Knowledge (XXG)

Nuclear resonance vibrational spectroscopy

Source đź“ť

63: 669: 54:. A novel aspect of the method is the ability to determine the 3D-trajectory of iron atoms within vibrational modes, providing a unique appraisal of DFT-prediction accuracy. Other names for this method include nuclear inelastic scattering (NIS), nuclear inelastic absorption (NIA), nuclear resonant inelastic x-ray scattering (NRIXS), and phonon assisted Mössbauer effect. 681: 70:
In the experimental setup, X-rays are released from the particle beam by an undulator; a high-resolution monochromator produces a beam with small energy dispersion (typically 1.0 meV). The sample is irradiated with photons chosen around the resonance of the Mössbauer isotope and further information
42:, most commonly iron. The method exploits the high resolution offered by synchrotron light sources, which enables the resolution of vibrational fine structure, especially those vibrations that are coupled to the position of the Fe centre(s). The method is popularly applied to problems in 79:. The resulting raw spectrum contains a high-intensity resonance that corresponds to the nuclear excited state of the probed nucleus. For bulk samples, the technique detects natural abundance Fe. For many dilute or biological samples, the sample is often enriched in Fe. 104:
Alp, E. E.; Sturhahn, W.; Toellner, T. S.; Zhao, J.; Hu, M.; Brown, D. E., "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering," in Mössbauer Spectroscopy, P. Gütlich, B. W. Fitzsimmons, R. Rüffer and H. Spiering, Eds. 2003, Springer Netherlands.
137:
J. W. Pavlik, A. Barabanschikov, A. G. Oliver, E. E. Alp, W. Sturhahn, J. Zhao, J. T. Sage, W. R. Scheidt, "Probing Vibrational Anisotropy with Nuclear Resonance Vibrational Spectroscopy" , Angew. Chem. Int. Ed. 2010, volume 49, pp. 4400-4404.
71:
is provided for the specific isotope. Typical parameters for the experimental scan are –20 meV below recoil-free resonance energy to +100 meV above it. The number of scans (often recorded for 5 seconds every 0.2 meV) depends on the amount of
95:
E. E. Alp, W. Sturhahn, T. S. Toellner, J. Zhoa, M.Hu, D. E. Brown. "Vibrational Dynamics Studies by Nuclear Resonant Inelastic X-Ray Scattering" Hyperfine Interactions 144/145: 3–20, 2002.
75:-active nuclei in the sample. The number of photons absorbed by the sample at any wavelength are measured by detecting the fluorescence emitted from the excited atom with an avalanche 500: 173: 391: 324: 269: 238: 606: 424: 286: 555: 374: 218: 495: 297: 198: 441: 419: 166: 17: 507: 429: 259: 364: 309: 121:
W. R. Scheidt, S. M. Durbin, J. T. Sage, "Nuclear resonance vibrational spectroscopy – NRVS", J. Inorg. Biochem. 2005, vol. 99, 60-71.
707: 591: 343: 159: 596: 414: 611: 581: 512: 446: 712: 540: 331: 228: 338: 243: 472: 319: 208: 628: 467: 436: 369: 618: 560: 409: 281: 644: 623: 386: 264: 39: 685: 517: 213: 62: 304: 43: 673: 545: 276: 190: 601: 314: 223: 72: 31: 649: 586: 565: 381: 359: 292: 203: 550: 477: 451: 47: 139: 122: 106: 76: 66:
Schematic of a synchrotron, which provides the incident X-ray beams for this technique.
701: 126: 182: 16:"NRVS" redirects here. For the advocacy group in New South Wales, Australia, see 110: 27: 51: 143: 61: 155: 151: 38:, is specific for samples that contain nuclei that respond to 637: 574: 533: 526: 488: 460: 402: 352: 252: 189: 167: 8: 239:Vibrational spectroscopy of linear molecules 530: 234:Nuclear resonance vibrational spectroscopy 174: 160: 152: 24:Nuclear resonance vibrational spectroscopy 607:Inelastic electron tunneling spectroscopy 287:Resonance-enhanced multiphoton ionization 375:Extended X-ray absorption fine structure 88: 18:Northern Rivers Vaccination Supporters 7: 680: 14: 592:Deep-level transient spectroscopy 344:Saturated absorption spectroscopy 679: 668: 667: 597:Dual-polarization interferometry 612:Scanning tunneling spectroscopy 587:Circular dichroism spectroscopy 582:Acoustic resonance spectroscopy 127:10.1016/j.jinorgbio.2004.11.004 34:. The technique, often called 541:Fourier-transform spectroscopy 229:Vibrational circular dichroism 1: 339:Cavity ring-down spectroscopy 244:Thermal infrared spectroscopy 30:-based technique that probes 473:Inelastic neutron scattering 534:Data collection, processing 410:Photoelectron/photoemission 111:10.1007/978-94-010-0045-1_1 729: 619:Photoacoustic