Knowledge (XXG)

Muon collider

Source 📝

147:(MICE). An alternative production method, Low Emittance Muon Accelerator (LEMMA) uses a positron beam impinging on a fixed target to produce muon pairs from the electron-positron annihilation process at the threshold centre-of-mass energy. The resulting beam does not need the cooling stage, but suffers from the very low muon-production cross section, making it challenging to achieve high 518: 155:
has increased again in 2020 after the publication of the physics-reach comparison between the 1.5 TeV Muon Collider and the CLIC experiment, followed by the update of the European strategy for particle physics, in which it was recommended to initiate an international design study of a Muon Collider targeting centre-of-mass energies close to 10 TeV.
110:
from a muon by a factor of about 1 billion. The reduced radiation loss enables the construction of circular colliders with much higher design energies than equivalent electron / positron colliders. This provides the unique combination of a high centre-of-mass energy and a clean collision environment
154:
Talks were proceeding in 2009. The first dedicated design of the accelerator complex and detector design for the centre-of-mass energies up to 3 TeV was developed within the American Muon Accelerator Program (MAP) during 2010–2015, after which it was abandoned. Interest in the Muon Collider project
138:
in their rest frame. This fact poses a serious challenge for the accelerator complex: Muons have to be accelerated to a high energy before they decay and the accelerator needs a continuous source of new muons. It also impacts the experiment design: A high flux of particles induced by the muon decay
139:
products eventually reaches the detector, requiring advanced detector technologies and event-reconstruction algorithms to distinguish these particles from collision products. The baseline muon-production method considered today is based on a high-energy proton beam impinging on a target to produce
115:(TeV). In particular, starting from the centre-of-mass energy of 3 TeV a muon collider is the most-energy efficient type of collider, while at 10 TeV it would have a physics reach comparable to that of the proposed 100 TeV hadron collider, 143:, which then decay to muons that have a sizeable spread of direction and energy, which needs to be reduced for further acceleration in the ring. The possibility of performing this so-called 6D cooling of muons has been demonstrated by the 628:
N. Bartosik, A. Bertolin, L. Buonincontri, M. Casarsa, F. Collamati, A. Ferrari, A. Ferrari, A. Gianelle, D. Lucchesi, N. Mokhov, M. Palmer, N. Pastrone, P. Sala, L. Sestini and S. Striganov (2020).
91:, are composite particles. Yet electron-positron colliders can't efficiently reach the same centre-of-mass energy as hadron colliders in circular accelerators due to the energy loss through 679: 442: 261: 164: 144: 765: 111:
that is not achievable in any other type of particle collider. It has been shown that a muon collider could achieve energies of several
603: 148: 188: 182: 505:
A Wire Position Monitor System for the 1.3 GHz TESLA-style Cryomodule at the Fermilab New-Muon-Lab Accelerator.
124: 116: 673: 436: 255: 107: 92: 76: 36:, they are typically produced in high-energy collisions either naturally (for example by collisions of 726: 651: 557: 408: 339: 298: 227: 45: 21: 591: 80: 641: 573: 547: 424: 398: 288: 243: 217: 744: 367: 734: 710: 659: 565: 458: 416: 357: 347: 306: 235: 695: 481: 456: 192: 68: 664: 629: 569: 730: 655: 561: 412: 343: 302: 231: 362: 327: 204:
K. R. Long, D. Lucchesi, M. A. Palmer, N. Pastrone, D. Schulte and V. Shiltsev (2021).
29: 503:
Eddy, B. Fellenz, P. Prieto, A. Semenov, D.C. Voy, M. Wendt (Fermilab) 17 August 2011
759: 577: 247: 205: 428: 692: 311: 276: 112: 123:), without the need for a much more expensive 100-km long tunnel foreseen for the 32:
and for direct searches of new physics. Muons belong to the second generation of
135: 128: 60: 37: 739: 714: 420: 239: 352: 41: 386: 185: 517:
6 March 2008 – The Neutrino Factory and Muon Collider Collaboration (NFMCC)
387:"Novel proposal for a low emittance muon beam using positron beam on target" 120: 748: 371: 474: 103: 64: 56: 48:). The main challenge of such a collider is the short lifetime of muons. 535: 507: 88: 127:. A muon collider also provides a clean and effective way to produce 84: 52: 33: 462: 328:"Demonstration of cooling by the Muon Ionization Cooling Experiment" 715:"Particle physicists want to build the world's first muon collider" 646: 403: 293: 222: 79:, in that lepton collisions are relatively "clean" thanks to being 552: 140: 99: 72: 25: 522: 478: 385:
M. Antonelli, M. Boscolo, R. Di Nardo and P. Raimondi (2016).
277:"Lineshape of the Higgs boson in future lepton colliders" 536:"Recent progress of RF cavity study at Mucool Test Area" 206:"Muon colliders to expand frontiers of particle physics" 492: 134:
Muons are short-lived particles with a lifetime of 2.2
455:
Eric Hand 18 November 2009 Nature 462, 260–261 (2009)
24:
facility in its conceptual design stage that collides
630:"Detector and Physics Performance at a Muon Collider" 119:, while fitting in a ring of the size of the LHC (27 44:) or artificially (in controlled environments using 165:International Muon Ionization Cooling Experiment 604:"'This is our Muon Shot' | symmetry magazine" 534:Yonehara, Katsuya; MTA working Group (2013). 8: 678:: CS1 maint: multiple names: authors list ( 590:ISIS A World centre for Neutrinos and Muons 441:: CS1 maint: multiple names: authors list ( 260:: CS1 maint: multiple names: authors list ( 738: 663: 645: 551: 402: 361: 351: 310: 292: 221: 175: 671: 434: 275:Jadach, S.; Kycia, R.A. (April 2016). 253: 540:Journal of Physics: Conference Series 7: 151:with the existing positron sources. 28:beams for precision studies of the 145:Muon Ionisation Cooling Experiment 14: 602:Dattaro, Laura (10 April 2024). 98:A muon is about 206 times more 67:. They offer an advantage over 766:Proposed particle accelerators 665:10.1088/1748-0221/15/05/P05001 570:10.1088/1742-6596/408/1/012062 312:10.1016/j.physletb.2016.01.065 106:, which reduces the amount of 1: 696:Muon-collider study initiated 475:The U.S. Department of Energy 183:Lawrence Berkeley Laboratory 326:MICE collaboration (2020). 782: 740:10.1038/d41586-022-02122-y 634:Journal of Instrumentation 421:10.1016/j.nima.2015.10.097 240:10.1038/s41567-020-01130-x 353:10.1038/s41586-020-1958-9 608:www.symmetrymagazine.org 391:Nucl. Instrum. Methods A 191:27 February 2005 at the 125:Future Circular Collider 55:colliders have all used 186:Center for Beam Physics 108:synchrotron radiation 93:synchrotron radiation 77:Large Hadron Collider 46:particle accelerators 81:elementary particles 22:particle accelerator 731:2022Natur.608..660G 656:2020JInst..15P5001B 562:2013JPhCS.408a2062Y 413:2016NIMPA.807..101A 344:2020Natur.578...53M 303:2016PhLB..755...58J 232:2021NatPh..17..289L 725:(7924): 660–661. 713:(8 August 2022). 711:Gibney, Elizabeth 281:Physics Letters B 40:with the Earth's 773: 752: 742: 698: 690: 684: 683: 677: 669: 667: 649: 625: 619: 618: 616: 614: 599: 593: 588: 582: 581: 555: 531: 525: 515: 509: 501: 495: 490: 484: 471: 465: 453: 447: 446: 440: 432: 406: 382: 376: 375: 365: 355: 323: 317: 316: 314: 296: 272: 266: 265: 259: 251: 225: 201: 195: 180: 113:teraelectronvolt 69:hadron colliders 781: 780: 776: 775: 774: 772: 771: 770: 756: 755: 709: 706: 701: 691: 687: 670: 627: 626: 622: 612: 610: 601: 600: 596: 589: 585: 533: 532: 528: 523:17 October 2011 516: 512: 502: 498: 491: 487: 472: 468: 463:10.1038/462260a 454: 450: 433: 384: 383: 379: 338:(7793): 53–59. 