Knowledge (XXG)

Anti-reflective coating

Source 📝

260: 500: 157: 22: 524: 515:("handedness") of circular polarization. Light reflected from the surface after the polarizer is transformed into the opposite "handedness". This light cannot pass back through the circular polarizer because its chirality has changed (e.g. from right circular polarized to left circularly polarized). A disadvantage of this method is that if the input light is unpolarized, the transmission through the assembly will be less than 50%. 1270: 547:); in the simplest case, these three layers are the air, the coating, and the glass. Thick-film coatings do not depend on how thick the coating is, so long as the coating is much thicker than a wavelength of light. Thin-film effects arise when the thickness of the coating is approximately the same as a quarter or a half a wavelength of light. In this case, the reflections of a steady source of light can be made to 1154: 785: 1121:, when reflected from the second interface, will travel exactly half its own wavelength further than the beam reflected from the first surface, leading to destructive interference. This is also true for thicker coating layers (3λ/4, 5λ/4, etc.), however the anti-reflective performance is worse in this case due to the stronger dependence of the reflectance on wavelength and the angle of incidence. 1213:
reflections from incoming rays that had to travel further (thus accumulating more phase of their own) to arrive at the interface. The net effect is that the relative phase is actually reduced, shifting the coating, such that the anti-reflection band of the coating tends to move to shorter wavelengths as the optic is tilted. Non-normal incidence angles also usually cause the reflection to be
2271: 1191:
Further reduction is possible by using multiple coating layers, designed such that reflections from the surfaces undergo maximal destructive interference. One way to do this is to add a second quarter-wave thick higher-index layer between the low-index layer and the substrate. The reflection from all
831:
In the more complicated scenario of multiple reflections, say with light travelling through a window, light is reflected both when going from air to glass and at the other side of the window when going from glass back to air. The size of the loss is the same in both cases. Light also may bounce from
427:
An additional category of anti-reflection coatings is the so-called "absorbing ARC". These coatings are useful in situations where high transmission through a surface is unimportant or undesirable, but low reflectivity is required. They can produce very low reflectance with few layers, and can often
1161:
Real coatings do not reach perfect performance, though they are capable of reducing a surface reflection coefficient to less than 0.1%. Also, the layer will have the ideal thickness for only one distinct wavelength of light. Other difficulties include finding suitable materials for use on ordinary
467:
film, which eliminates reflections. This allows the moth to see well in the dark, without reflections to give its location away to predators. The structure consists of a hexagonal pattern of bumps, each roughly 200 nm high and spaced on 300 nm centers. This kind of antireflective coating
1212:
decreases as the angle increases from normal. This is counterintuitive, since the ray experiences a greater total phase shift in the layer than for normal incidence. This paradox is resolved by noting that the ray will exit the layer spatially offset from where it entered and will interfere with
1203:
The exact nature of the coating determines the appearance of the coated optic; common AR coatings on eyeglasses and photographic lenses often look somewhat bluish (since they reflect slightly more blue light than other visible wavelengths), though green and pink-tinged coatings are also used.
160:
Anti-reflective coatings are often used in camera lenses, giving lens elements distinctive colors. Such colors indicate the wavelength of visible light least affected by the antireflective properties of the coating. A variety of colors can be produced whose precise hue depends entirely on the
360:, which has an index of refraction of about 1.52. An optimal single-layer coating would have to be made of a material with an index of about 1.23. There are no solid materials with such a low refractive index. The closest materials with good physical properties for a coating are 1086:
so that light may be coupled into or out of a fiber.) Further reduced reflection could in theory be made by extending the process to several layers of material, gradually blending the refractive index of each layer between the index of the air and the index of the substrate.
352:
for light with wavelength (in the coating) equal to four times the coating's thickness. Reflectance is also decreased for wavelengths in a broad band around the center. A layer of thickness equal to a quarter of some design wavelength is called a "quarter-wave layer".
410:
and a higher-index material, it is possible to obtain reflectivities as low as 0.1% at a single wavelength. Coatings that give very low reflectivity over a broad band of frequencies can also be made, although these are complex and relatively expensive.
1192:
three interfaces produces destructive interference and anti-reflection. Other techniques use varying thicknesses of the coatings. By using two or more layers, each of a material chosen to give the best possible match of the desired refractive index and
429: 207:
and decrease (by absorption) the visible glare of sun reflected off surfaces such as sand, water, and roads. The term "antireflective" relates to the reflection from the surface of the lens itself, not the origin of the light that reaches the lens.
