: 1048: 1041: 1034: 1027: 1020: 1011: 1004: 991: 984: 977: 970: 963: 956: 949: 942: 935: 928: 921: 914: 907: 900: 893: 886: 879: 872: 865: 858: 851: 844: 837: 830: 823: 816: 809: 802: 795: 788: 779: 772: 763: 756: 749: 742: 735: 728: 721: 714: 707: 700: 693: 686: 679: 672: 665: 658: 651: 644: 637: 630: 623: 616: 609: 602: 595: 588: 581: 574: 567: 560: 551: 544: 535: 528: 521: 514: 507: 500: 493: 486: 479: 472: 465: 458: 451: 444: 437: 430: 419: 412: 403: 396: 389: 382: 375: 368: 361: 354: 347: 340: 333: 326: 319: 312: 305: 298: 289: 282: 273: 266: 259: 252: 245: 238: 229: 222: 213: 206: 199: 192: 185: 178: 169: 162: 153: 144: 102: 98: 94: 52: 48: 26: 22: 19: 12: 11: 5: 7982: 7980: 7972: 7971: 7966: 7956: 7955: 7949: 7948: 7942: 7941: 7936: 7931: 7926: 7921: 7913: 7911: 7908: 7907: 7903: 7902: 7895: 7888: 7881: 7874: 7867: 7860: 7853: 7846: 7839: 7832: 7825: 7818: 7811: 7804: 7797: 7790: 7781: 7774: 7765: 7758: 7749: 7740: 7733: 7729: 7728: 7724: 7723: 7716: 7709: 7702: 7695: 7688: 7681: 7674: 7667: 7660: 7653: 7646: 7639: 7632: 7625: 7618: 7611: 7604: 7597: 7590: 7583: 7576: 7569: 7562: 7555: 7548: 7541: 7534: 7527: 7520: 7513: 7506: 7497: 7488: 7480: 7479: 7470: 7461: 7452: 7443: 7434: 7425: 7416: 7407: 7398: 7389: 7380: 7371: 7362: 7353: 7344: 7335: 7326: 7317: 7308: 7299: 7290: 7281: 7272: 7263: 7254: 7245: 7236: 7227: 7218: 7209: 7207: 7198: 7189: 7181: 7180: 7171: 7162: 7153: 7144: 7135: 7126: 7117: 7108: 7099: 7090: 7081: 7072: 7063: 7054: 7045: 7036: 7027: 7018: 7009: 7000: 6991: 6982: 6973: 6964: 6955: 6946: 6937: 6928: 6919: 6910: 6908: 6899: 6890: 6882: 6881: 6872: 6863: 6854: 6845: 6836: 6827: 6818: 6809: 6800: 6791: 6782: 6773: 6764: 6755: 6746: 6737: 6735: 6726: 6717: 6709: 6708: 6699: 6690: 6681: 6672: 6663: 6654: 6645: 6636: 6627: 6618: 6609: 6600: 6591: 6582: 6573: 6564: 6562: 6553: 6544: 6536: 6535: 6526: 6517: 6508: 6499: 6490: 6481: 6479: 6470: 6461: 6453: 6452: 6443: 6434: 6425: 6416: 6407: 6398: 6396: 6387: 6378: 6370: 6369: 6360: 6358: 6349: 6341: 6340: 6335: 6330: 6325: 6320: 6315: 6310: 6305: 6300: 6295: 6290: 6285: 6280: 6275: 6270: 6265: 6260: 6258: 6253: 6248: 6243: 6240: 6239: 6234: 6232: 6231: 6224: 6217: 6209: 6203: 6202: 6165: 6159: 6136: 6133: 6132: 6131: 6067: 6061: 6041: 6035: 6015:Hoffman, D. C. 6011: 5997: 5984: 5946: 5943: 5941: 5940: 5902: 5893: 5886: 5868: 5822: 5787: 5730: 5681: 5651: 5605: 5582: 5563:(3). 1750003. 5539: 5488: 5427: 5385: 5346: 5331: 5313: 5262: 5249:(2): 381–384. 5229: 5191: 5161: 5135: 5107: 5058: 5041: 4991: 4958: 4919: 4890: 4833: 4826: 4802: 4791:(4): 391–397. 4771: 4728: 4668: 4633: 4614: 4572: 4561:(2): 301–308. 4545: 4524: 4490: 4430: 4418: 4403: 4377: 4336: 4306: 4279: 4248: 4181: 4158: 4101: 4059: 4029: 3975: 3963: 3912: 3900: 3898:, p. 433. 3885: 3883:, p. 439. 3873: 3861: 3802: 3761: 3726: 3724:, p. 432. 3714: 3702: 3700:, p. 335. 3690: 3688:, p. 334. 3678: 3641: 3600:Hoffman, D. C. 3587: 3541:Wapstra, A. H. 3532: 3502: 3495: 3471:Seaborg, G. T. 3458:. pp. 7–8 3444: 3383: 3348: 3321: 3284: 3254: 3243:on 7 June 2015 3212:(2): 235–236. 3195:Armbruster, P. 3191:Münzenberg, G. 3182: 3142: 3127: 3097: 3068: 3041: 2990: 2983: 2941: 2939: 2936: 2933: 2932: 2919: 2890: 2877: 2864: 2854: 2844: 2827: 2813: 2804: 2797: 2788: 2778: 2769: 2759: 2750: 2740: 2731: 2719: 2712: 2696: 2658: 2657: 2655: 2652: 2548: 2525: 2521: 2517: 2513:superactinides 2508: 2505: 2422:nuclear shells 2381: 2378: 2335: 2332: 2307:cross sections 2238: 2235: 2231: 2230: 2224: 2215: 2205: 2196: 2186: 2177: 2146: 2143: 2096:cross sections 2043: 2040: 2032:kinetic energy 1988:in the latter. 