Knowledge (XXG)

Mukaiyama aldol addition

Source 📝

221: 195: 335: 456: 475: 422: 42: 316: 70: 367:
The Mukaiyama aldol reaction does not follow the Zimmerman-Traxler model. Carreira has described particularly useful asymmetric methodology with silyl ketene acetals, noteworthy for its high levels of enantioselectivity and wide substrate scope. The method works on
394:
Mukaiyama aldol process can also be rendered catalytic and asymmetric. The example shown below works efficiently for aromatic (but not aliphatic) aldehydes and the mechanism is believed to involve a chiral, metal-bound dienolate.
788:
Mukaiyama, Teruaki; Shiina, Isamu; Iwadare, Hayato; Saitoh, Masahiro; Nishimura, Toshihiro; Ohkawa, Naoto; Sakoh, Hiroki; Nishimura, Koji; Tani, Yu-ichirou; Hasegawa, Masatoshi; Yamada, Koji; Saitoh, Katsuyuki (4 January 1999).
671:
Pagenkopf B.L.; Kruger J.; Stojanovic A.; Carreira E.M. (1998). "Mechanistic insights into Cu-catalyzed asymmetric aldol reactions: Chemical and spectroscopic evidence for a metalloenolate intermediate".
346:
is used. First, the Lewis acid activates the aldehyde component followed by carbon-carbon bond formation between the enol silane and the activated aldehyde. With the loss of a chlorosilane the compound
642:
Kruger J.; Carreira E.M. (1998). "Apparent catalytic generation of chiral metal enolates: Enantioselective dienolate additions to aldehydes mediated by Tol-BINAP center Cu(II) fluoride complexes".
748:
DIRECTED ALDOL CONDENSATIONS: β-PHENYLCINNAMALDEHYDE Organic Syntheses, Coll. Vol. 6, p. 901 (1988); Vol. 50, p. 66 (1970). G. Wittig, A. Hesse, Allan Y. Teranishi and Herbert O. House
761:
House, Herbert O.; Crumrine, David S.; Teranishi, Allan Y.; Olmstead, Hugh D. (May 1973). "Chemistry of carbanions. XXIII. Use of metal complexes to control the aldol condensation".
220: 482:
Utilization of chiral Lewis acid complexes and Lewis bases in asymmetric catalytic processes is the fastest-growing area in the usage of the Mukaiyama aldol reaction.
194: 644: 615: 685: 586: 455: 334: 807: 790: 474: 399: 384: 421: 429:
Ketone reactions of this type require higher reaction temperatures. For this work Mukaiyama was inspired by earlier work done by
521: 369: 837: 308:) was used in stoichiometric amounts but truly catalytic systems exist as well. The reaction is also optimized for 376:
for catalytic, asymmetric processes. This may be due to poor electronic and steric differentiation between their
183:) compounds. In this reaction, compounds with various organic groups can be used (see educts). A basic version ( 41: 842: 69: 298: 573:
Strategic applications of named reactions in organic synthesis : background and detailed mechanisms
441: 499:
Mukaiyama, T.; Kobayashi, S. (1994). "Tin(II) Enolates in the Aldol, Michael, and Related Reactions".
437:. Competing work with lithium enolate aldol reactions was published also in 1973 by Herbert O. House. 309: 578: 445: 294: 147:
in 1973. His choice of reactants allows for a crossed aldol reaction between an aldehyde and a
706: 689: 582: 540: 517: 449: 176: 160: 156: 144: 93: 217:
silanes are used in this reaction a mixture of four products occurs, yielding two racemates.
214: 802: 770: 731: 681: 653: 624: 570: 548: 509: 279: 188: 109: 101: 74: 17: 243:-diastereomer is built depends largely on reaction conditions, substrates and Lewis acids. 225: 206: 603: 571: 749: 315: 105: 735: 831: 468: 464: 283: 247: 710: 430: 411: 373: 263: 236: 199: 722:
Wittig, G.; Suchanek, P. (January 1966). "Über gezielte aldokondensationen—II".
686:
10.1002/(SICI)1521-3773(19981204)37:22<3124::AID-ANIE3124>3.0.CO;2-1
513: 501: 377: 391: 210: 172: 808:
10.1002/(SICI)1521-3765(19990104)5:1<121::AID-CHEM121>3.0.CO;2-O