331:
One approach is to use graded-index (GRIN) anti-reflective coatings, that is, ones with nearly continuously varying indices of refraction. With these, it is possible to curtail reflection for a broad band of frequencies and incidence angles.
323:
between those of glass and air, each of these interfaces exhibits less reflection than the air-glass interface did. In fact, the total of the two reflections is less than that of the "naked" air-glass interface, as can be calculated from the
1696:
Moghal, Jonathan; Kobler, Johannes; Sauer, Jürgen; Best, James; Gardener, Martin; Watt, Andrew A.R.; Wakefield, Gareth (2012). "High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles".
551:
and hence reduce reflections by a separate mechanism. In addition to depending very much on the thickness of the film and the wavelength of light, thin-film coatings depend on the angle at which the light strikes the coated surface.
1207:
If the coated optic is used at non-normal incidence (that is, with light rays not perpendicular to the surface), the anti-reflection capabilities are degraded somewhat. This occurs because the phase accumulated in the layer
2269:, "Verfahren zur Erhoehung der Lichtdurchlaessigkeit optischer Teile durch Erniedrigungdes Brechungsexponenten an den Grenzflaechen dieser optischen Teile", published 1935-11-01, assigned to Zeiss Carl FA 707: 1803: 946:, it can be found that at one particular value of optimal refractive index of the layer, the transmittance of both interfaces is equal, and this corresponds to the maximal total transmittance into the glass. 1375: 1855:
Boudoire, Florent; Toth, Rita; Heier, Jakob; Braun, Artur; Constable, Edwin C. (2014). "Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting".
472:
between the air and the medium, which decreases reflection by effectively removing the air-lens interface. Practical anti-reflective films have been made by humans using this effect; this is a form of
1257:
Antireflective properties of textured surfaces are well discussed in literature for a wide range of size-to-wavelength ratios (including long- and short-wave limits) to find the optimal texture size.
239:
to help reduce image distortions associated with reflections off the surface of the substrate. Different types of antireflective coatings are applied either before (Bottom ARC, or BARC) or after the
165:
Anti-reflective coatings are used in a wide variety of applications where light passes through an optical surface, and low loss or low reflection is desired. Examples include anti-glare coatings on
2205: 1011: 315:
on its surface with age, due to chemical reactions with the environment. Rayleigh tested some old, slightly tarnished pieces of glass, and found to his surprise that they transmitted
124:
in the beams reflected from the interfaces, and constructive interference in the corresponding transmitted beams. This makes the structure's performance change with wavelength and
25:
Uncoated glasses lens (top) versus lens with anti-reflective coating. The reflection from the coated lens is tinted because the coating works better at some wavelengths than others.
319:
light than new, clean pieces. The tarnish replaces the air-glass interface with two interfaces: an air-tarnish interface and a tarnish-glass interface. Because the tarnish has a
856:, a thin film (such as tarnish) on the surface of glass can reduce the reflectivity. This effect can be explained by envisioning a thin layer of material with refractive index 832:
one surface to another multiple times, being partially reflected and partially transmitted each time it does so. In all, the combined reflection coefficient is given by
1250:
Using texture reduces reflection for wavelengths comparable with the feature size as well. In this case no approximation is valid, and reflection can be calculated by
584:, for instance, where a (weak) reflection from the front and back surfaces of the window glass can be seen. The strength of the reflection depends on the ratio of the 1945: 1732: 2235: 1225:
Reflection can be reduced by texturing the surface with 3D pyramids or 2D grooves (gratings). These kind of textured coating can be created using for example the
1454: 2837: 487:
Such structures are also used in photonic devices, for example, moth-eye structures grown from tungsten oxide and iron oxide can be used as photoelectrodes for
2067:
Hsu, Ching-Mei; Connor, Stephen T.; Tang, Mary X.; Cui, Yi (2008). "Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching".
1232:
If wavelength is greater than the texture size, the texture behaves like a gradient-index film with reduced reflection. To calculate reflection in this case,
491:
to produce hydrogen. The structure consists of tungsten oxide spheroids several hundred micrometers in diameter, coated with a few nanometers of iron oxide.
188:
may recommend "anti-reflection lenses" because the decreased reflection enhances the cosmetic appearance of the lenses. Such lenses are often said to reduce
1094:
effect of a thin layer. Assume the layer's thickness is controlled precisely, such that it is exactly one quarter of the wavelength of light in the layer (
1090:
Practical anti-reflection coatings, however, rely on an intermediate layer not only for its direct reduction of reflection coefficient, but also use the
2213: 1243:
approximation: rays should be reflected many times before they are sent back toward the source. In this case the reflection can be calculated using
2389: 308: 1236:
can be used. To minimize reflection, various profiles of pyramids have been proposed, such as cubic, quintic or integral exponential profiles.