1954:binding energy 1929: 1926: 1884: 1883: 1868: 1867: 1846:speed of light 1817:atomic nucleus 1805:nuclear fusion 1796: 1793: 1792: 1784: 1782: 1779: 1705:superactinides 1701:periodic table 1657: 1656: 1650: 1649: 1642: 1635: 1627: 1624: 1623: 1618: 1614: 1613: 1609: 1608: 1605: 1599: 1598: 1594: 1593: 1591: 1590: 1587: 1579: 1577: 1571: 1570: 1558: 1552: 1551: 1547: 1546: 1541: 1527: 1526: 1522: 1521: 1514: 1510: 1509: 1499: 1493: 1492: 1484: 1478: 1477: 1471: 1465: 1464: 1461:g-block groups 1458: 1452: 1451: 1448: 1433: 1432: 1429: 1428: 1425: 1424: 1410: 1409: 1396: 1392: 1391: 1384: 1377: 1370: 1363: 1356: 1349: 1342: 1335: 1328: 1321: 1314: 1307: 1300: 1293: 1286: 1279: 1272: 1265: 1258: 1251: 1244: 1237: 1235: 1232: 1231: 1228: 1227: 1220: 1213: 1206: 1199: 1192: 1185: 1178: 1171: 1164: 1157: 1150: 1143: 1136: 1129: 1122: 1115: 1108: 1101: 1094: 1087: 1080: 1073: 1066: 1059: 1052: 1045: 1038: 1031: 1024: 1017: 1015: 1008: 996: 995: 988: 981: 974: 967: 960: 953: 946: 939: 932: 925: 918: 911: 904: 897: 890: 883: 876: 869: 862: 855: 848: 841: 834: 827: 820: 813: 806: 799: 792: 785: 783: 776: 768: 767: 760: 753: 746: 739: 732: 725: 718: 711: 704: 697: 690: 683: 676: 669: 662: 655: 648: 641: 634: 627: 620: 613: 606: 599: 592: 585: 578: 571: 564: 557: 555: 548: 540: 539: 532: 525: 518: 511: 504: 497: 490: 483: 476: 469: 462: 455: 448: 441: 434: 427: 425: 423: 416: 408: 407: 400: 393: 386: 379: 372: 365: 358: 351: 344: 337: 330: 323: 316: 309: 302: 295: 293: 286: 278: 277: 270: 263: 256: 249: 242: 235: 233: 226: 218: 217: 210: 203: 196: 189: 182: 175: 173: 166: 158: 157: 150: 148: 138: 127: 126: 124:periodic table 119: 118: 115: 111: 110: 46: 42: 41: 37: 36: 24: 17: 13: 10: 9: 6: 4: 3: 2: 7981: 7970: 7967: 7965: 7962: 7961: 7959: 7940: 7937: 7935: 7932: 7930: 7927: 7925: 7920: 7917: 7916: 7909: 7788: 7772: 7756: 7747: 7734: 7730: 7726: 7725: 7507: 7504: 7495: 7486: 7481: 7477: 7468: 7459: 7450: 7441: 7432: 7423: 7414: 7405: 7396: 7387: 7378: 7369: 7360: 7351: 7342: 7333: 7324: 7315: 7306: 7297: 7288: 7279: 7270: 7261: 7252: 7243: 7234: 7225: 7216: 7208: 7205: 7196: 7187: 7182: 7178: 7169: 7160: 7151: 7142: 7133: 7124: 7115: 7106: 7097: 7088: 7079: 7070: 7061: 7052: 7043: 7034: 7025: 7016: 7007: 6998: 6989: 6980: 6971: 6962: 6953: 6944: 6935: 6926: 6917: 6909: 6906: 6897: 6888: 6883: 6879: 6870: 6861: 6852: 6843: 6834: 6825: 6816: 6807: 6798: 6789: 6780: 6771: 6762: 6753: 6744: 6733: 6724: 6715: 6710: 6706: 6697: 6688: 6679: 6670: 6661: 6652: 6643: 6634: 6625: 6616: 6607: 6598: 6589: 6580: 6571: 6560: 6551: 6542: 6537: 6533: 6524: 6515: 6506: 6497: 6488: 6477: 6468: 6459: 6454: 6450: 6441: 6432: 6423: 6414: 6405: 6394: 6385: 6376: 6371: 6367: 6356: 6347: 6342: 6339: 6334: 6329: 6324: 6319: 6314: 6309: 6304: 6299: 6294: 6289: 6284: 6279: 6274: 6269: 6264: 6257: 6252: 6247: 6246: 6241: 6237: 6230: 6225: 6223: 6218: 6216: 6211: 6210: 6207: 6198: 6193: 6189: 6185: 6181: 6177: 6176: 6171: 6166: 6162: 6156: 6152: 6148: 6144: 6139: 6138: 6134: 6128: 6124: 6120: 6116: 6112: 6108: 6104: 6100: 6095: 6090: 6087:(1). 012001. 6086: 6082: 6081: 6073: 6068: 6064: 6058: 6054: 6050: 6046: 6042: 6038: 6032: 6028: 6024: 6020: 6016: 6012: 6008: 6004: 6000: 5994: 5990: 5985: 5981: 5977: 5973: 5969: 5966:(3): 030001. 5965: 5961: 5954: 5949: 5948: 5944: 5936: 5932: 5928: 5924: 5920: 5916: 5912: 5908: 5897: 5894: 5889: 5883: 5879: 5872: 5869: 5857: 5853: 5849: 5845: 5841: 5837: 5833: 5826: 5823: 5818: 5814: 5810: 5806: 5802: 5798: 5791: 5788: 5776: 5772: 5768: 5764: 5760: 5756: 5752: 5748: 5741: 5734: 5731: 5726: 5722: 5718: 5714: 5710: 5706: 5702: 5698: 5694: 5693:Pyykkö, Pekka 5688: 5686: 5682: 5669: 5662: 5655: 5652: 5640: 5636: 5632: 5628: 5625:(3): 034615. 5624: 5620: 5616: 5609: 5606: 5601: 5597: 5593: 5586: 5583: 5578: 5574: 5570: 5566: 5562: 5558: 5554: 5550: 5543: 5540: 5535: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5503: 5499: 5492: 5489: 5484: 5480: 5476: 5472: 5468: 5464: 5459: 5454: 5450: 5446: 5442: 5438: 5431: 5428: 5423: 5419: 5415: 5411: 5408:: 03002:1–8. 5407: 5403: 5396: 5389: 5386: 5381: 5377: 5373: 5369: 5366:(1). 014201. 