Knowledge (XXG)

Mössbauer spectroscopy

Source 📝

977: 1324: 31: 1605: 3258: 1378: 3270: 1432:(see Fig. 5), resulting in an absorption spectrum, as illustrated in Fig. 4. The magnetic field can be determined from the spacing between the peaks if the quantum "g-factors" of the nuclear states are known. In ferromagnetic materials, including many iron compounds, the natural internal magnetic fields are quite strong and their effects dominate the spectra. 1911:, the authority for Mössbauer spectroscopy, does not specify a particular value, anything between 10.60 mm/s to 10.67 mm/s can be used. For this reason it is highly recommended to provide the isomer shift values relative to the source used, not to the iron foil, mentioning the details of the source (centre of gravity of the folded spectrum). 1460:
In addition, the relative intensities of the various peaks reflect the relative concentrations of compounds in a sample and can be used for semi-quantitative analysis. Also, since ferromagnetic phenomena are size-dependent, in some cases spectra can provide insight into the crystallite size and grain
1431:
The extent of splitting is proportional to the magnetic field strength at the nucleus, which in turn depends on the electron distribution ("chemical environment") of the nucleus. The splitting can be measured, for instance, with a sample foil placed between an oscillating source and a photon detector
220:
In the resulting spectra, gamma ray intensity is plotted as a function of the source velocity. At velocities corresponding to the resonant energy levels of the sample, a fraction of the gamma rays are absorbed, resulting in a drop in the measured intensity and a corresponding dip in the spectrum. The
1652:
The chemical isomer shift and quadrupole splitting are generally evaluated with respect to a reference material. For example, in iron compounds, the Mössbauer parameters were evaluated using iron foil (of a thickness less than 40 micrometers). The centroid of the six-line spectrum from metallic iron
1469:
Mössbauer emission spectroscopy is a specialized variant of Mössbauer spectroscopy where the emitting element is in the probed sample, and the absorbing element is in the reference. Most commonly, the technique is applied to the Co/Fe pair. A typical application is the characterization of the cobalt
1060:
is the electron density difference in the nucleus (a = source, b = sample). The Chemical Isomer shift as described here does not change with temperature, however, Mössbauer spectra do have a temperature sensitivity due to a relativistic effect known as the second-order Doppler effect. Generally, the
175:
If the emitting and absorbing nuclei were in identical chemical environments, the nuclear transition energies would be exactly equal and resonant absorption would be observed with both materials at rest. The difference in chemical environments, however, causes the nuclear energy levels to shift in a
1548:
catalyst transform into the +5 oxidation state. Following the catalytic reaction, almost all Sb ions revert from the +5 to the +3 oxidation state. A significant change in the chemical environment surrounding the antimony nucleus occurs during the oxidation state change which can easily be monitored
1456:
Many times all effects are observed: isomer shift, quadrupole splitting, and magnetic splitting. In such cases the isomer shift is given by the average of all lines. The quadrupole splitting when all the four excited substates are equally shifted (two substates are lifted and other two are lowered)
1440:
The three Mössbauer parameters: isomer shift, quadrupole splitting, and hyperfine splitting can often be used to identify a particular compound by comparison to spectra for standards. In some cases, a compound may have more than one possible position for the Mössbauer active atom. For example, the
1661:
source). All shifts in other iron compounds are computed relative to this −0.10 mm/s (at room temperature), i.e., in this case isomer shifts are relative to the Co/Rh source. In other words, the centre point of the Mössbauer spectrum is zero. The shift values may also be reported relative to
134:
than the natural energy, because in both cases energy is lost to recoil. This means that nuclear resonance (emission and absorption of the same gamma ray by identical nuclei) is unobservable with free nuclei, because the shift in energy is too great and the emission and absorption spectra have no
1482:
Among the drawbacks of the technique are the limited number of gamma ray sources and the requirement that samples be solid in order to eliminate the recoil of the nucleus. Mössbauer spectroscopy is unique in its sensitivity to subtle changes in the chemical environment of the nucleus including
1371: = ±3/2. The ground to excited state transitions appear as two specific peaks in a spectrum, sometimes referred to as a "doublet". Quadrupole splitting is measured as the separation between these two peaks and reflects the character of the electric field at the nucleus. 146:(quantized vibrations of the crystal lattice). Any whole number of phonons can be emitted, including zero, which is known as a "recoil-free" event. In this case conservation of momentum is satisfied by the momentum of the crystal as a whole, so practically no energy is lost. 1596:(NRVS), in which the sample is scanned through a range of synchrotron-generated X-rays, centered at the Mössbauer absorbance frequency. Stokes and anti-Stokes peaks in the spectrum correspond to low frequency vibrations, many below 600 cm with some below 100 cm. 2720:"Mossbauer Spectroscopy – A Rewarding Probe of Morphological Structure of Semiconducting Glasses ", P. Boolchand in Physical Properties of Amorphous Materials (Institute for Amorphous Studies Series), Springer US, Eds.: David Adler, Brian B. Schwartz, Martin C. Steele 1568:
Mössbauer spectroscopy has been widely applied to bioinorganic chemistry, especially for the study of iron-containing proteins and enzymes. Often the technique is used to determine the oxidation state of iron. Examples of prominent iron-containing biomolecules are
1239: 1616:
is a device that performs Mössbauer spectroscopy, or a device that uses the Mössbauer effect to determine the chemical environment of Mössbauer nuclei present in the sample. It is formed by three main parts; a source that moves back and forth to generate a
142:, however, are not free to recoil because they are bound in place in the crystal lattice. When a nucleus in a solid emits or absorbs a gamma ray, some energy can still be lost as recoil energy, but in this case it always occurs in discrete packets called 1529:. The formation of carbides appears to improve catalytic activity, but it can also lead to the mechanical break-up and attrition of the catalyst particles, which can cause difficulties in the final separation of catalyst from reaction products. 1769: 95:
widths of nuclear gamma rays, Mössbauer spectroscopy is a highly sensitive technique in terms of energy (and hence frequency) resolution, capable of detecting changes of just a few parts in 10. It is a method completely unrelated to
153:. This fact is what makes Mössbauer spectroscopy possible, because it means that gamma rays emitted by one nucleus can be resonantly absorbed by a sample containing nuclei of the same isotope, and this absorption can be measured. 1346:) greater than 1/2, may have a nuclear quadrupole moment. In this case an asymmetrical electric field (produced by an asymmetric electronic charge distribution or ligand arrangement) splits the nuclear energy levels. 2735:
Mössbauer Spectroscopy – Principles and Applications – Prof. Dr. Philipp Gütlich Emeritus Professor Mainz University – Institut für Anorganische Chemie und Analytische Chemie Johannes Gutenberg-Universität
955:
As described above, Mössbauer spectroscopy has an extremely fine energy resolution and can detect even subtle changes in the nuclear environment of the relevant atoms. Typically, there are three types of
1457:
is given by the shift of the outer two lines relative to the inner four lines (all inner four lines shift in opposition to the outermost two lines). Usually fitting software is used for accurate values.