751: 2340: 1400:
Hemant Kumar Raut; V. Anand Ganesh; A. Sreekumaran Nair; Seeram Ramakrishna (2011). "Anti-reflective coatings: A critical, in-depth review".
2001: 617: 136:
range must be specified when designing or ordering such coatings, but good performance can often be achieved for a relatively wide range of
161:
thickness of the coating. Color or cast can change radically when the coating is increased or decreased in thickness by tens of nanometers.
2284: 877:). The light ray now reflects twice: once from the surface between air and the thin layer, and once from the layer-to-glass interface. 192:, but the reduction is very slight. Eliminating reflections allows slightly more light to pass through, producing a slight increase in 2180: 384:
coatings are commonly used because they are cheap and durable. When the coatings are designed for a wavelength in the middle of the
259: 2357: 1883: 1319:
optics company. These coatings remained a German military secret for several years, until the Allies discovered the secret during
415:
can also be made with special characteristics, such as near-zero reflectance at multiple wavelengths, or optimal performance at
2862: 2658: 1428: 1233: 1147: 1091: 468:
works because the bumps are smaller than the wavelength of visible light, so the light sees the surface as having a continuous
1251: 2774: 2751: 1226: 101:
lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's
2607: 1745: 1678: 1049:
The reflection loss of each interface is approximately 1.0% (with a combined loss of 2.0%), and an overall transmission
880:
From the equation above and the known refractive indices, reflectivities for both interfaces can be calculated, denoted
588:
of the two media, as well as the angle of the surface to the beam of light. The exact value can be calculated using the
2243: 1579: 1070:
The use of an intermediate layer to form an anti-reflection coating can be thought of as analogous to the technique of
824:) actually enters the glass, and the rest is reflected from the surface. The amount of light reflected is known as the 2382: 1962: 1461: 499: 416: 125: 1332: 1142:. Therefore, there is no reflection from the surface, and all the energy of the beam must be in the transmitted ray, 1584: 1062:
of approximately 98%. Therefore, an intermediate coating between the air and glass can halve the reflection loss.
2938: 2638: 2559: 2449: 1906:"Photonic light trapping in self-organized all-oxide microspheroids impacts photoelectrochemical water splitting" 1178: 1083: 959: 380:
coatings perform much better on higher-index glasses, especially those with index of refraction close to 1.9. MgF
1239:
If wavelength is smaller than the textured size, the reflection reduction can be explained with the help of the
2539: 548: 121: 97:. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on 1970: 1829: 156: 1486:
Yet, Siew Ing (2004). "Investigation of UFO defect on DUV CAR and BARC process". In Silver, Richard M (ed.).
2902: 2643: 1324: 432:.) Absorbing ARCs often make use of unusual optical properties exhibited in compound thin films produced by 428:
be produced more cheaply, or at greater scale, than standard non-absorbing AR coatings. (See, for example,
2375: 2135: 1138:
are exactly equal, they will destructively interfere and cancel each other, since they are exactly out of
248: 1740: 2711: 2519: 2296: 1244: 469: 341: 1580:"Silicon nitride as antireflection coating to enhance the conversion efficiency of silicon solar cells" 21: 2206:"History of Camera Lenses from Carl Zeiss - 1935 - Olexander Smakula develops anti-reflection coating" 223:
lenses, as these reflect more light without the coating than a lower-index lens (a consequence of the
2867: 2741: 2489: 2479: 2266: 2127: 2076: 2018: 1637: 1532: 1491: 1344: 1305: 1214: 357: 62: 2814: 2673: 2534: 2140: 523: 511:
laminated to a surface can be used to eliminate reflections. The polarizer transmits light with one
2887: 2809: 2731: 2706: 1193: 767: 540: 480:
uses the moth-eye technique in their Sub-Wavelength structure Coating, which significantly reduces
94: 2332: 263:
An unmetallised heterojunction solar cell precursor. The blue colour arises from the dual-purpose
2794: 2716: 2464: 2454: 2118:
A. Deinega; et al. (2011). "Minimizing light reflection from dielectric textured surfaces".
2100: 2042: 1653: 1603: 1170: 1071: 508: 433: 361: 275: 82: 1884:"Photoelectrochemical Water Splitting Can Be Achieved with Self-Organized, All-Oxide Electrodes" 1905: 2907: 2872: 2842: 2799: 2736: 2721: 2633: 2524: 2336: 2176: 2153: 2092: 2034: 1714: 1560: 1312: 589: 445: 392: 325: 224: 193: 86: 58: 219:, making them easier to keep clean. Anti-reflection coatings are particularly suited to high- 2663: 2653: 2648: 2418: 2145: 2084: 2026: 1865: 1783: 1706: 1645: 1593: 1550: 1540: 1499: 1409: 1240: 596: 585: 449: 437: 376:
on a crown glass surface gives a reflectance of about 1%, compared to 4% for bare glass. MgF
320: 287: 264: 236: 220: 117: 113: 106: 2857: 2852: 2701: 2597: 2569: 2554: 2549: 2544: 2504: 2474: 1927: 1349: 1328: 1177:) is often used, since this is hard-wearing and can be easily applied to substrates using 565: 488: 441: 412: 283: 279: 189: 166: 50: 2574: 2131: 2080: 2022: 1649: 1641: 1536: 1495: 274:
are often coated with an anti-reflective coating. Materials that have been used include
2819: 2789: 2784: 2299:. Southwest Museum of Engineering, Communications and Computation. 2007. Archived from 2009: 1555: 1518: 1200:(400–700 nm) with maximal reflectivity of less than 0.5% are commonly achievable. 950: 291: 1807: 1269: 2932: 2726: 2683: 2589: 2564: 2459: 2362: 2104: 1657: 1622: 1607: 1316: 1197: 1139: 1075: 853: 464: 385: 369: 348:
of the substrate's refractive index. In air, such a coating theoretically gives zero
340:
The simplest interference anti-reflective coating consists of a single thin layer of
244: 129: 54: 730:
varies from 0 (no reflection) to 1 (all light reflected) and is usually quoted as a
726:
are the refractive indices of the first and second media respectively. The value of
2892: 2847: 2804: 2494: 2469: 2423: 1320: 599:(perpendicularly to the surface), the intensity of light reflected is given by the 561: 398:
with refractive indices as low as 1.12, which function as antireflection coatings.
395: 1545: 1308:
of Cooke company developed a chemical method for producing such coatings in 1904.
1519:"Effect of obliquity of incident light on the performance of silicon solar cells" 2917: 2882: 2602: 2484: 1153: 784: 349: 345: 240: 170: 145: 137: 90: 1788: 1771: 531:
There are two separate causes of optical effects due to coatings, often called
2912: 2877: 2746: 2514: 2509: 1354: 1304:, natural index-matching "coatings" were discovered by Lord Rayleigh in 1886. 755: 731: 481: 477: 473: 271: 204: 174: 133: 102: 74: 2096: 1682: 372:, which can have indices as low as 1.30, but are more difficult to apply. MgF 2779: 2678: 2149: 527:
An anti-reflection coated window, shown at a 45° and a 0° angle of incidence
512: 200: 78: 2157: 2038: 1975: 1718: 1564: 463:' eyes have an unusual property: their surfaces are covered with a natural 1623:"Wide-angle and broadband graded-refractive-index antireflection coatings" 444:
are used in absorbing ARCs. These can be useful in applications requiring
2897: 2668: 2444: 2439: 2363:
Browser-based numerical calculator of single-layer thin film reflectivity
2030: 576:), some portion of the light is reflected from the surface (known as the 185: 141: 1598: 2617: 2367: 1869: 1523: 1413: 1162:
glass, since few useful substances have the required refractive index (
312: 98: 2088: 1710: 1503: 702:{\displaystyle R=\left({\frac {n_{0}-n_{S}}{n_{0}+n_{S}}}\right)^{2},} 227:). It is also generally easier and cheaper to coat high index lenses. 211:
Many anti-reflection lenses include an additional coating that repels
65:. In typical imaging systems, this improves the efficiency since less 2693: 2499: 1488:
Metrology, Inspection, and Process Control for Microlithography XVIII
813:
is 0.04, or 4%, on a single reflection. So at most 96% of the light (
581: 580:) between the two media. This can be observed when looking through a 407: 311:
in 1886. The optical glass available at the time tended to develop a
70: 448:
enhancement or as a replacement for tinted glass (for example, in a
1311:
Interference-based coatings were invented and developed in 1935 by
1146:. In the calculation of the reflection from a stack of layers, the 539:
effects. Thick-film effects arise because of the difference in the
2612: 2579: 2529: 2413: 2398: 1152: 792:
For the simplified scenario of visible light travelling from air (
783: 569: 522: 498: 388:, they give reasonably good anti-reflection over the entire band. 258: 212: 155: 66: 2300: 1169:) that will make both reflected rays exactly equal in intensity. 1770:
Han, Z.W.; Wang, Z.; Feng, X.M.; et al. (14 October 2016).