5365: 5361: 5357: 5350: 5347: 5342: 5338: 5334: 5328: 5324: 5317: 5314: 5309: 5305: 5301: 5297: 5293: 5289: 5285: 5281: 5277: 5273: 5266: 5263: 5257: 5252: 5248: 5244: 5240: 5233: 5230: 5218:on 2019-03-30 5214: 5210: 5202: 5195: 5192: 5188: 5176: 5172: 5165: 5162: 5150: 5146: 5139: 5136: 5131: 5127: 5120: 5119: 5111: 5108: 5096: 5092: 5088: 5084: 5080: 5076: 5069: 5062: 5059: 5054: 5053: 5045: 5042: 5037: 5033: 5029: 5025: 5021: 5017: 5013: 5009: 5002: 4995: 4992: 4979: 4972: 4965: 4963: 4959: 4954: 4950: 4946: 4942: 4938: 4934: 4930: 4923: 4920: 4908: 4904: 4897: 4895: 4891: 4879: 4875: 4871: 4867: 4863: 4859: 4856:(1): 012002. 4855: 4851: 4844: 4837: 4834: 4829: 4823: 4819: 4815: 4814: 4806: 4803: 4798: 4794: 4790: 4786: 4782: 4775: 4772: 4767: 4763: 4759: 4755: 4751: 4747: 4743: 4739: 4732: 4729: 4724: 4720: 4716: 4712: 4708: 4704: 4699: 4694: 4691:(1): 012007. 4690: 4686: 4682: 4675: 4673: 4669: 4656: 4649: 4642: 4640: 4638: 4634: 4629: 4625: 4618: 4615: 4610: 4606: 4602: 4598: 4594: 4590: 4583: 4576: 4573: 4568: 4564: 4560: 4556: 4549: 4546: 4542: 4537: 4535: 4533: 4531: 4529: 4525: 4520: 4516: 4512: 4508: 4501: 4494: 4491: 4475: 4471: 4467: 4463: 4459: 4455: 4451: 4444: 4437: 4435: 4431: 4428:, p. 40. 4427: 4422: 4419: 4415: 4410: 4408: 4404: 4393: 4392: 4387: 4381: 4378: 4373: 4369: 4365: 4350: 4346: 4340: 4337: 4326: 4325: 4324:Distillations 4320: 4313: 4311: 4307: 4296: 4295: 4290: 4283: 4280: 4275: 4271: 4267: 4263: 4259: 4258:Physics Today 4252: 4249: 4244: 4240: 4236: 4232: 4228: 4224: 4219: 4214: 4210: 4206: 4202: 4198: 4197: 4196:Physics Today 4192: 4185: 4182: 4177: 4173: 4169: 4162: 4159: 4154: 4150: 4146: 4142: 4137: 4132: 4128: 4124: 4120: 4116: 4112: 4105: 4102: 4091: 4087: 4083: 4079: 4078: 4077:Physics World 4073: 4066: 4064: 4060: 4049: 4042: 4041: 4033: 4030: 4025: 4021: 4016: 4011: 4007: 4003: 3999: 3995: 3991: 3984: 3982: 3980: 3976: 3972: 3967: 3964: 3959: 3955: 3951: 3947: 3943: 3939: 3935: 3931: 3927: 3923: 3916: 3913: 3909: 3904: 3901: 3897: 3892: 3890: 3886: 3882: 3877: 3874: 3870: 3865: 3862: 3857: 3853: 3848: 3843: 3839: 3835: 3830: 3825: 3821: 3817: 3813: 3806: 3803: 3792: 3788: 3781: 3774: 3772: 3770: 3768: 3766: 3762: 3751: 3747: 3740: 3739:"Alpha decay" 3733: 3731: 3727: 3723: 3718: 3715: 3711: 3706: 3703: 3699: 3694: 3691: 3687: 3682: 3679: 3668: 3667: 3662: 3658: 3652: 3650: 3648: 3646: 3642: 3637: 3633: 3629: 3625: 3621: 3617: 3613: 3609: 3605: 3601: 3598:Hyde, E. K.; 3594: 3592: 3588: 3583: 3579: 3575: 3571: 3567: 3563: 3559: 3555: 3554: 3546: 3542: 3536: 3533: 3528: 3524: 3520: 3516: 3509: 3507: 3503: 3498: 3492: 3488: 3484: 3480: 3476: 3472: 3467:Published as 3454: 3448: 3445: 3440: 3436: 3431: 3426: 3421: 3416: 3412: 3408: 3404: 3400: 3399: 3394: 3387: 3384: 3379: 3375: 3371: 3367: 3363: 3359: 3352: 3349: 3338: 3337: 3332: 3325: 3322: 3310: 3306: 3299: 3297: 3295: 3293: 3291: 3289: 3285: 3274: 3273: 3268: 3264: 3258: 3255: 3239: 3235: 3231: 3227: 3223: 3219: 3215: 3211: 3207: 3200: 3196: 3192: 3186: 3183: 3178: 3174: 3170: 3166: 3163:(2): 024608. 3162: 3158: 3157: 3152: 3146: 3143: 3138: 3134: 3130: 3124: 3120: 3116: 3112: 3108: 3101: 3098: 3087:on 2015-09-11 3086: 3082: 3078: 3072: 3069: 3058: 3057: 3052: 3045: 3042: 3037: 3033: 3029: 3025: 3021: 3017: 3013: 3009: 3001: 2999: 2997: 2995: 2991: 2986: 2980: 2976: 2972: 2965: 2963: 2961: 2959: 2957: 2955: 2953: 2951: 2949: 2947: 2943: 2937: 2929: 2923: 2920: 2916: 2912: 2908: 2904: 2900: 2894: 2891: 2887: 2886:Georgy Flerov 2881: 2878: 2874: 2868: 2865: 2858: 2855: 2848: 2845: 2841: 2837: 2831: 2828: 2824: 2817: 2814: 2808: 2805: 2723: 2720: 2707: 2700: 2697: 2693: 2692:superactinide 2689: 2685: 2681: 2677: 2673: 2669: 2663: 2660: 2653: 2651: 2645: 2607: 2602: 2599: 2595: 2589: 2587: 2583: 2579: 2575: 2571: 2570:alkali metals 2555: 2545: 2542: 2538: 2535:Based on the 2533: 2531: 2514: 2506: 2504: 2502: 2498: 2497:cluster decay 2494: 2490: 2486: 2482: 2478: 2474: 2469: 2467: 2463: 2459: 2458:rutherfordium 2455: 2451: 2450: 2445: 2441: 2437: 2433: 2429: 2428: 2423: 2419: 2418:Glenn Seaborg 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2379: 2377: 2375: 2371: 2367: 2363: 2359: 2356: 2352: 2348: 2347: 2341: 2333: 2331: 2328: 2325:The teams at 2323: 2319: 2315: 2312: 2308: 