172:, and a detector measures the intensity of the beam transmitted through the sample. The atoms in the source emitting the gamma rays must be of the same isotope as the atoms in the sample absorbing them. 2429:
Burger, K.; Nemes-Vetéssy, Zs.; Vértes, A.; Afanasov, M. I. (April 1986). "Mössbauer spectroscopic study of the oxidation state of antimony in antimony sulfides of different composition".
1071: 2577:
Costas, Miquel; Mehn, Mark P.; Jensen, Michael P.; Que, Lawrence (1 February 2004). "Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates".
3089: 1490:
As an analytical tool Mössbauer spectroscopy has been especially useful in the field of geology for identifying the composition of iron-containing specimens including meteorites and
988:, especially in the older literature) is a relative measure describing a shift in the resonance energy of a nucleus (see Fig. 2) due to the transition of electrons within its 261:
isotope will have a convenient half-life. Also, the gamma-ray energy should be relatively low, otherwise the system will have a low recoil-free fraction resulting in a poor
2762: 1453:) supports two different sites for the iron atoms. Its spectrum has 12 peaks, a sextet for each potential atomic site, corresponding to two sets of Mössbauer parameters. 257:
via a series of gamma-ray emissions that include the one exhibiting the Mössbauer effect. The radioactive cobalt is prepared on a foil, often of rhodium. Ideally the
2638:
Klingelhöfer, G.; et al. (2002). "The miniaturized Mössbauer spectrometer MIMOS II for extraterrestrial and outdoor terrestrial applications: A status report".
1585:. These studies are often supplemented by analysis of related model complexes. An area of particular interest is the characterization of intermediates involved in 2719: 2049: 1671: 2371: 2980: 2143: 2913: 2858: 2827: 188:. To bring the two nuclei back into resonance it is necessary to change the energy of the gamma ray slightly, and in practice this is always done using the 2822: 1593: 1315:
The isomer shift is useful for determining oxidation state, valency states, electron shielding and the electron-drawing power of electronegative groups.
157: 265:
and requiring long collection times. The periodic table below indicates those elements having an isotope suitable for Mössbauer spectroscopy. Of these,
3195: 3013: 2875: 1908: 3144: 2963: 2807: 3084: 2886: 2787: 97: 3030: 3008: 2755: 91:
due to atomic-scale electric field gradients; and magnetic splitting due to non-nuclear magnetic fields. Due to the high energy and extremely
3096: 3018: 2561: 2503: 1402: + 1 sub-energy levels in the presence of a magnetic field. For example, the first excited state of the Fe nucleus with spin state 996:
electron charge density in the nucleus. This change arises due to alterations in the electrostatic response between the non-zero probability
2848: 2953: 2898: 2685: 2431: 2725:
The program MossA provides a straightforward approach to the fitting of Fe conventional and synchrotron energy-domain Mössbauer spectra
3296: 1501:
In another application, Mössbauer spectroscopy is used to characterize phase transformations in iron catalysts, e.g., those used for
3180: 2932: 2748: 2536: 976: 3185: 3003: 1390:
Magnetic hyperfine splitting is a result of the interaction between the nucleus and a surrounding magnetic field (similar to the
1374:
The quadrupole splitting can be used for determining oxidation state, spin state, site symmetry, and the arrangement of ligands.
149:
Mössbauer found that a significant fraction of emission and absorption events will be recoil-free, which is quantified using the
3200: 3170: 3101: 3035: 1415:
values of +3/2, +1/2, −1/2 and −3/2. The equally-spaced splits are said to be hyperfine, being on the order of 10 eV. The
3301: 3129: 2920: 2817: 2714: 2163: 2025: 1532:
Mössbauer spectroscopy has also been used to determine the relative concentration change in the oxidation state of antimony (
1502: 237:
Suitable gamma-ray sources consist of a radioactive parent that decays to the desired isotope. For example, the source for
2927: 2832: 1975: 1965: 1940: 1052:
is the effective nuclear charge radius difference between excited state and the ground state, and the difference between
229:) provide information about the chemical environment of the absorbing nuclei and can be used to characterize the sample. 150: 3061: 2908: 2797: 2709: 2552:
Schuenemann, V.; Paulsen, H. (2007-12-10). "Moessbauer spectroscopy". In Scott, Robert A.; Lukehart, Charles M. (eds.).
2066:
Longworth, G; Window, B (1 June 1971). "The preparation of narrow-line Mössbauer sources of 57Co in metallic matrices".
2046: 3217: 3056: 3025: 2958: 2734: 2359: 1920: 2183: 1323: 1234:{\displaystyle {\text{CS}}=K\left(\langle R_{e}^{2}\rangle -\langle R_{g}^{2}\rangle \right)\left(_{b}-_{a}\right).} 3207: 3149: 2998: 2870: 2140: 2136: 2042: 1416: 199:
to produce a Doppler effect and scan the gamma ray energy through a given range. A typical range of velocities for
118:
requires a nucleus (such as in a gas) to recoil during emission or absorption of a gamma ray. If a nucleus at rest
2002: 3233: 3212: 2853: 2179:
International Board on the Applications of the Mössbauer Effect (IBAME) and Mössbauer Effect Data Center (MEDC),
1998:
International Board on the Applications of the Mössbauer Effect (IBAME) and Mössbauer Effect Data Center (MEDC),
1553: 980:
Fig. 2: Chemical shift and quadrupole splitting of the nuclear energy levels and corresponding Mössbauer spectra
2730:
MossA is written in the MATLAB programming language. The source code can be obtained from its github repository
115: 3274: 3106: 2802: 2640: 2202: 1339: 2893: 1930: 1641: 1342:(EFG). Nuclei in states with non-spherical charge distributions, i.e. all those with spin quantum number ( 195:
During Mössbauer absorption spectroscopy, the source is accelerated through a range of velocities using a
2392:
Sarkar, A.; et al. (2007). "Fischer–Tropsch Synthesis: Characterization Rb Promoted Iron Catalyst".