1621:
Zhang, Jun-Chao; Xiong, Li-Min; Fang, Ming; He, Hong-Bo (2013).
460: 267:
anti-reflective coating, which also enhances emitter conduction.
235:
Antireflective coatings (ARC) are often used in microelectronic
2371: 307:
The simplest form of anti-reflective coating was discovered by
1264: 894:
respectively. The transmission at each interface is therefore
573: 216: 1429:"Anti-reflective Coating - American Academy of Ophthalmology" 788:
Reflection and transmission of an uncoated and coated surface
199:
Antireflective ophthalmic lenses should not be confused with
2297:"Carl Zeiss – A History of a Most Respected Name in Optics" 1433:
Anti-reflective Coating - American Academy of Ophthalmology
1806:(Press release). Pro-talk. 3 December 2003. Archived from 406:
By using alternating layers of a low-index material like
2358:
Browser-based thin film design and optimization software
1772:"Antireflective surface inspired from biology: A review" 1210:
relative to the phase of the light immediately reflected
1281: 1157:
Interference in a quarter-wave anti-reflection coating
1113:
is the vacuum wavelength). The layer is then called a
568:
to another (for example, when light enters a sheet of
69:
is lost due to reflection. In complex systems such as
2285:
Camera Lens Anti-Reflection Coatings: Magic Explained
1679:"Opstar AR fluoride coatings and application methods" 962: 620: 1331:
developed organic anti-reflection coatings known as
1117:. For this type of coating a normally incident beam 1074:
of electrical signals. (A similar method is used in
2828: 2760: 2692: 2626: 2588: 2432: 2406: 2000:Moreno, I.; Araiza, J.; Avendano-Alejo, M. (2005). 543:between the layers above and below the coating (or 1196:, broadband anti-reflection coatings covering the 1181:, even though its index is higher than desirable ( 1005: 701: 116:structures with alternating layers of contrasting 926:. The total transmittance into the glass is thus 773:is incident on the surface, a beam of intensity 503:Reflections are blocked by a circular polarizer. 939:. Calculating this value for various values of 85:the reduction in reflections also improves the 1455:"Understanding bottom antireflective coatings" 2838:Conservation and restoration of glass objects 2383: 1376:"Anti-Reflection Coating Color | PVEducation" 8: 344:material with refractive index equal to the 1006:{\displaystyle n_{1}={\sqrt {n_{0}n_{S}}}.} 120:. Layer thicknesses are chosen to produce 2390: 2376: 2368: 1490:. Vol. 5375. SPIE. pp. 940–948. 2139: 1787: 1597: 1554: 1544: 992: 982: 976: 967: 961: 690: 677: 664: 652: 639: 632: 619: 356:The most common type of optical glass is 173:elements, and antireflective coatings on 1963:"Maximally flat antireflection coatings" 1950:. Society for Information Display. 2006. 1082:is sometimes used to temporarily defeat 844:. For glass in air, this is about 7.7%. 777:is reflected, and a beam with intensity 128:, so that color effects often appear at 20: 1367: 16:Optical coating that reduces reflection 2195:British Patent 29561, 31 December 1904 1699:ACS Applied Materials & Interfaces 595:When the light meets the interface at 1252:solving Maxwell equations numerically 112:Many coatings consist of transparent 7: 1124:If the intensities of the two beams 1036:), this optimal refractive index is 1830:"Canon Subwavelength Coating (SWC)" 1435:. American Academy of Ophthalmology 1427:Duffner, Lee R (27 February 2015). 1357:, which AR coating helps to reduce. 