2303: 2301: 2297: 2293: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2248: 2243: 2236: 2234: 2172: 2171: 2170: 2168: 2164: 2160: 2156: 2152: 2144: 2142: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2108: 2103: 2101: 2097: 2092: 2090: 2086: 2082: 2078: 2074: 2073:fourth period 2070: 2066: 2061: 2057: 2048: 2041: 2035: 2033: 2027: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1987: 1983: 1982:dipole magnet 1979: 1974: 1970: 1968: 1964: 1960: 1955: 1951: 1947: 1942: 1940: 1936: 1927: 1925: 1923: 1919: 1915: 1911: 1907: 1903: 1899: 1895: 1891: 1890:excited state 1882: 1878: 1877:Visualization 1869: 1864: 1861: 1859: 1855: 1854:cross section 1849: 1847: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1815:A superheavy 1810: 1806: 1801: 1794: 1789: 1780: 1778: 1776: 1775:Madelung rule 1772: 1768: 1764: 1760: 1756: 1751: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1720: 1719:of elements. 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1685:atomic number 1682: 1679: 1675: 1671: 1667: 1663: 1655: 1652: | 1648: 1643: 1641: 1636: 1634: 1629: 1628: 1625: 1622: 1619: 1615: 1610: 1606: 1604: 1600: 1595: 1588: 1585: 1581: 1580: 1578: 1576: 1572: 1569: 1564: 1559: 1557: 1553: 1548: 1545: 1542: 1538: 1532: 1528: 1523: 1520: 1515: 1511: 1508: 1504: 1500: 1498: 1494: 1491: 1485: 1483: 1479: 1475: 1474:period 8 1472: 1470: 1466: 1462: 1459: 1457: 1453: 1449: 1444: 1439: 1438:Atomic number 1434: 1423: 1415: 1411: 1397: 1390: 1385: 1383: 1378: 1376: 1371: 1369: 1364: 1362: 1357: 1355: 1350: 1348: 1343: 1341: 1336: 1334: 1329: 1327: 1322: 1320: 1315: 1313: 1308: 1306: 1301: 1299: 1294: 1292: 1287: 1285: 1280: 1278: 1273: 1271: 1266: 1264: 1259: 1257: 1252: 1250: 1245: 1243: 1238: 1236: 1233: 1230: 1229: 1226: 1221: 1219: 1214: 1212: 1207: 1205: 1200: 1198: 1193: 1191: 1186: 1184: 1179: 1177: 1172: 1170: 1165: 1163: 1158: 1156: 1151: 1149: 1144: 1142: 1137: 1135: 1130: 1128: 1123: 1121: 1119:Unpentseptium 1116: 1114: 1109: 1107: 1105:Unpentpentium 1102: 1100: 1098:Unpentquadium 1095: 1093: 1088: 1086: 1081: 1079: 1074: 1072: 1067: 1065: 1060: 1058: 1053: 1051: 1049:Unquadseptium 1046: 1044: 1039: 1037: 1035:Unquadpentium 1032: 1030: 1028:Unquadquadium 1025: 1023: 1018: 1016: 1014: 1009: 1007: 1002: 1001: 994: 989: 987: 982: 980: 975: 973: 968: 966: 961: 959: 954: 952: 947: 945: 940: 938: 933: 931: 926: 924: 919: 917: 912: 910: 905: 903: 898: 896: 894:Rutherfordium 891: 889: 884: 882: 877: 875: 870: 868: 863: 861: 856: 854: 849: 847: 842: 840: 835: 833: 828: 826: 821: 819: 814: 812: 807: 805: 800: 798: 793: 791: 786: 784: 782: 777: 775: 770: 769: 766: 761: 759: 754: 752: 747: 745: 740: 738: 733: 731: 726: 724: 719: 717: 712: 710: 705: 703: 698: 696: 691: 689: 684: 682: 677: 675: 670: 668: 663: 661: 656: 654: 649: 647: 642: 640: 635: 633: 628: 626: 621: 619: 614: 612: 607: 605: 600: 598: 593: 591: 586: 584: 579: 577: 572: 570: 565: 563: 558: 556: 554: 549: 547: 542: 541: 538: 533: 531: 526: 524: 519: 517: 512: 510: 505: 503: 498: 496: 491: 489: 484: 482: 477: 475: 470: 468: 463: 461: 456: 454: 449: 447: 442: 440: 435: 433: 428: 424: 422: 417: 415: 410: 409: 406: 401: 399: 394: 392: 387: 385: 380: 378: 373: 371: 366: 364: 359: 357: 352: 350: 345: 343: 338: 336: 331: 329: 324: 322: 317: 315: 310: 308: 303: 301: 296: 292: 287: 285: 280: 279: 276: 271: 269: 264: 262: 257: 255: 250: 248: 243: 241: 236: 232: 227: 225: 220: 219: 216: 211: 209: 204: 202: 197: 195: 190: 188: 183: 181: 176: 172: 167: 165: 160: 159: 156: 151: 147: 142: 141: 137: 136: 133: 132: 128: 125: 120: 116: 112: 107: 106: 88: 47: 45:Pronunciation 43: 38: 35: 31: 16: 7743: 6179: 6173: 6142: 6084: 6078: 6048: 6022: 5988: 5963: 5959: 5945:Bibliography 5913:(262): 262. 5910: 5906: 5896: 5877: 5871: 5859:. Retrieved 5839: 5835: 5825: 5803:(10): 3954. 5800: 5796: 5790: 5778:. Retrieved 5753:(1): 320–5. 5750: 5746: 5733: 5703:(1): 161–8. 5700: 5696: 5672:. Retrieved 5667: 5654: 5642:. Retrieved 5622: 5618: 5608: 5591: 5585: 5560: 5556: 5552: 5548: 5542: 5512:(371): 371. 