1903:
Other values are sometimes used to reflect different qualities of iron foils. In all cases any change in
1256:
spectrum gives a negative shift because the change in the effective nuclear charge is negative (owing to
3262: 3134: 2865: 2779: 2239: 1970: 262: 176:
few different ways, as described below. Although these energy shifts are tiny (often less than a micro-
992:
orbitals. The whole spectrum is shifted in either a positive or negative direction depending upon the
2649: 2487: 2308: 2265: 2211: 2077: 2068: 1557: 1471: 1335: 1328: 965: 88: 69: 3190: 2903: 2812: 1950: 1570: 957: 168:
In its most common form, Mössbauer absorption spectroscopy, a solid sample is exposed to a beam of
109: 76: 53: 49: 3238: 3175: 3154: 2970: 2948: 2881: 2792: 2665: 2612: 2519:
Martinho, Marlène; Münck, Eckard (2010). "57Fe Mössbauer Spectroscopy in Chemistry and Biology".
2456: 2411: 2332: 2281: 2101: 1980: 1960: 184:
of gamma rays for some radionuclides make the small energy shifts correspond to large changes in
181: 2682: 1353: = 3/2 excited state, such as Fe or Sn, the excited state is split into two substates 72:
method is exquisitely sensitive to small changes in the chemical environment of certain nuclei.
1307:-electron density at the nucleus of ferric ions is greater due to a weaker screening effect by 3139: 3066: 3040: 2604: 2596: 2557: 2532: 2499: 2448: 2394: 2324: 2093: 1945: 1586: 641: 2657: 2620: 2588: 2579: 2524: 2491: 2464: 2440: 2403: 2340: 2316: 2273: 2219: 2109: 2085: 1800: 1764:{\displaystyle V={\frac {c\,B_{\text{int}}\,\mu _{\rm {N}}}{E_{\gamma }}}(3g_{n}^{e}+g_{n})} 1028: 246: 30: 1498:
data collection of Mössbauer spectra has also been carried out on iron rich rocks on Mars.
2689: 2243: 2187: 2167: 2147: 2053: 2029: 2006: 1008: 2200:
Walker, L.; Wertheim, G.; Jaccarino, V. (1961). "Interpretation of the Fe Isomer Shift".
2653: 2482:
Chen, Y.-L.; Yang, D.-P. (2007). "Recoilless Fraction and Second-Order Doppler Effect".
2312: 2269: 2215: 2081: 1955: 1935: 1618: 1604: 1419:
means that transitions between the excited state and ground state can only occur where
985: 961: 288: 189: 84: 80: 2299:
Klingelhöfer, G. (November 2004). "Mössbauer In Situ Studies of the Surface of Mars".
3290: 2105: 1391: 693: 250: 222: 92: 57: 56:(sometimes written "Moessbauer", German: "Mößbauer") in 1958, consists of the nearly 17: 2669: 2616: 2460: 2415: 2336: 2285: 2089: 1278:
gives a positive shift due to a positive change in overall nuclear charge (owing to
2771: 1788: 858: 783: 723: 278: 254: 196: 177: 45: 2023:
The Principle of the Mössbauer Effect and Basic Concepts of Mössbauer Spectrometry
2705:
Mössbauer Effect Data Center page, including periodic table of Mössbauer isotopes
126:
than the natural energy of the transition, but in order for a nucleus at rest to
2724: 2160: 2022: 1925: 1545: 1541: 908: 898: 893: 753: 733: 728: 1338:
reflects the interaction between the nuclear energy levels and the surrounding
2661: 2528: 2495: 2407: 2320: 2180: 1626: 1622: 1582: 1491: 1381:
Fig. 4: Mössbauer spectrum and diagram illustrating magnetic splitting in Fe.
918: 818: 808: 793: 758: 718: 703: 524: 519: 380: 270: 226: 185: 2600: 2452: 2328: 2223: 2097: 1526: 1514: 1442: 1428:
changes by 0 or 1 or −1. This gives 6 possible for a 3/2 to 1/2 transition.
1377: 888: 878: 873: 868: 838: 788: 763: 748: 743: 596: 569: 539: 529: 509: 499: 467: 432: 402: 370: 362: 317: 242: 169: 61: 2608: 1999: 1065:
standard allows the Isomer Shift to be reported without correcting for it.
221:
number, positions, and intensities of the dips (also called peaks; dips in
2624: 2468: 2344: 2256:
Nagy, D. L. (1994). "Trends in Mössbauer emission spectroscopy of Co/Fe".
2113: 1633: 1574: 1533: 913: 843: 803: 798: 738: 688: 678: 666: 661: 646: 631: 611: 606: 564: 494: 477: 427: 422: 417: 412: 390: 345: 335: 297: 2554:
Applications of Physical Methods to Inorganic and Bioinorganic Chemistry
1007:
orbitals have a non-zero probability of being found in the nucleus (see
269:
is by far the most common element studied using the technique, although
2444: 2277: 1907:
only affects the isomer shift and not the quadrupole splitting. As the
1843: 1658: 1608:
Fig. 5: A schematic view of a transmission-style Mössbauer spectrometer
1537: 1300: 1275: 1253: 1244:
The physical meaning of this equation can be clarified using examples:
903: 863: 853: 833: 823: 813: 713: 708: 698: 656: 626: 616: 601: 586: 549: 534: 514: 504: 487: 482: 472: 462: 407: 375: 312: 274: 266: 238: 200: 139: 35: 2592: 1665:
To calculate the outer line distance from the six-line iron spectrum:
1592:
Vibrational spectra of Fe-enriched biomolecules can be acquired using
930: 2729: 1654: 1484: 1296: 883: 828: 778: 683: 621: 591: 574: 554: 544: 452: 447: 442: 385: 357: 340: 330: 305: 258: 143: 1603: 1487:
on a particular atom, and the magnetic environment of the sample.
1406: = 3/2 will split into 4 non-degenerate sub-states with 1376: 1322: 1062: 975: 671: 579: 395: 325: 65: 29: 83:
due to differences in nearby electron densities (also called the
1637: 1578: 651: 636: 457: 437: 350: 2744: 2740: 1331:
is a common reference material exhibiting quadrupole splitting.
156:
The recoil fraction of the Mössbauer absorption is analyzed by
2715:
Mössbauer Spectroscopy: A Powerful Tool in Scientific Research
2161:
Mössbauer Spectroscopy: A Powerful Tool in Scientific Research
1552:
This technique has also been used to observe the second-order
1000:
orbital electrons and the non-zero volume nucleus they orbit.
559: 1034:
Isomer shift can be expressed using the formula below, where
2704: 2236: 1662:
0.0 mm/s; here, shifts are relative to the iron foil.