1301: 949:This optimal value is given by the 391:Researchers have produced films of 1886:. Materials Research Society. 2014 1402:Energy & Environmental Science 93:. This is especially important in 14: 1928:"HNCP Circular Polarizing Filter" 2175:(3rd ed.). CRC. p. 4. 1268: 953:of the two surrounding indices: 781:is transmitted into the medium. 2908:Radioactive waste vitrification 2863:Glass fiber reinforced concrete 1517:Rajinder Sharma (2 July 2019). 1234:effective medium approximations 766:. Thus if a beam of light with 89:of the image by elimination of 1804:"Novel film inspired by moths" 758:are neglected, then the value 57:, other optical elements, and 1: 2775:Chemically strengthened glass 1744:(2): 10. 2005. Archived from 1650:10.1088/1674-1056/22/4/044201 1546:10.1016/j.heliyon.2019.e01965 368:(with an index of 1.38), and 2608:Glass-ceramic-to-metal seals 1578:Rajinder Sharma (May 2018). 251:, and specular reflections. 2002:"Thin-film spatial filters" 1776:Biosurface and Biotribology 2955: 1932:www.visionteksystems.co.uk 1789:10.1016/j.bsbt.2016.11.002 1585:Turkish Journal of Physics 1315:, who was working for the 1016:For the example of glass ( 799:≈ 1.0) into common glass ( 203:, which are found only in 53:applied to the surface of 2639:Chemical vapor deposition 2560:Ultra low expansion glass 2450:Borophosphosilicate glass 2173:Thin Film Optical Filters 1974:(3–5): 53. Archived from 1733:"Nanostructured Surfaces" 1179:physical vapor deposition 1084:total internal reflection 572:after travelling through 470:refractive index gradient 336:Single-layer interference 2878:Glass-reinforced plastic 2540:Sodium hexametaphosphate 1971:Jemná Mechanika a Optika 1782:(4). Elsevier: 137–150. 740:transmission coefficient 402:Multi-layer interference 122:destructive interference 2770:Anti-reflective coating 2644:Glass batch calculation 2525:Photochromic lens glass 2150:10.1364/josaa.28.000770 2069:Applied Physics Letters 1333:Langmuir–Blodgett films 1325:Katharine Burr Blodgett 870:) and the glass (index 863:between the air (index 1158: 1148:transfer-matrix method 1007: 789: 703: 601:reflection coefficient 528: 504: 268: 249:thin-film interference 162: 140:: usually a choice of 26: 2903:Prince Rupert's drops 2752:Transparent materials 2712:Gradient-index optics 2520:Phosphosilicate glass 2171:MacLeod, H A (2001). 1961:Krepelka, J. (1992). 1836:. July–September 2009 1156: 1066:Interference coatings 1008: 787: 704: 526: 502: 262: 159: 24: 2868:Glass ionomer cement 2742:Photosensitive glass 2669:Liquidus temperature 2490:Fluorosilicate glass 2031:10.1364/OL.30.000914 1834:www.eos-magazine.com 1345:Anti-scratch coating 1306:Harold Dennis Taylor 1115:quarter-wave coating 960: 847: 618: 2888:Glass-to-metal seal 2810:Self-cleaning glass 2732:Optical lens design 2132:2011JOSAA..28..770D 2081:2008ApPhL..93m3109H 2048:on 19 February 2009 2023:2005OptL...30..914M 1947:Information Display 1810:on 13 December 2014 1741:Fraunhofer Magazine 1685:on 29 January 2011. 1642:2013ChPhB..22d4201Z 1599:10.3906/fiz-1801-28 1537:2019Heliy...501965S 1496:2004SPIE.5375..940Y 1380:www.pveducation.org 1335:in the late 1930s. 1078:research, where an 734:. Complementary to 541:index of refraction 430:US Patent 5,091,244 417:angles of incidence 196:and visual acuity. 95:planetary astronomy 2873:Glass microspheres 2795:Hydrogen darkening 2717:Hydrogen darkening 2465:Chalcogenide glass 2455:Borosilicate glass 2327:Hecht, E. (1987). 