Knowledge

Multi-parametric surface plasmon resonance

Source 📝

98:
The measured full SPR curves (x-axis: angle, y-axis: reflected light intensity) can be transcribed into sensograms (x-axis: time, y-axis: selected parameter such as peak minimum, light intensity, peak width). The sensograms can be fitted using binding models to obtain kinetic parameters including on-
781:
Vuoriluoto, Maija; Orelma, Hannes; Johansson, Leena-Sisko; Zhu, Baolei; Poutanen, Mikko; Walther, Andreas; Laine, Janne; Rojas, Orlando J. (10 December 2015). "Effect of Molecular Architecture of PDMAEMA–POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses
524:
Souto, DĂȘnio E.P.; Fonseca, Aliani M.; Barragan, JosĂ© T.C.; Luz, Rita de C.S.; Andrade, HĂ©lida M.; Damos, FlĂĄvio S.; Kubota, Lauro T. (August 2015). "SPR analysis of the interaction between a recombinant protein of unknown function in Leishmania infantum immobilised on dendrimers and antibodies of
85:
The MP-SPR optical setup measures at multiple wavelengths simultaneously (similarly to spectroscopic SPR), but instead of measuring at a fixed angle, it rather scans across a wide range of Ξ angles (for instance 40 degrees). This results in measurements of full SPR curves at multiple wavelengths
655:
Taverne, S.; Caron, B.; GĂ©tin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E. (2018-01-12). "Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED
817:
Granqvist, Niko; Liang, Huamin; Laurila, Terhi; Sadowski, Janusz; Yliperttula, Marjo; Viitala, Tapani (9 July 2013). "Characterizing Ultrathin and Thick Organic Layers by Surface Plasmon Resonance Three-Wavelength and Waveguide Mode Analysis".
103:
to obtain thickness and refractive index of the layers. Also due to the ability of scanning the whole SPR curve, MP-SPR is able to separate bulk effect and analyte binding from each other using parameters of the curve.
38:(SPR), an established real-time label-free method for biomolecular interaction analysis, but it uses a different optical setup, a goniometric SPR configuration. While MP-SPR provides same kinetic information as SPR ( 603:
Ihalainen, Petri; Majumdar, Himadri; Viitala, Tapani; Törngren, Björn; NĂ€rjeoja, Tuomas; MÀÀttĂ€nen, Anni; Sarfraz, Jawad; HĂ€rmĂ€, Harri; Yliperttula, Marjo; Österbacka, Ronald; Peltonen, Jouko (27 December 2012).
307:
Korhonen, Kristiina; Granqvist, Niko; Ketolainen, Jarkko; Laitinen, Riikka (October 2015). "Monitoring of drug release kinetics from thin polymer films by multi-parametric surface plasmon resonance".
426:"Elucidating the Signal Responses of Multi-Parametric Surface Plasmon Resonance Living Cell Sensing: A Comparison between Optical Modeling and Drug–MDCKII Cell Interaction Measurements" 66:
since 1980s by Dr. Janusz Sadowski. The goniometric SPR optics was commercialized by Biofons Oy for use in point-of-care applications. Introduction of additional measurement
405: 903: 560:
Sonny, Susanna; Virtanen, Vesa; Sesay, Adama M. (2010). "Development of diagnostic SPR based biosensor for the detection of pharmaceutical compounds in saliva".
255:, MP-SPR is used for optimization of thin solid films from Ångströms to 100 nanometers (graphene, metals, oxides), soft materials up to microns (nanocellulose, 342:
Sadowski, J. W.; Korhonen, I.; Peltonen, J. (1995). "Characterization of thin films and their structures in surface plasmon resonance measurements".
483:
Garcia-Linares, Sara; Palacios-Ortega, Juan; Yasuda, Tomokazu; Åstrand, Mia; Gavilanes, Jose G.; Martinez-del-Pozo, Alvaro; Slotte, J.Peter (2016).