1871:
is the excited state splitting factor of Fe (-0.15532/(
1785:
is the internal magnetic field of the metallic iron (
1674: 1074: 130:
a gamma ray, the gamma ray's energy must be slightly
122:
a gamma ray, the energy of the gamma ray is slightly
3226: 3163: 3122: 3115: 3077: 3049: 2991: 2941: 2841: 2778: 1763: 1233: 2710:Introduction to Mössbauer Spectroscopy — RSC site 1483:oxidation state changes, the effect of different 1474:. In such a case, the sample is doped with Co. 1892:By substituting the above values one would get 1632:A miniature Mössbauer Spectrometer, named (MB) 1513:), these catalysts transform into a mixture of 1831:is the ground state nuclear splitting factor ( 1549:as an isomer shift in the Mössbauer spectrum. 1417:selection rule for magnetic dipole transitions 1038:is a nuclear constant, the difference between 114:Just as a gun recoils when a bullet is fired, 2756: 2141:Introduction to Mössbauer Spectroscopy Part 2 2047:Introduction to Mössbauer Spectroscopy Part 1 1824:is the excitation energy (14.412497(3) keV), 8: 2828:Vibrational spectroscopy of linear molecules 1544:, all the Sb ions in an antimony-containing 1505:. While initially consisting of hematite (Fe 1133: 1115: 1109: 1091: 1470:sites in amorphous Co-Mo catalysts used in 3119: 2823:Nuclear resonance vibrational spectroscopy 2763: 2749: 2741: 1594:nuclear resonance vibrational spectroscopy 1560:, because of very high energy resolution. 283: 158:nuclear resonance vibrational spectroscopy 3196:Inelastic electron tunneling spectroscopy 2876:Resonance-enhanced multiphoton ionization 2159:P. Gütlich, J. M. Greneche, F. J. Berry; 2017: 2015: 1752: 1739: 1734: 1716: 1704: 1703: 1698: 1692: 1687: 1681: 1673: 1217: 1198: 1193: 1177: 1158: 1153: 1127: 1122: 1103: 1098: 1075: 1073: 60:-free emission and absorption of nuclear 2964:Extended X-ray absorption fine structure 2360:"Mössbauer spectroscopy in astrobiology" 1394:in atomic spectra). A nucleus with spin 1299:ions (Fe) have lower isomer shifts than 1061:impact of this effect is small, and the 984:Isomer shift (δ) (also sometimes called 1991: 98:nuclear magnetic resonance spectroscopy 2131: 2129: 2127: 2125: 2123: 7: 3269: 2484:Mössbauer Effect in Lattice Dynamics 1536:) during the selective oxidation of 968:, and hyperfine magnetic splitting. 2432:Journal of Chemical Crystallography 34:A Mössbauer absorption spectrum of 1705: 1190: 1150: 25: 3181:Deep-level transient spectroscopy 2933:Saturated absorption spectroscopy 1349:In the case of an isotope with a 253:of Fe, which in turn decays to a 3268: 3257: 3256: 3186:Dual-polarization interferometry 1636:, was used by the two rovers in 3201:Scanning tunneling spectroscopy 3176:Circular dichroism spectroscopy 3171:Acoustic resonance spectroscopy 2374:from the original on 2018-01-08 1465:Mössbauer emission spectroscopy 3130:Fourier-transform spectroscopy 2818:Vibrational circular dichroism 2135:Mössbauer Spectroscopy Group, 2041:Mössbauer Spectroscopy Group, 1758: 1724: 1653:foil is −0.1 mm/s (for a 1625:that filters out non-parallel 1214: 1210: 1204: 1186: 1174: 1170: 1164: 1146: 1: 2928:Cavity ring-down spectroscopy 2833:Thermal infrared spectroscopy 1976:Total absorption spectroscopy 1966:Perturbed angular correlation 1941:Liquid scintillation counting 951:Analysis of Mössbauer spectra 281:are also frequently studied. 52:. This effect, discovered by 3062:Inelastic neutron scattering 2683:Mössbauer Effect Data Center 2521:Physical Inorganic Chemistry 2358:Schröder, Christian (2015). 2237:Mössbauer Effect Data Center 1386:Magnetic hyperfine splitting 1023:electrons may influence the 291:of Mössbauer-active elements 3123:Data collection, processing 2999:Photoelectron/photoemission 1921:Alpha-particle spectroscopy 1027:electron density through a 233:Selecting a suitable source 3318: 3208:Photoacoustic spectroscopy 3150:Time-resolved spectroscopy 2190:Accessed December 20, 2017 2137:Royal Society of Chemistry 2043:Royal Society of Chemistry 934:Mössbauer-active elements 929: 366: 321: 301: 286: 107: 75:Typically, three types of 3252: 3234:Astronomical spectroscopy 3213:Photothermal spectroscopy 2529:10.1002/9780470602539.ch2 2496:10.1002/9783527611423.ch5 2408:10.1007/s10562-007-9288-1 2321:10.1007/S10751-005-9019-1 2090:10.1088/0022-3727/4/6/316 1648:Fe Mössbauer spectroscopy 1554:transverse Doppler effect 1503:Fischer–Tropsch synthesis 1461:structure of a material. 