5509: 5505: 5501: 5497: 5491: 5448: 5444: 5440: 5436: 5430: 5405: 5401: 5388: 5363: 5359: 5349: 5322: 5316: 5275: 5271: 5265: 5246: 5242: 5232: 5220:. Retrieved 5213:the original 5209:www.riken.jp 5208: 5194: 5186: 5179:. Retrieved 5174: 5164: 5152:. Retrieved 5148: 5138: 5117: 5110: 5098:. Retrieved 5078: 5074: 5061: 5051: 5044: 5014:(287): 287. 5011: 5007: 4994: 4982:. Retrieved 4977: 4936: 4932: 4928: 4922: 4910:. Retrieved 4906: 4881:. Retrieved 4853: 4849: 4836: 4812: 4805: 4788: 4784: 4780: 4774: 4744:(1): 61–66. 4741: 4737: 4731: 4688: 4684: 4680: 4659:. Retrieved 4654: 4627: 4623: 4617: 4592: 4588: 4575: 4558: 4554: 4548: 4510: 4506: 4493: 4481:. Retrieved 4453: 4449: 4421: 4395:. Retrieved 4389: 4380: 4367: 4363: 4353:. Retrieved 4351:(in Russian) 4348: 4339: 4328:. Retrieved 4322: 4298:. Retrieved 4292: 4282: 4257: 4251: 4203:(8): 32–38. 4200: 4194: 4184: 4167: 4161: 4118: 4114: 4104: 4093:. Retrieved 4084:(7): 25–29. 4081: 4075: 4051:. Retrieved 4039: 4032: 3997: 3993: 3966: 3925: 3921: 3915: 3903: 3876: 3864: 3819: 3815: 3805: 3794:. Retrieved 3786: 3753:. Retrieved 3745: 3717: 3712:, p. 3. 3705: 3693: 3681: 3670:. Retrieved 3664: 3614:(2): 67–68. 3611: 3607: 3557: 3551: 3535: 3514: 3474: 3460:. Retrieved 3447: 3402: 3396: 3386: 3361: 3357: 3351: 3340:. Retrieved 3334: 3324: 3313:. Retrieved 3311:(in Russian) 3308: 3276:. Retrieved 3270: 3257: 3245:. Retrieved 3238:the original 3209: 3205: 3185: 3160: 3154: 3145: 3106: 3100: 3089:. Retrieved 3085:the original 3071: 3060:. Retrieved 3054: 3044: 3036:11449/168956 3011: 3007: 2970: 2922: 2914: 2910: 2893: 2880: 2867: 2857: 2847: 2830: 2816: 2807: 2722: 2699: 2662: 2603: 2590: 2546: 2541:Pekka Pyykkö 2534: 2510: 2500: 2470: 2453: 2447: 2425: 2383: 2373: 2369: 2365: 2361: 2357: 2343: 2337: 2324: 2320: 2316: 2305:Because the 2304: 2288: 2278: 2274: 2270: 2262: 2254: 2250: 2246: 2232: 2229:* → no atoms 2148: 2118: 2110: 2104: 2093: 2085:ground state 2054: 2028: 1991: 1943: 1931: 1887: 1850: 1814: 1781:Introduction 1752: 1721: 1692: 1688: 1680: 1669: 1666:eka-actinium 1665: 1661: 1660: 1583: 1567: 1562: 1518: 1506: 1442: 1374:Unquadnilium 1353:Untriseptium 1339:Untripentium 1332:Untriquadium 1239: 1210:Unseptnilium 1189:Unhexseptium 1175:Unhexpentium 1168:Unhexquadium 1133:Unpentennium 1126:Unpentoctium 1112:Unpenthexium 1070:Unpentnilium 1063:Unquadennium 1056:Unquadoctium 1042:Unquadhexium 936:Darmstadtium 803:Protactinium 575:Praseodymium 33: 15: 6019:Ghiorso, A. 4595:(7): 1331. 4483:7 September 3971:Beiser 2003 3896:Beiser 2003 3881:Beiser 2003 3722:Beiser 2003 3430:1885/148847 3364:: 226–234. 3014:: 169–175. 2928:cold fusion 2552:0.412  2311:einsteinium 2151:uranium-238 2115:einsteinium 2107:californium 1959:alpha decay 1841:accelerated 1761:; however, 1670:element 121 1584:(predicted) 1568:(predicted) 1519:(predicted) 1507:(predicted) 1381:Unquadunium 1367:Untriennium 1360:Untrioctium 1346:Untrihexium 1304:Untrinilium 1283:Unbiseptium 1269:Unbipentium 1262:Unbiquadium 1217:Unseptunium 1203:Unhexennium 1196:Unhexoctium 1182:Unhexhexium 1140:Unhexnilium 1091:Unpenttrium 1077:Unpentunium 1021:Unquadtrium 978:Livermorium 950:Copernicium 943:Roentgenium 873:Mendelevium 859:Einsteinium 852:Californium 7958:Categories 5861:31 January 5780:14 October 5458:1609.05495 5181:4 November 4939:(4): 500. 4683:> 20". 4426:Kragh 2018 4414:Kragh 2018 4397:2020-03-01 4355:2020-01-07 4330:2020-02-22 4300:2020-01-27 4095:2020-02-16 4053:2020-02-16 3928:(7): 158. 3796:2020-02-16 3755:2020-02-16 3672:2020-01-27 3560:(6): 883. 3462:2020-01-27 3342:2020-01-30 3315:2020-02-02 3278:2020-01-18 3247:20 October 3091:2020-03-15 3062:2020-03-15 2938:References 2836:beta decay 2606:trihalides 2582:lawrencium 2564:, 8s; and 2485:ununennium 2481:tennessine 2416:professor 2277:= 124 and 2100:half-lives 1892:—termed a 1654:references 1603:CAS Number 1414:unbinilium 1388:Unquadbium 1325:Untritrium 1311:Untriunium 1297:Unbiennium 1290:Unbioctium 1276:Unbihexium 1224:Unseptbium 1161:Unhextrium 1147:Unhexunium 1084:Unpentbium 1012:Unbinilium 1005:Ununennium 985:Tennessine 929:Meitnerium 908:Seaborgium 887:Lawrencium 624:Dysprosium 610:Gadolinium 589:Promethium 459:Technetium 452:Molybdenum 253:Phosphorus 7964:Unbiunium 6182:: 53–15. 