1981:on 12 January 2011 1870:10.1039/C4EE00380B 1858:Energy Environ Sci 1414:10.1039/c1ee01297e 1280:. You can help by 1171:Magnesium fluoride 1159: 1080:index-matching oil 1072:impedance matching 1003: 790: 699: 586:refractive indices 529: 509:circular polarizer 505: 495:Circular polarizer 434:sputter deposition 362:magnesium fluoride 276:magnesium fluoride 269: 243:, and help reduce 163: 59:photovoltaic cells 27: 2926: 2925: 2843:Glass-coated wire 2815:sol–gel technique 2800:Insulated glazing 2737:Photochromic lens 2722:Optical amplifier 2674:sol–gel technique 2342:978-0-201-11609-0 2246:on 1 January 2013 2216:on 8 October 2016 2089:10.1063/1.2988893 1711:10.1021/am201494m 1630:Chinese Physics B 1504:10.1117/12.535034 1408:(10): 3779–3804. 1313:Olexander Smakula 1298: 1297: 1227:Langmuir-Blodgett 1221:Textured coatings 998: 684: 590:Fresnel equations 549:add destructively 393:mesoporous silica 326:Fresnel equations 225:Fresnel equations 181:Corrective lenses 167:corrective lenses 2946: 2939:Thin-film optics 2664:Ion implantation 2419:Glass transition 2392: 2385: 2378: 2369: 2346: 2331:(2nd ed.). 2313: 2312: 2310: 2308: 2293: 2287: 2282: 2276: 2275: 2274: 2270: 2262: 2256: 2255: 2253: 2251: 2242:. Archived from 2232: 2226: 2225: 2223: 2221: 2212:. Archived from 2202: 2196: 2193: 2187: 2186: 2168: 2162: 2161: 2143: 2115: 2109: 2108: 2064: 2058: 2057: 2055: 2053: 2047: 2041:. Archived from 2006: 1997: 1991: 1990: 1988: 1986: 1980: 1967: 1958: 1952: 1951: 1942: 1936: 1935: 1924: 1918: 1917: 1915: 1913: 1902: 1896: 1895: 1893: 1891: 1880: 1874: 1873: 1864:(8): 2680–2688. 1852: 1846: 1845: 1843: 1841: 1826: 1820: 1819: 1817: 1815: 1800: 1794: 1793: 1791: 1767: 1761: 1760: 1758: 1756: 1750: 1737: 1729: 1723: 1722: 1693: 1687: 1686: 1681:. Archived from 1675: 1669: 1668: 1666: 1664: 1627: 1618: 1612: 1611: 1601: 1575: 1569: 1568: 1558: 1548: 1514: 1508: 1507: 1483: 1477: 1476: 1474: 1472: 1467:on 25 April 2012 1466: 1460:. Archived from 1459: 1451: 1445: 1444: 1442: 1440: 1424: 1418: 1417: 1397: 1391: 1390: 1388: 1386: 1372: 1293: 1290: 1272: 1265: 1241:geometric optics 1187: 1168: 1108: 1045: 1035: 1025: 1012: 1010: 1009: 1004: 999: 997: 996: 987: 986: 977: 972: 971: 925: 909: 843: 823: 809:), the value of 808: 708: 706: 705: 700: 695: 694: 689: 685: 683: 682: 681: 669: 668: 658: 657: 656: 644: 643: 633: 597:normal incidence 438:titanium nitride 413:Optical coatings 321:refractive index 288:titanium dioxide 265:indium tin oxide 237:photolithography 231:Photolithography 201:polarized lenses 118:refractive index 107:telescopic sight 2954: 2953: 2949: 2948: 2947: 2945: 2944: 2943: 2929: 2928: 2927: 2922: 2858:Glass electrode 2853:Glass databases 2830: 2824: 2762: 2756: 2688: 2622: 2598:Bioactive glass 2584: 2570:Vitreous enamel 2555:Thoriated glass 2550:Tellurite glass 2535:Soda–lime glass 2505:Gold ruby glass 2475:Cranberry glass 2428: 2402: 2396: 2354: 2349: 2343: 2326: 2322: 2317: 2316: 2306: 2304: 2303:on 27 June 2017 2295: 2294: 2290: 2283: 2279: 2272: 2265: 2263: 2259: 2249: 2247: 2234: 2233: 2229: 2219: 2217: 2204: 2203: 2199: 2194: 2190: 2183: 2170: 2169: 2165: 2141:10.1.1.716.4775 2117: 2116: 2112: 2066: 2065: 2061: 2051: 2049: 2045: 2004: 1999: 1998: 1994: 1984: 1982: 1978: 1965: 1960: 1959: 1955: 1944: 1943: 1939: 1926: 1925: 1921: 1911: 1909: 1908:. Authors. 