940:Unsuitable for Mössbauer 939: 936: 933: 849: 774: 2224:10.1103/PhysRevLett.6.98 2181:Mössbauer Effect website 2000:Mössbauer Effect website 180:), the extremely narrow 116:conservation of momentum 3218:Pump–probe spectroscopy 3107:Ferromagnetic resonance 2899:Laser-induced breakdown 2662:10.1023/A:1025444209059 2203:Physical Review Letters 1778:is the speed of light, 1600:Mössbauer spectrometers 1340:electric field gradient 203:, for example, may be ± 48:technique based on the 27:Spectroscopic technique 3297:Mössbauer spectroscopy 2914:Glow-discharge optical 2894:Raman optical activity 2808:Rotational–vibrational 2641:Hyperfine Interactions 2301:Hyperfine Interactions 2258:Hyperfine Interactions 2170:Accessed June 3, 2010. 2150:Accessed June 3, 2010. 2009:Accessed June 3, 2010. 1931:Gamma ray spectrometer 1765: 1642:Mars Exploration Rover 1614:Mössbauer spectrometer 1609: 1564:Bioinorganic chemistry 1382: 1362: = ±1/2 and 1332: 1235: 981: 87:in older literature), 42:Mössbauer spectroscopy 38: 3302:Scientific techniques 3135:Hyperspectral imaging 2488:John Wiley & Sons 2056:Accessed June 3, 2010 1971:Scintillation counter 1766: 1607: 1441:crystal structure of 1380: 1326: 1274:-electron density in 1252:-electron density in 1248:While an increase in 1236: 979: 263:signal-to-noise ratio 151:Lamb–Mössbauer factor 135:significant overlap. 79:may be observed: the 33: 18:Mößbauer spectroscopy 2887:Coherent anti-Stokes 2842:UV–Vis–NIR "Optical" 2069:Journal of Physics D 1672: 1571:iron-sulfur proteins 1558:theory of relativity 1472:hydrodesulfurization 1336:Quadrupole splitting 1329:Sodium nitroprusside 1319:Quadrupole splitting 1072: 966:quadrupole splitting 958:nuclear interactions 89:quadrupole splitting 77:nuclear interactions 70:nuclear spectroscopy 3191:Hadron spectroscopy 2981:Conversion electron 2942:X-ray and Gamma ray 2849:Ultraviolet–visible 2654:2002HyInt.144..371K 2364:Spectroscopy Europe 2313:2004HyInt.158..117K 2270:1994HyInt..83....1N 2216:1961PhRvL...6...98W 2082:1971JPhD....4..835L 1744: 1203: 1163: 1132: 1108: 960:that are observed: 182:spectral linewidths 3239:Force spectroscopy 3164:Measured phenomena 3155:Video spectroscopy 2859:Cold vapour atomic 2688:2015-02-27 at the 2523:. pp. 39–67. 2445:10.1007/BF01161115 2278:10.1007/BF02074255 2242:2014-05-20 at the 2186:2021-09-27 at the 2166:2011-11-29 at the 2146:2011-06-08 at the 2052:2017-10-12 at the 2028:2011-11-29 at the 2005:2021-12-02 at the 1981:X-ray spectroscopy 1961:Pandemonium effect 1761: 1730: 1610: 1589:by iron proteins. 1436:Combination of all 1383: 1333: 1303:ions (Fe) because 1270:), an increase in 1231: 1189: 1149: 1118: 1094: 1003:Only electrons in 982: 937:Gamma-ray sources 245:, which decays by 138:Nuclei in a solid 39: 3284: 3283: 3248: 3247: 3140:Spectrophotometry 3067:Neutron spin echo 3041:Beta spectroscopy 2954:Energy-dispersive 2593:10.1021/CR020628N 2563:978-0-470-03217-6 2505:978-3-527-61142-3 2395:Catalysis Letters 1946:Mass spectrometry 1898:10.6258 mm/s 1722: 1695: 1587:oxygen activation 1556:predicted by the 1078: 948: 947: 944: 943: 68:. The consequent 16:(Redirected from 3309: 3272: 3271: 3260: 3259: 3120: 3031:phenomenological 2780:Vibrational (IR) 2765: 2758: 2751: 2742: 2693: 2680: 2674: 2673: 2648:(1–4): 371–379. 2635: 2629: 2628: 2580:Chemical Reviews 2574: 2568: 2567: 2549: 2543: 2542: 2516: 2510: 2509: 2479: 2473: 2472: 2426: 2420: 2419: 2389: 2383: 2382: 2380: 2379: 2355: 2349: 2348: 2307:(1–4): 117–124. 2296: 2290: 2289: 2253: 2247: 2234: 2228: 2227: 2197: 2191: 2177: 2171: 2157: 2151: 2133: 2118: 2117: 2063: 2057: 2039: 2033: 2021:Gütlich, J. M.; 2019: 2010: 1996: 1951:Mössbauer effect 1899: 1888: 1887: 1883: 1870: 1869: 1858: 1857: 1853: 1837: 1836: 1816: 1814: 1811: 1808: 1801:nuclear magneton 1791: 1770: 1768: 1767: 1762: 1757: 1756: 1743: 1738: 1723: 1721: 1720: 1711: 1710: 1709: 1708: 1697: 1696: 1693: 1682: 1629:and a detector. 1240: 1238: 1237: 1232: 1227: 1223: 1222: 1221: 1202: 1197: 1182: 1181: 1162: 1157: 1140: 1136: 1131: 1126: 1107: 1102: 1079: 1076: 1029:screening effect 931: 284: 247:electron capture 216: 215: 211: 206: 110:Mössbauer effect 54:Rudolf Mössbauer 50:Mössbauer effect 21: 3317: 3316: 3312: 3311: 3310: 3308: 3307: 3306: 3287: 3286: 3285: 3280: 3244: 3222: 3159: 3111: 3073: 3045: 2987: 2937: 2837: 2798:Resonance Raman 2774: 2769: 2701: 2696: 2690:Wayback Machine 2681: 2677: 2637: 2636: 2632: 2576: 2575: 2571: 2564: 2551: 2550: 2546: 2539: 2518: 2517: 2513: 2506: 2481: 2480: 2476: 2428: 2427: 2423: 2391: 2390: 2386: 2377: 2375: 2357: 2356: 2352: 2298: 2297: 2293: 2255: 2254: 2250: 2244:Wayback Machine 2235: 2231: 2199: 2198: 2194: 2188:Wayback Machine 2178: 2174: 2168:Wayback Machine 2158: 2154: 2148:Wayback Machine 2139:(RSC) website, 2134: 2121: 2065: 2064: 2060: 2054:Wayback Machine 2045:(RSC) website, 2040: 2036: 2030:Wayback Machine 2020: 2013: 2007:Wayback Machine 1997: 1993: 1989: 1917: 1897: 1885: 1881: 1880: 1868: 1865: 1864: 1863: 1855: 1851: 1850: 1834: 1832: 1830: 1823: 1812: 1809: 1806: 1804: 1798: 1786: 1784: 