287: 693: 608:-silyl enolates — a chira; tridentate chelate as a ligand for titanium(IV)" 604:"Catalytic, enantioselective aldol additions with methyl and ethyl acetate 398: 383: 552: 128: 46: 774: 628: 282:
it produces a diastereomeric mixture of threo (63%) and erythro (19%) β-
415: 136: 56: 657: 27:
Organic reaction between a silyl enol ether and an aldehyde or formate
159:
of the aldehyde. For this reason the reaction is used extensively in
148: 821:
TBS = t-butyldimethylsilyl, Bn = benzyl, PMB = p-methoxybenzyl ether
434: 291: 246:
The archetypical reaction is that of the silyl enol ether of
473: 454: 420: 397: 382: 333: 314: 219: 193: 410:
A typical reaction involving two ketones is that between
750:
http://www.orgsynth.org/orgsyn/prep.asp?prep=cv6p0901
709:, Coll. Vol. 8, p. 323 (1993); Vol. 65, p. 6 (1987). 539:Teruaki Mukaiyama, Koichi Narasaka and Kazuo Banno 433:in 1966 on crossed aldol reactions with lithiated 711:http://www.orgsynth.org/orgsyn/pdfs/CV8P0323.pdf 602:Carreira E.M.; Singer R.A.; Lee W.S. (1994). 351:is built. The desired product, a racemate of 8: 327:Below, the reaction mechanism is shown with 224:Overview of reaction with consideration of 372:aliphatic aldehydes, which are often poor 31: 806: 763:Journal of the American Chemical Society 645:Journal of the American Chemical Society 616:Journal of the American Chemical Society 342:In the cited example the Lewis acid TiCl 304: 297:. In its original scope the Lewis acid ( 273: 269: 257: 253: 123: 119: 115: 791:"Asymmetric Total Synthesis of Taxol\R" 564: 562: 560: 491: 444:(1999) two aldol additions, one with a 440:Mukaiyama employed in his rendition of 569:KĂźrti, LĂĄszlĂł; CzakĂł, Barbara (2005). 7: 577:. Elsevier Academic Press. pp.  425:Mukaiyama aldol between two ketones 155:), or a different aldehyde without 459:Mukaiyama aldol in taxol synthesis 359:, is obtained by aqueous work-up. 171:The Mukaiyama aldol addition is a 143:). The reaction was discovered by 25: 478:Mukaiyama asymmetric aldol taxol 338:Mukaiyama Aldol-MechanismusV7 en 68: 40: 463:and a second one with an amine 795:Chemistry – A European Journal 1: 736:10.1016/S0040-4020(01)82193-1 187:= H) without the presence of 179:of enol silanes to carbonyl ( 18:Mukaiyama aldol condensation 547:), No.9 pp. 1011–1014 514:10.1002/0471264180.or046.01 198:Simplified overview with a 859: 86:= Alkyl, Aryl, H, OR, SR) 98:Mukaiyama aldol addition 537:New aldol type reaction 167:General reaction scheme 479: 460: 426: 402: 387: 339: 319: 299:titanium tetrachloride 228: 202: 477: 458: 442:taxol total synthesis 424: 401: 386: 337: 318: 286:as well as 6% of the 223: 197: 674:Angew. Chem. Int. Ed 553:10.1246/cl.1973.1011 310:asymmetric synthesis 295:condensation product 775:10.1021/ja00791a039 629:10.1021/ja00098a065 446:ketene silyl acetal 838:Addition reactions 480: 461: 427: 403: 388: 340: 320: 229: 203: 81:= Alkyl, Aryl, H; 769:(10): 3310–3324. 707:Organic Syntheses 658:10.1021/ja973331t 588:978-0-12-429785-2 541:Chemistry Letters 450:magnesium bromide 161:organic synthesis 157:self-condensation 145:Teruaki Mukaiyama 94:organic chemistry 90: 89: 16:(Redirected from 850: 822: 819: 813: 812: 810: 785: 779: 778: 758: 752: 746: 740: 739: 719: 713: 704: 698: 697: 668: 662: 661: 639: 633: 632: 612: 599: 593: 592: 576: 566: 555: 534: 528: 527: 496: 414:as the enol and 330: 307: 280:room temperature 277: 261: 191:is shown below. 189:chiral catalysts 186: 182: 154: 142: 134: 126: 110:silyl enol ether 102:organic reaction 85: 80: 75:silyl enol ether 72: 62: 52: 44: 32: 21: 858: 857: 853: 852: 851: 849: 848: 847: 828: 827: 826: 825: 820: 816: 787: 786: 782: 760: 759: 755: 747: 743: 721: 720: 716: 705: 701: 670: 669: 665: 641: 640: 636: 610: 601: 600: 596: 589: 568: 567: 558: 535: 531: 524: 498: 497: 493: 488: 408: 365: 363:Stereoselection 345: 328: 325: 306: 302: 275: 271: 267: 259: 255: 251: 226:stereochemistry 184: 180: 169: 152: 140: 132: 125: 121: 117: 113: 83: 82: 78: 73: 60: 54: 53:= Alkyl, Aryl) 50: 45: 28: 23: 22: 15: 12: 11: 5: 856: 854: 846: 845: 843:Name reactions 840: 830: 829: 824: 823: 814: 801:(1): 121–161. 