6119:1742-6588 6094:1207.5700 6045:Kragh, H. 5935:237299351 5534:125959030 5483:118657750 5341:223349096 5036:125102374 4931:= 120?". 4878:115146907 4766:120154116 4723:119275964 4698:1209.0498 4274:239775403 4243:119531411 4227:0031-9228 4145:1364-503X 4024:1742-6596 3958:125849923 3950:1434-6001 3856:0556-2813 3829:1208.1215 3628:2193-3405 3574:1365-3075 3439:2100-014X 3405:: 00061. 3309:nplus1.ru 3234:123288075 3177:0556-2813 3137:127060181 2915:joliotium 2899:Stockholm 2852:form one. 2704:2.5  2648:Ubu → Ubu 2574:potassium 2477:moscovium 2358:unbiunium 2300:drip line 2292:actinides 2267:drip line 2163:Darmstadt 2161:(GSI) in 2089:flerovium 2065:actinides 1922:electrons 1906:gamma ray 1755:lanthanum 1689:Unbiunium 1676:; it has 1662:Unbiunium 1418:unbiunium 1318:Untribium 1255:Unbitrium 1241:Unbiunium 1154:Unhexbium 992:Oganesson 971:Moscovium 964:Flerovium 845:Berkelium 831:Americium 824:Plutonium 817:Neptunium 652:Ytterbium 582:Neodymium 561:Lanthanum 522:Tellurium 480:Palladium 466:Ruthenium 438:Zirconium 420:Strontium 376:Germanium 327:Manganese 283:Potassium 239:Aluminium 230:Magnesium 170:Beryllium 40:Unbiunium 7732:‍ 7727:‍ 7485:⑧ 7186:⑦ 6887:⑥ 6714:⑤ 6541:④ 6458:③ 6375:② 6346:① 6127:55434734 6053:Springer 6047:(2018). 6007:48965418 5927:34435260 5775:12677737 5767:17143872 5725:20967377 5504:≤ 307". 5443:≤ 339". 5300:12712201 5154:28 April 4984:28 April 4912:30 April 4883:30 April 4661:30 April 4630:: 36–42. 4609:95703833 4474:Archived 4470:95069384 4153:25666065 3659:(2016). 3636:99193729 3582:95737691 3543:(1991). 3527:28796927 2911:nobelium 2646:for the 2598:nihonium 2578:francium 2524:, and 8p 2493:nihonium 2392:undergo 2360:(symbol 2346:actinium 2133:-58, or 2127:chromium 2123:titanium 1999:nobelium 1946:nucleons 1902:neutrons 1759:actinium 1534:at  1422:unbibium 1248:Unbibium 957:Nihonium 880:Nobelium 789:Actinium 773:Francium 757:Astatine 750:Polonium 729:Thallium 708:Platinum 680:Tungsten 673:Tantalum 659:Lutetium 603:Europium 596:Samarium 515:Antimony 413:Rubidium 390:Selenium 320:Chromium 313:Vanadium 306:Titanium 299:Scandium 267:Chlorine 207:Fluorine 193:Nitrogen 145:Hydrogen 7939:p-block 7934:d-block 7929:f-block 7924:g-block 7919:s-block 6184:Bibcode 6099:Bibcode 5968:Bibcode 5844:Bibcode 5805:Bibcode 5705:Bibcode 5627:Bibcode 5565:Bibcode 5514:Bibcode 5463:Bibcode 5410:Bibcode 5368:Bibcode 5308:4415582 5280:Bibcode 5175:jinr.ru 5149:YouTube 5100:2 April 5083:Bibcode 5016:Bibcode 4941:Bibcode 4858:Bibcode 4746:Bibcode 4703:Bibcode 4374:. 1977. 4235:1337838 4205:Bibcode 4172:Bibcode 4123:Bibcode 4002:Bibcode 3930:Bibcode 3834:Bibcode 3521:: 4–8. 3407:Bibcode 3366:Bibcode 3214:Bibcode 3016:Bibcode 2489:bohrium 2424:around 2269:around 2167:Germany 2081:bismuth 2042:History 2007:fermium 2003:thorium 1995:uranium 1950:protons 1918:decayed 1898:fission 1809:neutron 1717:g-block 1612:History 1566:) 1560:(+1), ( 1544:unknown 1490:g-block 922:Hassium 915:Bohrium 901:Dubnium 866:Fermium 810:Uranium 796:Thorium 743:Bismuth 701:Iridium 687:Rhenium 666:Hafnium 645:Thulium 631:Holmium 617:Terbium 545:Caesium 494:Cadmium 473:Rhodium 445:Niobium 431:Yttrium 404:Krypton 397:Bromine 383:Arsenic 369:Gallium 290:Calcium 246:Silicon 163:Lithium 93:​ 6157:  6125:  6117:  6059:  6033:  6005:  5995:  5933:  5925:  5884:  5773:  5765:  5723:  5532:  5481:  5339:  5329:  5306:  5298:  5272:Nature 5177:. JINR 5034:  4876:  4824:  4764:  4721:  4607:  4468:  4349:n-t.ru 4272:  4241:  4233:  4225:  4151:  4143:  4022:  3956:  3948:  3854:  3634:  3626:  3580:  3572:  3525:  3493:  3437:  3232:  3175:  3135:  3125:  2981:  2907:Sweden 2560:, 8s; 2446:) and 2386:curium 2338:Using 2334:Naming 2155:copper 2135:nickel 2056:Fusion 1939:energy 