1748: 1712: 1699: 1688: 1683: 1670: 1669: 1650: 1602: 1566: 1524: 1520: 1512: 1508: 1480: 1467: 1452: 1448: 1438: 1427: 1414: 1388: 1370: 1361: 1321: 1291: 1284: 1269: 1262: 1213: 1173: 1145: 1141: 1090: 1086: 1070: 1069: 1059: 1055: 1051: 1044: 1009:atomic orbitals 974: 953: 292: 235: 214:48.075 neV 213: 209: 208: 204: 170:gamma radiation 166: 112: 106: 104:Basic principle 28: 23: 22: 15: 12: 11: 5: 3315: 3313: 3305: 3304: 3299: 3289: 3288: 3282: 3281: 3279: 3278: 3266: 3253: 3250: 3249: 3246: 3245: 3243: 3242: 3236: 3230: 3228: 3224: 3223: 3221: 3220: 3215: 3210: 3205: 3204: 3203: 3193: 3188: 3183: 3178: 3173: 3167: 3165: 3161: 3160: 3158: 3157: 3152: 3147: 3142: 3137: 3132: 3126: 3124: 3117: 3113: 3112: 3110: 3109: 3104: 3099: 3094: 3093: 3092: 3081: 3079: 3075: 3074: 3072: 3071: 3070: 3069: 3059: 3053: 3051: 3047: 3046: 3044: 3043: 3038: 3033: 3028: 3023: 3022: 3021: 3016: 3014:Angle-resolved 3011: 3006: 2995: 2993: 2989: 2988: 2986: 2985: 2984: 2983: 2973: 2968: 2967: 2966: 2961: 2956: 2945: 2943: 2939: 2938: 2936: 2935: 2930: 2925: 2924: 2923: 2918: 2917: 2916: 2901: 2896: 2891: 2890: 2889: 2879: 2873: 2868: 2863: 2862: 2861: 2851: 2845: 2843: 2839: 2838: 2836: 2835: 2830: 2825: 2820: 2815: 2810: 2805: 2800: 2795: 2790: 2784: 2782: 2776: 2775: 2770: 2768: 2767: 2760: 2753: 2745: 2739: 2738: 2732: 2727: 2722: 2717: 2712: 2707: 2700: 2699:External links 2697: 2695: 2694: 2675: 2630: 2587:(2): 939–986. 2569: 2562: 2544: 2537: 2511: 2504: 2474: 2439:(2): 295–299. 2421: 2384: 2350: 2291: 2248: 2229: 2192: 2172: 2152: 2119: 2076:(6): 835–839. 2058: 2034: 2011: 1990: 1988: 1985: 1984: 1983: 1978: 1973: 1968: 1963: 1958: 1956:Nuclear isomer 1953: 1948: 1943: 1938: 1936:Isomeric shift 1933: 1928: 1923: 1916: 1913: 1866: 1828: 1821: 1796: 1782: 1772: 1771: 1760: 1755: 1751: 1747: 1742: 1737: 1733: 1729: 1726: 1719: 1715: 1707: 1702: 1691: 1686: 1680: 1677: 1649: 1646: 1619:Doppler effect 1601: 1598: 1581:including the 1565: 1562: 1525:) and several 1522: 1518: 1510: 1506: 1479: 1476: 1466: 1463: 1450: 1446: 1437: 1434: 1423: 1410: 1387: 1384: 1366: 1357: 1320: 1317: 1313: 1312: 1293: 1289: 1282: 1267: 1260: 1242: 1241: 1230: 1226: 1220: 1216: 1212: 1209: 1206: 1201: 1196: 1192: 1188: 1185: 1180: 1176: 1172: 1169: 1166: 1161: 1156: 1152: 1148: 1144: 1139: 1135: 1130: 1125: 1121: 1117: 1114: 1111: 1106: 1101: 1097: 1093: 1089: 1085: 1082: 1057: 1053: 1049: 1042: 986:chemical shift 973: 970: 962:isomeric shift 952: 949: 946: 945: 942: 941: 938: 935: 927: 926: 922: 921: 916: 911: 906: 901: 896: 891: 886: 881: 876: 871: 866: 861: 856: 851: 847: 846: 841: 836: 831: 826: 821: 816: 811: 806: 801: 796: 791: 786: 781: 776: 772: 771: 767: 766: 761: 756: 751: 746: 741: 736: 731: 726: 721: 716: 711: 706: 701: 696: 691: 686: 681: 675: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 583: 582: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 507: 502: 497: 491: 490: 485: 480: 475: 470: 465: 460: 455: 450: 445: 440: 435: 430: 425: 420: 415: 410: 405: 399: 398: 393: 388: 383: 378: 373: 368: 365: 360: 354: 353: 348: 343: 338: 333: 328: 323: 320: 315: 309: 308: 303: 300: 294: 293: 289:Periodic table 287: 234: 231: 165: 164:Typical method 162: 108:Main article: 105: 102: 85:chemical shift 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3314: 3303: 3300: 3298: 3295: 3294: 3292: 3277: 3276: 3267: 3265: 3264: 3255: 3254: 3251: 3240: 3237: 3235: 3232: 3231: 3229: 3225: 3219: 3216: 3214: 3211: 3209: 3206: 3202: 3199: 3198: 3197: 3194: 3192: 3189: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3168: 3166: 3162: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3127: 3125: 3121: 3118: 3114: 3108: 3105: 3103: 3100: 3098: 3095: 3091: 3088: 3087: 3086: 3083: 3082: 3080: 3076: 3068: 3065: 3064: 3063: 3060: 3058: 3055: 3054: 3052: 3048: 3042: 3039: 3037: 3034: 3032: 3029: 3027: 3024: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3001: 3000: 2997: 2996: 2994: 2990: 2982: 2979: 2978: 2977: 2974: 2972: 2969: 2965: 2962: 2960: 2957: 2955: 2952: 2951: 2950: 2947: 2946: 2944: 2940: 2934: 2931: 2929: 2926: 2922: 2919: 2915: 2912: 2911: 2910: 2907: 2906: 2905: 2902: 2900: 2897: 2895: 2892: 2888: 2885: 2884: 2883: 2880: 2877: 2874: 2872: 2871:Near-infrared 2869: 2867: 2864: 2860: 2857: 2856: 2855: 2852: 2850: 2847: 2846: 2844: 2840: 2834: 2831: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2785: 2783: 2781: 2777: 2773: 2766: 2761: 2759: 2754: 2752: 2747: 2746: 2743: 2737: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2702: 2698: 2691: 2687: 2684: 2679: 2676: 2671: 2667: 2663: 2659: 2655: 2651: 2647: 2643: 2642: 2634: 2631: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2586: 2582: 2581: 2573: 2570: 2565: 2559: 2555: 2548: 2545: 2540: 2538:9780470602539 2534: 2530: 2526: 2522: 2515: 2512: 2507: 2501: 2497: 2493: 2489: 2485: 2478: 2475: 2470: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2433: 2425: 2422: 2417: 2413: 2409: 2405: 2402:(1–2): 1–11. 