780: 753: 741: 714: 699: 680:(22): 3124–6. 663: 634: 623:(19): 8837–8. 594: 587: 556: 529: 522: 490: 489: 487: 484: 407: 404: 390:The analogous 364: 361: 343: 324: 321: 168: 165: 106:aldol reaction 104:and a type of 88: 87: 65: 64: 37: 36: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 855: 844: 841: 839: 836: 835: 833: 818: 815: 809: 804: 800: 796: 792: 784: 781: 776: 772: 768: 764: 757: 754: 751: 745: 742: 737: 733: 729: 725: 718: 715: 712: 708: 703: 700: 695: 691: 687: 683: 679: 675: 667: 664: 659: 655: 651: 647: 646: 638: 635: 630: 626: 622: 618: 617: 609: 607: 598: 595: 590: 584: 580: 575: 574: 565: 563: 561: 557: 554: 550: 546: 542: 538: 533: 530: 525: 519: 515: 511: 507: 504: 503: 495: 492: 485: 483: 476: 472: 470: 469:triflate salt 466: 465:chiral ligand 457: 453: 451: 447: 443: 438: 436: 432: 423: 419: 417: 413: 405: 400: 396: 393: 385: 381: 379: 375: 374:electrophiles 371: 362: 360: 358: 354: 350: 336: 332: 322: 317: 313: 311: 300: 296: 293: 289: 285: 284:hydroxyketone 281: 265: 249: 248:cyclohexanone 244: 242: 238: 234: 227: 222: 218: 216: 213:is built. If 212: 208: 201: 196: 192: 190: 178: 174: 166: 164: 162: 158: 150: 146: 138: 130: 111: 107: 103: 99: 95: 76: 71: 67: 66: 58: 48: 43: 39: 38: 34: 33: 30: 19: 817: 798: 794: 783: 766: 762: 756: 744: 727: 723: 717: 702: 677: 673: 666: 652:(4): 837–8. 649: 643: 637: 620: 614: 605: 597: 572: 544: 536: 532: 505: 500: 494: 481: 462: 439: 431:Georg Wittig 428: 412:acetophenone 409: 389: 378:enantiofaces 366: 356: 352: 348: 341: 326: 264:benzaldehyde 245: 240: 237:diastereomer 232: 231:Whether the 230: 215:Z- or E-enol 204: 200:stereocenter 170: 118:C=CR−O−Si(CH 97: 91: 29: 730:: 347–358. 724:Tetrahedron 502:Org. React. 448:and excess 211:enantiomers 207:racemic mix 832:Categories 523:0471264180 486:References 471:catalyst: 392:vinylogous 370:unbranched 175:-mediated 173:Lewis acid 108:between a 323:Mechanism 288:exocyclic 127:) and an 694:29711324 177:addition 141:R−O−CH=O 129:aldehyde 47:aldehyde 543:Vol.2 ( 416:acetone 262:, with 239:or the 153:>C=O 137:formate 57:formate 35:educts 692:  585:  581:–299. 520:  467:and a 435:imines 149:ketone 133:R−CH=O 100:is an 96:, the 63:= OR) 611:(PDF) 508:: 1. 406:Scope 331:= H: 292:enone 278:. At 135:) or 690:PMID 583:ISBN 545:1973 518:ISBN 355:and 303:TiCl 233:anti 803:doi 771:doi 732:doi 682:doi 654:doi 650:120 625:doi 621:116 579:298 549:doi 510:doi 276:CHO 252:(CH 241:syn 209:of 181:C=O 92:In 55:or 834:: 797:. 793:. 767:95 765:. 728:22 726:. 688:. 678:37 676:. 648:. 619:. 613:. 559:^ 516:. 506:46 452:: 418:: 380:. 312:. 301:, 290:, 266:, 260:CO 250:, 205:A 163:. 811:. 805:: 799:5 777:. 773:: 738:. 734:: 696:. 684:: 660:. 656:: 631:. 627:: 606:O 591:. 551:: 526:. 512:: 357:3 353:2 349:1 344:4 329:R 305:4 274:5 272:H 270:6 268:C 258:5 256:) 254:2 235:- 185:R 151:( 139:( 131:( 124:3 122:) 120:3 116:2 114:R 112:( 84:R 79:R 77:( 61:R 59:( 51:R 49:( 20:)

Index

Mukaiyama aldol condensation
Carbonsäureester
aldehyde
formate
Phosphorsäureester
silyl enol ether
organic chemistry
organic reaction
aldol reaction
silyl enol ether
aldehyde
formate
Teruaki Mukaiyama
ketone
self-condensation
organic synthesis
Lewis acid
addition
chiral catalysts
Simplified overview with a stereocenter
stereocenter
racemic mix
enantiomers
Z- or E-enol
Overview of reaction with consideration of stereochemistry
stereochemistry
diastereomer
cyclohexanone
benzaldehyde
room temperature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