325: 324: 320: 274: 273: 269: 252: 203: 202: 198: 193:Wayback Machine 181: 177: 173: 161: 12: 11: 5: 779: 777: 769: 768: 758: 757: 754: 753: 705: 704:External links 702: 700: 699: 685: 620: 594: 583: 526: 510: 496: 485: 466: 448: 377: 318: 267: 216:(3): 289–292. 210:Nature Physics 196: 174: 172: 169: 168: 167: 160: 157: 71:, such as the 61:anti-particles 30:Standard Model 20:is a proposed 13: 10: 9: 6: 4: 3: 2: 778: 767: 764: 763: 761: 750: 746: 741: 736: 732: 728: 724: 720: 716: 712: 708: 707: 703: 697: 694: 689: 686: 681: 675: 666: 661: 657: 653: 648: 643: 640:(5): P05001. 639: 635: 631: 624: 621: 609: 605: 598: 595: 592: 587: 584: 579: 575: 571: 567: 563: 559: 554: 549: 546:(1): 012062. 545: 541: 537: 530: 527: 524: 520: 514: 511: 508: 506: 500: 497: 494: 489: 486: 483: 480: 476: 470: 467: 464: 460: 457: 452: 449: 444: 438: 430: 426: 422: 418: 414: 410: 405: 400: 396: 392: 388: 381: 378: 373: 369: 364: 359: 354: 349: 345: 341: 337: 333: 329: 322: 319: 313: 308: 304: 300: 295: 290: 286: 282: 278: 271: 268: 263: 257: 249: 245: 241: 237: 233: 229: 224: 219: 215: 211: 207: 200: 197: 194: 190: 187: 184: 179: 176: 170: 166: 163: 162: 158: 156: 152: 150: 146: 142: 137: 132: 130: 126: 122: 118: 114: 109: 105: 101: 96: 94: 90: 86: 82: 78: 74: 70: 66: 62: 59:and/or their 58: 54: 49: 47: 43: 39: 35: 31: 27: 23: 19: 18:Muon Collider 722: 718: 693:CERN Courier 688: 674:cite journal 637: 633: 623: 611:. Retrieved 607: 597: 586: 543: 539: 529: 513: 504: 499: 488: 469: 451: 437:cite journal 394: 390: 380: 335: 331: 321: 284: 280: 270: 256:cite journal 213: 209: 199: 178: 153: 133: 129:Higgs bosons 97: 50: 17: 15: 397:: 101–107. 38:cosmic rays 647:2001.04431 473:Fermilab 404:1509.04454 294:1509.02406 223:2007.15684 171:References 149:luminosity 87:, such as 42:atmosphere 578:204924736 553:1201.5903 287:: 58–63. 248:234356677 102:than the 65:positrons 57:electrons 51:Previous 760:Category 749:35941386 613:11 April 429:55500891 372:32025014 189:Archived 159:See also 104:electron 83:, while 727:Bibcode 652:Bibcode 558:Bibcode 409:Bibcode 363:7039811 340:Bibcode 299:Bibcode 228:Bibcode 100:massive 89:protons 85:hadrons 75:-based 34:leptons 747:  719:Nature 576:  482:indico 479:MUONRD 427:  370:  360:  332:Nature 246:  117:FCC-hh 53:lepton 642:arXiv 574:S2CID 548:arXiv 477:> 425:S2CID 399:arXiv 289:arXiv 244:S2CID 218:arXiv 141:pions 745:PMID 680:link 615:2024 443:link 368:PMID 262:link 73:CERN 26:muon 735:doi 723:608 660:doi 566:doi 544:408 519:pdf 493:MAP 459:doi 417:doi 395:807 358:PMC 348:doi 336:578 307:doi 285:755 236:doi 762:: 743:. 733:. 721:. 717:. 676:}} 672:{{ 658:. 650:. 638:15 636:. 632:. 606:. 572:. 564:. 556:. 542:. 538:. 521:– 439:}} 435:{{ 423:. 415:. 407:. 393:. 389:. 366:. 356:. 346:. 334:. 330:. 305:. 297:. 283:. 279:. 258:}} 254:{{ 242:. 234:. 226:. 214:17 212:. 208:. 136:Ξs 131:. 121:km 95:. 63:, 16:A 751:. 737:: 729:: 682:) 668:. 662:: 654:: 644:: 617:. 580:. 568:: 560:: 550:: 461:: 445:) 431:. 419:: 411:: 401:: 374:. 350:: 342:: 315:. 309:: 301:: 291:: 264:) 250:. 238:: 230:: 220::

Index

particle accelerator
muon
Standard Model
leptons
cosmic rays
atmosphere
particle accelerators
lepton
electrons
anti-particles
positrons
hadron colliders
CERN
Large Hadron Collider
elementary particles
hadrons
protons
synchrotron radiation
massive
electron
synchrotron radiation
teraelectronvolt
FCC-hh
km
Future Circular Collider
Higgs bosons
Ξs
pions
Muon Ionisation Cooling Experiment
luminosity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