2401: 2397: 2396: 2388: 2385: 2373: 2369: 2365: 2361: 2354: 2351: 2346: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2306: 2302: 2295: 2292: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2252: 2249: 2245: 2241: 2238: 2233: 2230: 2225: 2221: 2217: 2213: 2209: 2205: 2204: 2196: 2193: 2189: 2185: 2182: 2176: 2173: 2169: 2165: 2162: 2156: 2153: 2149: 2145: 2142: 2138: 2132: 2130: 2128: 2126: 2124: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2070: 2062: 2059: 2055: 2051: 2048: 2044: 2038: 2035: 2031: 2027: 2024: 2018: 2016: 2012: 2008: 2004: 2001: 1995: 1992: 1986: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1927: 1924: 1922: 1919: 1918: 1914: 1912: 1910: 1906: 1901: 1896: =  1895: 1890: 1879: =  1878: 1874: 1862: 1849: =  1848: 1845: 1841: 1827: 1820: 1802: 1795: 1790: 1781: 1777: 1753: 1749: 1745: 1740: 1735: 1731: 1727: 1717: 1713: 1700: 1689: 1684: 1678: 1675: 1668: 1667: 1666: 1663: 1660: 1656: 1647: 1645: 1643: 1639: 1635: 1630: 1628: 1624: 1620: 1615: 1606: 1599: 1597: 1595: 1590: 1588: 1584: 1580: 1576: 1572: 1563: 1561: 1559: 1555: 1550: 1547: 1543: 1539: 1535: 1530: 1528: 1527:iron carbides 1516: 1504: 1499: 1497: 1493: 1488: 1486: 1477: 1475: 1473: 1464: 1462: 1458: 1454: 1444: 1435: 1433: 1429: 1426: 1422: 1418: 1413: 1409: 1405: 1401: 1398:splits into 2 1397: 1393: 1392:Zeeman effect 1385: 1379: 1375: 1372: 1369: 1365: 1360: 1356: 1352: 1347: 1345: 1341: 1337: 1330: 1325: 1318: 1316: 1310: 1306: 1302: 1298: 1294: 1288: 1281: 1277: 1273: 1266: 1259: 1255: 1251: 1247: 1246: 1245: 1228: 1224: 1218: 1207: 1199: 1194: 1183: 1178: 1167: 1159: 1154: 1142: 1137: 1128: 1123: 1119: 1112: 1104: 1099: 1095: 1087: 1083: 1080: 1068: 1067: 1066: 1064: 1048: 1041: 1037: 1032: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1001: 999: 995: 991: 987: 978: 971: 969: 967: 963: 959: 950: 932: 928: 924: 923: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 855: 852: 848: 845: 842: 840: 837: 835: 832: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 782: 780: 777: 773: 769: 768: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 720: 717: 715: 712: 710: 707: 705: 702: 700: 697: 695: 692: 690: 687: 685: 682: 680: 677: 676: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 584: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 492: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 404: 401: 400: 397: 394: 392: 389: 387: 384: 382: 379: 377: 374: 372: 369: 364: 361: 359: 356: 355: 352: 349: 347: 344: 342: 339: 337: 334: 332: 329: 327: 324: 319: 316: 314: 311: 310: 307: 304: 299: 296: 295: 290: 285: 282: 280: 276: 272: 268: 264: 260: 256: 252: 251:excited state 248: 244: 240: 232: 230: 228: 225:are peaks in 224: 223:transmittance 218: 202: 198: 193: 191: 190:Doppler shift 187: 183: 179: 173: 171: 163: 161: 159: 154: 152: 147: 145: 141: 136: 133: 129: 125: 121: 117: 111: 103: 101: 99: 94: 90: 86: 82: 78: 73: 71: 67: 63: 59: 55: 51: 47: 46:spectroscopic 43: 37: 32: 19: 3273: 3261: 3241:(a misnomer) 3227:Applications 3145:Time-stretch 3036:paramagnetic 2975: 2854:Fluorescence 2772:Spectroscopy 2678: 2645: 2639: 2633: 2584: 2578: 2572: 2553: 2547: 2520: 2514: 2483: 2477: 2436: 2430: 2424: 2399: 2393: 2387: 2376:. Retrieved 2367: 2363: 2353: 2304: 2300: 2294: 2261: 2257: 2251: 2232: 2207: 2201: 2195: 2175: 2155: 2073: 2067: 2061: 2037: 1994: 1904: 1902: 1893: 1891: 1876: 1872: 1860: 1846: 1839: 1825: 1818: 1815:10 eV/T 1793: 1779: 1775: 1773: 1664: 1651: 1631: 1613: 1611: 1591: 1567: 1551: 1531: 1500: 1495: 1489: 1481: 1478:Applications 1468: 1459: 1455: 1439: 1430: 1424: 1420: 1411: 1407: 1403: 1399: 1395: 1389: 1373: 1367: 1363: 1358: 1354: 1350: 1348: 1343: 1334: 1314: 1308: 1304: 1286: 1279: 1271: 1264: 1257: 1249: 1243: 1046: 1039: 1035: 1033: 1024: 1020: 1016: 1012: 1011:). However, 1004: 1002: 997: 993: 989: 983: 972:Isomer shift 954: 255:ground state 241:consists of 236: 219: 205:11 mm/s 197:linear motor 194: 178:electronvolt 174: 167: 155: 148: 137: 131: 127: 123: 119: 113: 81:isomer shift 74: 41: 40: 2813:Vibrational 2264:(1): 1–19. 1926:Gamma probe 1583:cytochromes 1546:tin dioxide 1542:calcination 210:1 mm/s 93:narrow line 3291:Categories 3019:Two-photon 2921:absorption 2803:Rotational 2692:20.08.2013 2378:2018-01-08 1987:References 1644:missions. 1627:gamma rays 1623:collimator 1492:Moon rocks 1311:electrons. 227:absorbance 186:absorbance 62:gamma rays 3097:Terahertz 3078:Radiowave 2976:Mössbauer 2625:Q35660894 2601:0009-2665 2469:Q30054185 2453:1074-1542 2370:(2): 10. 2345:Q29042404 2329:0304-3843 2210:(3): 98. 