spectroscopy 561:Time-resolved spectroscopy 15: 663: 645:Astronomical spectroscopy 624:Photothermal spectroscopy 32:vibrational energy levels 708:Vibrational spectroscopy 629:Pump–probe spectroscopy 518:Ferromagnetic resonance 310:Laser-induced breakdown 325:Glow-discharge optical 305:Raman optical activity 219:Rotational–vibrational 144:10.1002/anie.201000928 67: 44:bioinorganic chemistry 40:Mössbauer spectroscopy 713:Scientific techniques 546:Hyperspectral imaging 65: 298:Coherent anti-Stokes 253:UV–Vis–NIR "Optical" 602:Hadron spectroscopy 392:Conversion electron 353:X-ray and Gamma ray 260:Ultraviolet–visible 77:photodiode detector 58:Experimental set-up 650:Force spectroscopy 575:Measured phenomena 566:Video spectroscopy 270:Cold vapour atomic 68: 695: 694: 659: 658: 551:Spectrophotometry 478:Neutron spin echo 452:Beta spectroscopy 365:Energy-dispersive 48:materials science 720: 683: 682: 671: 670: 531: 442:phenomenological 191:Vibrational (IR) 176: 169: 162: 153: 146: 135: 129: 119: 113: 102: 96: 93: 728: 727: 723: 722: 721: 719: 718: 717: 698: 697: 696: 691: 655: 633: 570: 522: 484: 456: 398: 348: 248: 209:Resonance Raman 185: 180: 150: 149: 136: 132: 120: 116: 103: 99: 94: 90: 85: 60: 21: 12: 11: 5: 726: 724: 716: 715: 710: 700: 699: 693: 692: 690: 689: 677: 664: 661: 660: 657: 656: 654: 653: 647: 641: 639: 635: 634: 632: 631: 626: 621: 616: 615: 614: 604: 599: 594: 589: 584: 578: 576: 572: 571: 569: 568: 563: 558: 553: 548: 543: 537: 535: 528: 524: 523: 521: 520: 515: 510: 505: 504: 503: 492: 490: 486: 485: 483: 482: 481: 480: 470: 464: 462: 458: 457: 455: 454: 449: 444: 439: 434: 433: 432: 427: 425:Angle-resolved 422: 417: 406: 404: 400: 399: 397: 396: 395: 394: 384: 379: 378: 377: 372: 367: 356: 354: 350: 349: 347: 346: 341: 336: 335: 334: 329: 328: 327: 312: 307: 302: 301: 300: 290: 284: 279: 274: 273: 272: 262: 256: 254: 250: 249: 247: 246: 241: 236: 231: 226: 221: 216: 211: 206: 201: 195: 193: 187: 186: 181: 179: 178: 171: 164: 156: 148: 147: 130: 114: 97: 87: 86: 84: 81: 59: 56: 13: 10: 9: 6: 4: 3: 2: 725: 714: 711: 709: 706: 705: 703: 688: 687: 678: 676: 675: 666: 665: 662: 651: 648: 646: 643: 642: 640: 636: 630: 627: 625: 622: 620: 617: 613: 610: 609: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 579: 577: 573: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 538: 536: 532: 529: 525: 519: 516: 514: 511: 509: 506: 502: 499: 498: 497: 494: 493: 491: 487: 479: 476: 475: 474: 471: 469: 466: 465: 463: 459: 453: 450: 448: 445: 443: 440: 438: 435: 431: 428: 426: 423: 421: 418: 416: 413: 412: 411: 408: 407: 405: 401: 393: 390: 389: 388: 385: 383: 380: 376: 373: 371: 368: 366: 363: 362: 361: 358: 357: 355: 351: 345: 342: 340: 337: 333: 330: 326: 323: 322: 321: 318: 317: 316: 313: 311: 308: 306: 303: 299: 296: 295: 294: 291: 288: 285: 283: 282:Near-infrared 280: 278: 275: 271: 268: 267: 266: 263: 261: 258: 257: 255: 251: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 196: 194: 192: 188: 184: 177: 172: 170: 165: 163: 158: 157: 154: 145: 141: 134: 131: 128: 124: 118: 115: 112: 108: 101: 98: 92: 89: 82: 80: 78: 74: 64: 57: 55: 53: 49: 45: 41: 37: 33: 29: 25: 19: 684: 672: 652:(a misnomer) 638:Applications 556:Time-stretch 447:paramagnetic 265:Fluorescence 233: 183:Spectroscopy 133: 117: 100: 91: 69: 35: 23: 22: 224:Vibrational 28:synchrotron 702:Categories 430:Two-photon 332:absorption 214:Rotational 83:References 52:geophysics 508:Terahertz 489:Radiowave 387:Mössbauer 73:Mössbauer 674:Category 403:Electron 370:Emission 320:emission 277:Vibronic 686:Commons 513:ESR/EPR 461:Nucleon 289:(REMPI) 527:Others 315:Atomic 50:, and 468:Alpha 437:Auger 415:X-ray 382:Gamma 360:X-ray 293:Raman 204:Raman 199:FT-IR 26:is a 36:NRVS 496:NMR 140:doi 123:doi 107:doi 704:: 501:2D 420:UV 46:, 175:e 168:t 161:v 142:: 125:: 109:: 20:.

Index

Northern Rivers Vaccination Supporters
synchrotron
vibrational energy levels
Mössbauer spectroscopy
bioinorganic chemistry
materials science
geophysics

Mössbauer
photodiode detector
doi
10.1007/978-94-010-0045-1_1
doi
10.1016/j.jinorgbio.2004.11.004
doi
10.1002/anie.201000928
v
t
e
Spectroscopy
Vibrational (IR)
FT-IR
Raman
Resonance Raman
Rotational
Rotational–vibrational
Vibrational
Vibrational circular dichroism
Nuclear resonance vibrational spectroscopy
Vibrational spectroscopy of linear molecules

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