1858:tunnel 1835:. The 1709:period 1678:symbol 1617:Naming 1589: 1487:  1469:Period 838:Curium 780:Radium 694:Osmium 638:Erbium 568:Cerium 552:Barium 529:Iodine 501:Indium 487:Silver 355:Copper 348:Nickel 341:Cobalt 260:Sulfur 223:Sodium 200:Oxygen 186:Carbon 154:Helium 105:-ee-əm 91: 6123:S2CID 6089:arXiv 6075:(PDF) 5956:(PDF) 5931:S2CID 5771:S2CID 5743:(PDF) 5674:1 May 5664:(PDF) 5644:2 May 5530:S2CID 5479:S2CID 5453:arXiv 5398:(PDF) 5304:S2CID 5222:5 May 5216:(PDF) 5205:(PDF) 5122:(PDF) 5071:(PDF) 5032:S2CID 5004:(PDF) 4974:(PDF) 4874:S2CID 4846:(PDF) 4762:S2CID 4719:S2CID 4693:arXiv 4651:(PDF) 4605:S2CID 4585:(PDF) 4503:(PDF) 4477:(PDF) 4466:S2CID 4446:(PDF) 4372:Nauka 4366:[ 4270:S2CID 4239:S2CID 4044:(PDF) 3954:S2CID 3824:arXiv 3783:(PDF) 3742:(PDF) 3632:S2CID 3578:S2CID 3548:(PDF) 3523:S2CID 3456:(PDF) 3241:(PDF) 3230:S2CID 3202:(PDF) 3133:S2CID 2672:heavy 2654:Notes 2630:UbuBr 2572:from 2483:, or 2466:model 2442:, or 2372:, or 2370:(121) 2327:RIKEN 2153:with 2129:-54, 2125:-50, 1748:Dubna 1740:RIKEN 1687:121. 1531:Phase 1501:[ 1482:Block 1456:Group 764:Radon 536:Xenon 274:Argon 179:Boron 6155:ISBN 6115:ISSN 6057:ISBN 6031:ISBN 6003:OCLC 5993:ISBN 5923:PMID 5882:ISBN 5863:2021 5782:2016 5763:PMID 5721:PMID 5676:2017 5646:2017 5337:OCLC 5327:ISBN 5296:PMID 5224:2017 5183:2021 5156:2017 5102:2016 4986:2017 4914:2017 4885:2017 4822:ISBN 4663:2017 4485:2016 4231:OSTI 4223:ISSN 4149:PMID 4141:ISSN 4020:ISSN 3946:ISSN 3852:ISSN 3624:ISSN 3570:ISSN 3491:ISBN 3435:ISSN 3249:2012 3173:ISSN 3123:ISBN 2979:ISBN 2676:lead 2637:LaBr 2635:and 2621:and 2609:UbuX 2398:lead 2366:E121 2344:eka- 2131:iron 2079:and 2077:lead 1961:and 1829:fuse 1825:beam 1821:mass 1757:and 1744:JINR 1734:and 1726:and 1691:and 1683:and 1646:edit 1639:talk 1632:view 736:Lead 715:Gold 362:Zinc 334:Iron 214:Neon 101:-by- 7899:142 7892:141 7885:140 7878:139 7871:138 7864:137 7857:136 7850:135 7843:134 7836:133 7829:132 7822:131 7815:130 7808:129 7801:128 7794:127 7786:126 7778:125 7770:124 7762:123 7754:122 7745:121 7720:172 7713:171 7706:170 7699:169 7692:168 7685:167 7678:166 7671:165 7664:164 7657:163 7650:162 7643:161 7636:160 7629:159 7622:158 7615:157 7608:156 7601:155 7594:154 7587:153 7580:152 7573:151 7566:150 7559:149 7552:148 7545:147 7538:146 7531:145 7524:144 7517:143 7502:120 7493:119 6192:doi 6147:doi 6107:doi 6085:420 5976:doi 5915:doi 5852:doi 5813:doi 5801:109 5755:doi 5713:doi 5635:doi 5596:doi 5573:doi 5522:doi 5471:doi 5418:doi 5406:131 5376:doi 5288:doi 5276:422 5251:doi 5126:doi 5091:doi 5079:760 5024:doi 4949:doi 4866:doi 4854:413 4818:105 4793:doi 4754:doi 4711:doi 4689:420 4597:doi 4563:doi 4559:261 4515:doi 4458:doi 4262:doi 4213:doi 4131:doi 4119:373 4086:doi 4010:doi 3998:337 3938:doi 3842:doi 3616:doi 3562:doi 3483:doi 3425:hdl 3415:doi 3374:doi 3222:doi 3210:317 3165:doi 3115:doi 3032:hdl 3024:doi 3012:662 2713:-11 2688:112 2686:or 2684:100 2680:103 2666:In 2623:AcX 2616:LaX 2576:to 2566:Ubu 2562:Ubu 2558:Ubu 2549:1/2 2530:122 2526:3/2 2522:1/2 2518:1/2 2491:or 2444:126 2440:124 2436:122 2432:120 2406:114 2402:110 2390:101 2374:121 2362:Ubu 2259:122 2220:Ubu 2216:121 2069:MeV 1746:in 1736:120 1732:119 1728:124 1724:120 1693:Ubu 1681:Ubu 1668:or 1537:STP 1450:121 1403:Ubu 508:Tin 103:OON 99:OON 27:Ubu 25:121 7960:: 7475:Og 7466:Ts 7457:Lv 7448:Mc 7439:Fl 7430:Nh 7421:Cn 7412:Rg 7403:Ds 7394:Mt 7385:Hs 7376:Bh 7367:Sg 7358:Db 7349:Rf 7340:Lr 7331:No 7322:Md 7313:Fm 7304:Es 7295:Cf 7286:Bk 7277:Cm 7268:Am 7259:Pu 7250:Np 7232:Pa 7223:Th 7214:Ac 7203:Ra 7194:Fr 7176:Rn 7167:At 7158:Po 7149:Bi 7140:Pb 7131:Tl 7122:Hg 7113:Au 7104:Pt 7095:Ir 7086:Os 7077:Re 7059:Ta 7050:Hf 7041:Lu 7032:Yb 7023:Tm 7014:Er 7005:Ho 6996:Dy 6987:Tb 6978:Gd 6969:Eu 6960:Sm 6951:Pm 6942:Nd 6933:Pr 6924:Ce 6915:La 6904:Ba 6895:Cs 6877:Xe 6859:Te 6850:Sb 6841:Sn 6832:In 6823:Cd 6814:Ag 6805:Pd 6796:Rh 6787:Ru 6778:Tc 6769:Mo 6760:Nb 6751:Zr 6731:Sr 6722:Rb 6704:Kr 6695:Br 6686:Se 6677:As 6668:Ge 6659:Ga 6650:Zn 6641:Cu 6632:Ni 6623:Co 6614:Fe 6605:Mn 6596:Cr 6578:Ti 6569:Sc 6558:Ca 6531:Ar 6522:Cl 6495:Si 6486:Al 6475:Mg 6466:Na 6448:Ne 6392:Be 6383:Li 6365:He 6338:18 6333:17 6328:16 6323:15 6318:14 6313:13 6308:12 6303:11 6298:10 6190:. 