2114:Q56601097 2106:122392089 2098:0022-3727 1875:), where 1842:), where 1718:γ 1701:μ 1540:. During 1515:magnetite 1443:magnetite 1295:Oxidised 1191:Ψ 1184:− 1151:Ψ 1134:⟩ 1116:⟨ 1113:− 1110:⟩ 1092:⟨ 3263:Category 2992:Electron 2959:Emission 2909:emission 2866:Vibronic 2686:Archived 2670:94640811 2621:Wikidata 2617:33300052 2609:14871146 2465:Wikidata 2461:95821984 2416:94596943 2372:Archived 2341:Wikidata 2337:97528576 2286:95685404 2240:Archived 2184:Archived 2164:Archived 2144:Archived 2110:Wikidata 2050:Archived 2026:Archived 2003:Archived 1915:See also 1787:33  1634:MIMOS II 1575:ferritin 1327:Fig. 3: 3275:Commons 3102:ESR/EPR 3050:Nucleon 2878:(REMPI) 2650:Bibcode 2309:Bibcode 2266:Bibcode 2212:Bibcode 2078:Bibcode 1884:⁄ 1854:⁄ 1844:Isospin 1799:is the 1538:olefins 1496:In situ 1485:ligands 1301:ferrous 925:  850:  775:  770:  367:  322:  302:  144:phonons 140:crystal 132:greater 3116:Others 2904:Atomic 2668:  2623:  2615:  2607:  2599:  2560:  2535:  2502:  2467:  2459:  2451:  2414:  2343:  2335:  2327:  2284:  2112:  2104:  2096:  1859:) and 1774:where 1577:, and 1297:ferric 1019:, and 277:, and 259:parent 249:to an 128:absorb 66:solids 58:recoil 3057:Alpha 3026:Auger 3004:X-ray 2971:Gamma 2949:X-ray 2882:Raman 2793:Raman 2788:FT-IR 2736:Mainz 2666:S2CID 2613:S2CID 2457:S2CID 2412:S2CID 2333:S2CID 2282:S2CID 2102:S2CID 1909:IBAME 1833:0.090 1805:3.152 1579:hemes 1285:> 1263:< 1063:IUPAC 120:emits 44:is a 2605:PMID 2597:ISSN 2558:ISBN 2533:ISBN 2500:ISBN 2449:ISSN 2325:ISSN 2094:ISSN 1810:2605 1638:NASA 1621:, a 1056:and 1045:and 124:less 3085:NMR 2658:doi 2646:144 2589:doi 2585:104 2525:doi 2492:doi 2441:doi 2404:doi 2400:121 2317:doi 2305:158 2274:doi 2220:doi 2086:doi 1889:). 1835:604 1817:), 1807:451 1792:), 1783:int 1694:int 1640:'s 1517:(Fe 1445:(Fe 217:). 64:in 3293:: 3090:2D 3009:UV 2664:. 2656:. 2644:. 2619:. 2611:. 2603:. 2595:. 2583:. 2556:. 2531:. 2498:. 2490:. 2486:. 2463:. 2455:. 2447:. 2437:16 2435:. 2410:. 2398:. 2368:27 2366:. 2362:. 2339:. 2331:. 2323:. 2315:. 2303:. 2280:. 2272:. 2262:83 2260:. 2218:. 2206:. 2122:^ 2108:. 2100:. 2092:. 2084:. 2072:. 2014:^ 1900:. 1838:/( 1659:Rh 1655:Co 1612:A 1573:, 1534:Sb 1494:. 1292:). 1276:Sn 1254:Fe 1077:CS 1031:. 1015:, 964:, 919:Lr 914:No 909:Md 904:Fm 899:Es 894:Cf 889:Bk 884:Cm 879:Am 874:Pu 869:Np 859:Pa 854:Th 844:Lu 839:Yb 834:Tm 829:Er 824:Ho 819:Dy 814:Tb 809:Gd 804:Eu 799:Sm 794:Pm 789:Nd 784:Pr 779:Ce 764:Og 759:Ts 754:Lv 749:Mc 744:Fl 739:Nh 734:Cn 729:Rg 724:Ds 719:Mt 714:Hs 709:Bh 704:Sg 699:Db 694:Rf 689:Ac 684:Ra 679:Fr 672:Rn 667:At 662:Po 657:Bi 652:Pb 647:Tl 642:Hg 637:Au 632:Pt 627:Ir 622:Os 617:Re 607:Ta 602:Hf 597:La 592:Ba 587:Cs 580:Xe 570:Te 565:Sb 560:Sn 555:In 550:Cd 545:Ag 540:Pd 535:Rh 530:Ru 525:Tc 520:Mo 515:Nb 510:Zr 500:Sr 495:Rb 488:Kr 483:Br 478:Se 473:As 468:Ge 463:Ga 458:Zn 453:Cu 448:Ni 443:Co 438:Fe 433:Mn 428:Cr 418:Ti 413:Sc 408:Ca 396:Ar 391:Cl 376:Si 371:Al 363:Mg 358:Na 351:Ne 318:Be 313:Li 306:He 279:Sb 275:Sn 273:, 267:Fe 243:Co 239:Fe 212:= 201:Fe 192:. 160:. 100:. 36:Fe 2764:e 2757:t 2750:v 2672:. 2660:: 2652:: 2627:. 2591:: 2566:. 2541:. 2527:: 2508:. 2494:: 2471:. 2443:: 2418:. 2406:: 2381:. 2347:. 2319:: 2311:: 2288:. 2276:: 2268:: 2246:. 2226:. 2222:: 2214:: 2208:6 2116:. 2088:: 2080:: 2074:4 2032:. 1905:V 1894:V 1886:2 1882:3 1877:I 1873:I 1867:n 1861:g 1856:2 1852:1 1847:I 1840:I 1829:n 1826:g 1822:γ 1819:E 1813:× 1803:( 1797:N 1794:μ 1789:T 1780:B 1776:c 1759:) 1754:n 1750:g 1746:+ 1741:e 1736:n 1732:g 1728:3 1725:( 1714:E 1706:N 1690:B 1685:c 1679:= 1676:V 1657:/ 1523:4 1521:O 1519:3 1511:3 1509:O 1507:2 1451:4 1449:O 1447:3 1425:I 1421:m 1412:I 1408:m 1404:I 1400:I 1396:I 1368:I 1364:m 1359:I 1355:m 1351:I 1344:I 1309:d 1305:s 1290:g 1287:R 1283:e 1280:R 1272:s 1268:g 1265:R 1261:e 1258:R 1250:s 1229:. 1225:) 1219:a 1215:] 1211:) 1208:0 1205:( 1200:2 1195:s 1187:[ 1179:b 1175:] 1171:) 1168:0 1165:( 1160:2 1155:s 1147:[ 1143:( 1138:) 1129:2 1124:g 1120:R 1105:2 1100:e 1096:R 1088:( 1084:K 1081:= 1058:b 1054:a 1050:g 1047:R 1043:e 1040:R 1036:K 1025:s 1021:f 1017:d 1013:p 1005:s 998:s 994:s 990:s 864:U 612:W 575:I 505:Y 423:V 403:K 386:S 381:P 346:F 341:O 336:N 331:C 326:B 298:H 271:I 207:( 20:)

Index

Mößbauer spectroscopy

Fe
spectroscopic
Mössbauer effect
Rudolf Mössbauer
recoil
gamma rays
solids
nuclear spectroscopy
nuclear interactions
isomer shift
chemical shift
quadrupole splitting
narrow line
nuclear magnetic resonance spectroscopy
Mössbauer effect
conservation of momentum
crystal
phonons
Lamb–Mössbauer factor
nuclear resonance vibrational spectroscopy
gamma radiation
electronvolt
spectral linewidths
absorbance
Doppler shift
linear motor
Fe
transmittance

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.