63: 873: 389: 203:
The method has been used in life sciences, material sciences and biosensor development. In life sciences, the main applications focus on
248: 87: 863: 424:
Viitala, Tapani; Granqvist, Niko; Hallila, Susanna; Raviña, Manuela; Yliperttula, Marjo; van Raaij, Mark J. (27 August 2013).
740:
Emilsson, Gustav; Schoch, Rafael L.; Feuz, Laurent; Höök, Fredrik; Lim, Roderick Y. H.; Dahlin, Andreas B. (15 April 2015).
888: 868: 280: 898: 239:
development, MP-SPR is used for assay development for point-of-care applications. Typical developed biosensors include
908: 191:
measures wet mass, MP-SPR and other optical methods measure dry mass, which enables analysis of water content of
35: 858: 878: 276: 264: 224: 216: 232: 228: 17: 883: 268: 47: 43: 485:"Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers" 712: 665: 569: 437: 351: 260: 39: 913: 893: 272: 220: 606:"Application of Paper-Supported Printed Gold Electrodes for Impedimetric Immunosensor Development" 585: 399: 62:
The goniometric SPR method was researched alongside focused beam SPR and Otto configurations at
54:, layer thickness). Hence, MP-SPR measures both surface interactions and nanolayer properties. 835: 799: 763: 681: 637: 542: 506: 465: 385: 324: 100: 827: 791: 753: 742:"Strongly Stretched Protein Resistant Poly(ethylene glycol) Brushes Prepared by Grafting-To" 720: 673: 627: 617: 577: 534: 496: 455: 445: 359: 316: 252: 204: 51: 256: 701:"Surface plasmon resonance for characterization of large-area atomic-layer graphene film" 716: 669: 573: 441: 355: 632: 605: 460: 425: 284: 208: 852: 192: 589: 223:
or with a living cell monolayer. As first in the world, MP-SPR is able to separate
212: 320: 501: 484: 450: 538: 70: 795: 685: 725: 700: 240: 236: 74: 839: 803: 767: 758: 741: 641: 546: 510: 469: 328: 699:
Jussila, Henri; Yang, He; Granqvist, Niko; Sun, Zhipei (5 February 2016).
288: 622: 831: 677: 581: 363: 244: 188: 67: 525:
the visceral leishmaniasis: A potential use in immunodiagnosis".
99:
and off-rates and affinity. The full SPR curves are used to fit
382:
NanoBiosensing : principles, development, and application
77:
analyses were performed in 2011 giving way to MP-SPR method.
86:
providing additional information about structure and
259:) including nanoparticles. Applications including 380:Wang, Huangxian Ju, Xueji Zhang, Joseph (2011). 375: 373: 782:and Evidence of Interfacial Water Expulsion". 8: 404:: CS1 maint: multiple names: authors list ( 231:drug uptake in real-time and label-free for 50:), it provides also structural information ( 28:Multi-parametric surface plasmon resonance 18:Multi-Parametric Surface Plasmon Resonance 757: 724: 631: 621: 500: 459: 449: 384:. New York: Springer. p. chapter 4. 