6180:18 6178:. 6172:. 6153:. 6145:. 6121:. 6113:. 6105:. 6097:. 6083:. 6077:. 6055:. 6051:. 6029:. 6025:. 6017:; 6001:. 5974:. 5964:41 5962:. 5958:. 5929:. 5921:. 5911:27 5909:. 5850:. 5840:65 5838:. 5834:. 5811:. 5799:. 5769:. 5761:. 5751:28 5749:. 5745:. 5719:. 5711:. 5701:13 5699:. 5684:^ 5666:. 5633:. 5623:85 5621:. 5617:. 5571:. 5561:26 5559:. 5528:. 5520:. 5510:52 5508:. 5477:. 5469:. 5461:. 5449:25 5447:. 5416:. 5404:. 5400:. 5374:. 5364:82 5362:. 5358:. 5335:. 5302:. 5294:. 5286:. 5274:. 5247:51 5245:. 5241:. 5207:. 5185:. 5173:. 5147:. 5089:. 5077:. 5073:. 5030:. 5022:. 5012:52 5010:. 5006:. 4976:. 4961:^ 4947:. 4937:19 4935:. 4905:. 4893:^ 4872:. 4864:. 4852:. 4848:. 4820:. 4789:30 4787:. 4760:. 4752:. 4742:54 4740:. 4717:. 4709:. 4701:. 4687:. 4671:^ 4653:. 4636:^ 4628:34 4626:. 4603:. 4593:81 4591:. 4587:. 4557:. 4527:^ 4511:69 4509:. 4505:. 4472:. 4464:. 4454:65 4452:. 4448:. 4433:^ 4406:^ 4388:. 4321:. 4309:^ 4291:. 4268:. 4260:. 4237:. 4229:. 4221:. 4211:. 4201:68 4199:. 4193:. 4147:. 4139:. 4129:. 4117:. 4113:. 4082:17 4080:. 4074:. 4062:^ 4018:. 4008:. 3996:. 3992:. 3978:^ 3952:. 3944:. 3936:. 3926:53 3924:. 3888:^ 3850:. 3840:. 3832:. 3820:87 3818:. 3814:. 3789:. 3785:. 3764:^ 3748:. 3744:. 3729:^ 3663:. 3644:^ 3630:. 3622:. 3612:42 3610:. 3606:. 3590:^ 3576:. 3568:. 3558:63 3556:. 3550:. 3517:. 3505:^ 3489:. 3477:. 3433:. 3423:. 3413:. 3403:86 3401:. 3395:. 3372:. 3362:10 3360:. 3333:. 3287:^ 3269:. 3228:. 3220:. 3208:. 3204:. 3193:; 3171:. 3161:79 3159:. 3131:. 3121:. 3109:. 3079:. 3053:. 3030:. 3022:. 3010:. 2993:^ 2977:. 2945:^ 2930:). 2905:, 2901:, 2783:+ 2774:Al 2770:13 2764:→ 2745:+ 2736:Si 2732:14 2706:pb 2588:. 2554:eV 2516:8p 2479:, 2438:, 2434:, 2376:. 2368:, 2283:Cn 2257:= 2210:→ 2201:Cu 2197:29 2191:+ 2178:92 2169:: 2165:, 2139:fb 1563:+3 1503:Og 1420:→ 1416:← 1408:— 72:uː 66:aɪ 57:uː 7241:U 7068:W 6868:I 6742:Y 6587:V 6549:K 6513:S 6504:P 6439:F 6430:O 6421:N 6412:C 6403:B 6354:H 6293:9 6288:8 6283:7 6278:6 6273:5 6268:4 6263:3 6256:2 6251:1 6228:e 6221:t 6214:v 6200:. 6194:: 6186:: 6163:. 6149:: 6129:. 6109:: 6101:: 6091:: 6065:. 6039:. 6009:. 5982:. 5978:: 5970:: 5937:. 5917:: 5903:3 5890:. 5865:. 5854:: 5846:: 5819:. 5815:: 5807:: 5784:. 5757:: 5727:. 5715:: 5707:: 5678:. 5648:. 5637:: 5629:: 5602:. 5598:: 5579:. 5575:: 5567:: 5553:A 5549:Z 5536:. 5524:: 5516:: 5502:A 5498:Z 5485:. 5473:: 5465:: 5455:: 5441:A 5437:Z 5424:. 5420:: 5412:: 5382:. 5378:: 5370:: 5343:. 5310:. 5290:: 5282:: 5259:. 5253:: 5226:. 5158:. 5132:. 5128:: 5104:. 5093:: 5085:: 5038:. 5026:: 5018:: 4988:. 4955:. 4951:: 4943:: 4929:Z 4916:. 4887:. 4868:: 4860:: 4830:. 4799:. 4795:: 4781:Z 4768:. 4756:: 4748:: 4725:. 4713:: 4705:: 4695:: 4681:Z 4665:. 4611:. 4599:: 4569:. 4565:: 4543:. 4521:. 4517:: 4487:. 4460:: 4400:. 4358:. 4333:. 4303:. 4276:. 4264:: 4245:. 4215:: 4207:: 4178:. 4174:: 4155:. 4133:: 4125:: 4098:. 4088:: 4056:. 4026:. 4012:: 4004:: 3960:. 3940:: 3932:: 3858:. 3844:: 3836:: 3826:: 3799:. 3758:. 3675:. 3638:. 3618:: 3584:. 3564:: 3529:. 3499:. 3485:: 3465:. 3441:. 3427:: 3417:: 3409:: 3380:. 3376:: 3368:: 3345:. 3318:. 3281:. 3251:. 3224:: 3216:: 3179:. 3167:: 3139:. 3117:: 3094:. 3065:. 3038:. 3034:: 3026:: 3018:: 2987:. 2842:. 2793:p 2789:1 2755:n 2751:0 2639:3 2632:3 2625:3 2618:3 2611:3 2501:Z 2454:N 2449:N 2427:Z 2404:– 2279:N 2275:Z 2271:Z 2263:Z 2255:Z 2251:Z 2247:Z 2182:U 2119:Z 2117:( 2111:Z 2109:( 2063:( 1948:( 1790:. 1445:) 1443:Z 1441:( 1406:↓ 1400:↑ 1398:— 108:) 95:( 87:/ 84:m 81:ə 78:i 75:n 69:ˈ 63:b 60:n 54:ˌ 51:/

Index

/ˌnbˈniəm/
OON-by-OON-ee-əm
periodic table
Hydrogen
Helium
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
Sodium
Magnesium
Aluminium
Silicon
Phosphorus
Sulfur
Chlorine
Argon
Potassium
Calcium
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.