562:SPIE Laser Applications in Life Sciences 106: 64:VTT Technical Research Centre of Finland 299: 746:ACS Applied Materials & Interfaces 419: 417: 415: 397: 309:International Journal of Pharmaceutics 7: 784:The Journal of Physical Chemistry B 904:Protein–protein interaction assays 25: 178:Electrochemistry (E, I, omega) 1: 527:Biosensors and Bioelectronics 321:10.1016/j.ijpharm.2015.08.071 263:, barrier coatings including 874:Molecular biology techniques 502:10.1016/j.bbamem.2016.03.013 451:10.1371/journal.pone.0072192 149:Extinction coefficient (k) 930: 658:Journal of Applied Physics 539:10.1016/j.bios.2015.03.034 281:electro-switching surfaces 205:pharmaceutical development 181:Optical dispersion (n(λ)) 118:Kinetics, PureKinetics (k 36:surface plasmon resonance 796:10.1021/acs.jpcb.5b07628 265:anti-reflective coatings 726:10.1364/OPTICA.3.000151 285:layer-by-layer assembly 277:plasmonic metamaterials 864:Scientific instruments 759:10.1021/acsami.5b01590 269:antimicrobial surfaces 233:targeted drug delivery 110:Molecular interactions 261:thin film solar cells 165:Surface coverage (Γ) 154:Adsorption/Absorption 129:Refractive index (n) 44:dissociation constant 889:Biochemistry methods 869:Scientific equipment 243:printed biosensors, 88:dynamic conformation 48:association constant 40:equilibrium constant 899:Forensic techniques 790:(49): 15275–15286. 717:2016Optic...3..151J 670:2018JAP...123b3108T 623:10.3390/bios3010001 574:2010SPIE.7376E..05S 442:2013PLoSO...872192V 356:1995OptEn..34.2581S 344:Optical Engineering 273:self-cleaning glass 215:interactions with 909:Optical metrology 832:10.1021/la401084w 826:(27): 8561–8571. 752:(14): 7505–7515. 678:10.1063/1.5003869 582:10.1117/12.871116 391:978-1-4419-9621-3 364:10.1117/12.208083 253:material sciences 185: 184: 146:Concentration (c) 113:Layer properties 101:Fresnel equations 16:(Redirected from 921: 844: 843: 814: 808: 807: 778: 772: 771: 761: 737: 731: 730: 728: 696: 690: 689: 652: 646: 645: 635: 625: 600: 594: 593: 557: 551: 550: 521: 515: 514: 504: 495:(6): 1189–1195. 480: 474: 473: 463: 453: 421: 410: 409: 403: 395: 377: 368: 367: 350:(9): 2581–2586. 339: 333: 332: 304: 107: 52:refractive index 21: 929: 928: 924: 923: 922: 920: 919: 918: 859:Protein methods 849: 848: 847: 816: 815: 811: 780: 779: 775: 739: 738: 734: 698: 697: 693: 654: 653: 649: 602: 601: 597: 559: 558: 554: 523: 522: 518: 482: 481: 477: 423: 422: 413: 396: 392: 379: 378: 371: 341: 340: 336: 306: 305: 301: 297: 257:polyelectrolyte 241:electrochemical 201: 137: 125: 121: 96: 94:Measured values 83: 60: 23: 22: 15: 12: 11: 5: 927: 925: 917: 916: 911: 906: 901: 896: 891: 886: 881: 879:Nanotechnology 876: 871: 866: 861: 851: 850: 846: 845: 809: 773: 732: 691: 647: 595: 552: 516: 475: 411: 390: 369: 334: 315:(1): 531–536. 298: 296: 293: 211:, antibody or 209:small-molecule 200: 197: 183: 182: 179: 175: 174: 173:Swelling (Δd) 171: 167: 166: 163: 159: 158: 155: 151: 150: 147: 143: 142: 141:Thickness (d) 139: 135: 131: 130: 127: 123: 119: 115: 114: 111: 95: 92: 82: 79: 59: 56: 34:) is based on 24: 14: 13: 10: 9: 6: 4: 3: 2: 926: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 865: 862: 860: 857: 856: 854: 841: 837: 833: 829: 825: 821: 813: 810: 805: 801: 797: 793: 789: 785: 777: 774: 769: 765: 760: 755: 751: 747: 743: 736: 733: 727: 722: 718: 714: 710: 706: 702: 695: 692: 687: 683: 679: 675: 671: 667: 664:(2): 023108. 663: 659: 651: 648: 643: 639: 634: 629: 624: 619: 615: 611: 607: 599: 596: 591: 587: 583: 579: 575: 571: 568:(5): 737605. 567: 563: 556: 553: 548: 544: 540: 536: 532: 528: 520: 517: 512: 508: 503: 498: 494: 490: 486: 479: 476: 471: 467: 462: 457: 452: 447: 443: 439: 436:(8): e72192. 435: 431: 427: 420: 418: 416: 412: 407: 401: 393: 387: 383: 376: 374: 370: 365: 361: 357: 353: 349: 345: 338: 335: 330: 326: 322: 318: 314: 310: 303: 300: 294: 292: 290: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 225:transcellular 222: 218: 214: 210: 206: 198: 196: 194: 193:nanocellulose 190: 180: 177: 176: 172: 169: 168: 164: 161: 160: 156: 153: 152: 148: 145: 144: 140: 133: 132: 128: 117: 116: 112: 109: 108: 105: 102: 93: 91: 90:of the film. 89: 80: 78: 76: 72: 69: 65: 57: 55: 53: 49: 45: 41: 37: 33: 29: 19: 884:Spectroscopy 823: 819: 812: 787: 783: 776: 749: 745: 735: 708: 704: 694: 661: 657: 650: 613: 609: 598: 565: 561: 555: 530: 526: 519: 492: 489:Biomembranes 488: 478: 433: 429: 381: 347: 343: 337: 312: 308: 302: 229:paracellular 213:nanoparticle 202: 199:Applications 186: 157:Density (ρ) 97: 84: 61: 31: 27: 26: 616:(1): 1–17. 533:: 275–281. 221:biomembrane 134:Affinity (K 71:wavelengths 914:Plasmonics 894:Biophysics 853:Categories 711:(2): 151. 656:cathode". 610:Biosensors 295:References 207:including 162:Desorption 73:and first 686:0021-8979 400:cite book 237:biosensor 81:Principle 75:thin film 840:23758623 820:Langmuir 804:26560798 768:25812004 642:25587396 590:95200834 547:25829285 511:26975250 470:24015218 430:PLOS ONE 329:26319634 289:graphene 170:Adhesion 713:Bibcode 666:Bibcode 633:4263588 570:Bibcode 461:3754984 438:Bibcode 352:Bibcode 219:with a 195:films. 58:History 838:  802:  766:  705:Optica 684:  640:  630:  588:  545:  509:  468:  458:  388:  327:  287:, and 217:target 187:While 32:MP-SPR 586:S2CID 251:. In 245:ELISA 235:. In 189:QCM-D 68:laser 836:PMID 800:PMID 764:PMID 682:ISSN 638:PMID 566:7376 543:PMID 507:PMID 493:1858 466:PMID 406:link 386:ISBN 325:PMID 249:SERS 247:and 227:and 828:doi 792:doi 788:119 754:doi 721:doi 674:doi 662:123 628:PMC 618:doi 578:doi 535:doi 497:doi 456:PMC 446:doi 360:doi 317:doi 313:494 124:off 122:, k 855:: 834:. 824:29 822:. 798:. 786:. 762:. 748:. 744:. 719:. 707:. 703:. 680:. 672:. 660:. 636:. 626:. 612:. 608:. 584:. 576:. 564:. 541:. 531:70 529:. 505:. 491:. 487:. 464:. 454:. 444:. 432:. 428:. 414:^ 402:}} 398:{{ 372:^ 358:. 348:34 346:. 323:. 311:. 291:. 283:, 279:, 275:, 271:, 267:, 120:on 46:, 42:, 842:. 830:: 806:. 794:: 770:. 756:: 750:7 729:. 723:: 715:: 709:3 688:. 676:: 668:: 644:. 620:: 614:3 592:. 580:: 572:: 549:. 537:: 513:. 499:: 472:. 448:: 440:: 434:8 408:) 394:. 366:. 362:: 354:: 331:. 319:: 138:) 136:D 126:) 30:( 20:)

Index

Multi-Parametric Surface Plasmon Resonance
surface plasmon resonance
equilibrium constant
dissociation constant
association constant
refractive index
VTT Technical Research Centre of Finland
laser
wavelengths
thin film
dynamic conformation
Fresnel equations
QCM-D
nanocellulose
pharmaceutical development
small-molecule
nanoparticle
target
biomembrane
transcellular
paracellular
targeted drug delivery
biosensor
electrochemical
ELISA
SERS
material sciences
polyelectrolyte
thin film solar cells
anti-reflective coatings

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