2014 1904: 1903: 1899: 1889: 1887: 1882: 1881: 1877: 1854: 1853: 1849: 1839: 1837: 1828: 1827: 1823: 1813: 1811: 1802: 1801: 1797: 1769: 1768: 1764: 1754: 1752: 1751:on 10 June 2011 1748: 1735: 1731: 1730: 1726: 1695: 1694: 1690: 1677: 1676: 1672: 1662: 1660: 1625: 1620: 1619: 1615: 1577: 1576: 1572: 1516: 1515: 1511: 1485: 1484: 1480: 1470: 1468: 1464: 1457: 1453: 1452: 1448: 1438: 1436: 1426: 1425: 1421: 1399: 1398: 1394: 1384: 1382: 1374: 1373: 1369: 1364: 1350:Dichroic filter 1341: 1329:Irving Langmuir 1294: 1288: 1285: 1278:needs expansion 1263: 1223: 1182: 1176: 1163: 1137: 1130: 1112: 1106: 1099: 1095: 1068: 1061: 1055: 1043: 1037: 1033: 1027: 1023: 1017: 988: 978: 963: 958: 957: 945: 938: 932: 924: 917: 911: 908: 901: 895: 893: 886: 876: 869: 862: 852:As observed by 850: 848:Rayleigh's film 833: 826:reflection loss 814: 806: 800: 798: 725: 718: 673: 660: 659: 648: 635: 634: 628: 627: 616: 615: 564:moves from one 558: 521: 497: 489:splitting water 458: 442:niobium nitride 436:. For example, 425: 419:other than 0°. 404: 383: 379: 375: 367: 338: 305: 300: 284:silicon dioxide 280:silicon nitride 257: 233: 183: 154: 51:optical coating 39:anti-reflection 17: 12: 11: 5: 2952: 2950: 2942: 2941: 2931: 2930: 2924: 2923: 2921: 2920: 2915: 2910: 2905: 2900: 2895: 2890: 2885: 2880: 2875: 2870: 2865: 2860: 2855: 2850: 2845: 2840: 2834: 2832: 2826: 2825: 2823: 2822: 2820:Tempered glass 2817: 2812: 2807: 2802: 2797: 2792: 2790:DNA microarray 2787: 2785:Dealkalization 2782: 2777: 2772: 2766: 2764: 2758: 2757: 2755: 2754: 2749: 2744: 2739: 2734: 2729: 2724: 2719: 2714: 2709: 2704: 2698: 2696: 2690: 2689: 2687: 2686: 2681: 2676: 2671: 2666: 2661: 2659:Glass modeling 2656: 2651: 2646: 2641: 2636: 2630: 2628: 2624: 2623: 2621: 2620: 2615: 2610: 2605: 2600: 2594: 2592: 2590:Glass-ceramics 2586: 2585: 2583: 2582: 2577: 2572: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2530:Silicate glass 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2447: 2442: 2436: 2434: 2430: 2429: 2427: 2426: 2421: 2416: 2410: 2408: 2404: 2403: 2401:science topics 2397: 2395: 2394: 2387: 2380: 2372: 2366: 2365: 2360: 2353: 2352:External links 2350: 2348: 2347: 2341: 2333:Addison–Wesley 2323: 2321: 2318: 2315: 2314: 2288: 2277: 2257: 2236:"Lens coating" 2227: 2197: 2188: 2181: 2163: 2110: 2075:(13): 133109. 2059: 2017:(8): 914–916. 2010:Optics Letters 1992: 1953: 1937: 1919: 1897: 1875: 1847: 1821: 1795: 1762: 1724: 1705:(2): 854–859. 1688: 1670: 1613: 1592:(4): 350–355. 1570: 1509: 1478: 1446: 1419: 1392: 1366: 1365: 1363: 1360: 1359: 1358: 1352: 1347: 1340: 1337: 1296: 1295: 1275: 1273: 1262: 1259: 1222: 1219: 1174: 1135: 1128: 1110: 1104: 1097: 1067: 1064: 1059: 1053: 1041: 1031: 1021: 1014: 1013: 1002: 995: 991: 985: 981: 975: 970: 966: 951:geometric mean 943: 936: 930: 922: 915: 906: 899: 891: 884: 874: 867: 860: 849: 846: 804: 796: 762:is always 1 − 723: 716: 710: 709: 698: 693: 688: 680: 676: 672: 667: 663: 655: 651: 647: 642: 638: 631: 626: 623: 557: 554: 520: 517: 496: 493: 465:nanostructured 457: 454: 424: 421: 403: 400: 381: 377: 373: 370:fluoropolymers 365: 337: 334: 304: 303:Index-matching 301: 299: 296: 292:aluminum oxide 256: 253: 245:standing waves 232: 229: 182: 179: 153: 150: 144:, visible, or 130:oblique angles 126:incident angle 31:antireflective 15: 13: 10: 9: 6: 4: 3: 2: 2951: 2940: 2937: 2936: 2934: 2919: 2916: 2914: 2911: 2909: 2906: 2904: 2901: 2899: 2896: 2894: 2891: 2889: 2886: 2884: 2881: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2835: 2833: 2827: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2801: 2798: 2796: 2793: 2791: 2788: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2767: 2765: 2759: 2753: 2750: 2748: 2745: 2743: 2740: 2738: 2735: 2733: 2730: 2728: 2727:Optical fiber 2725: 2723: 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2699: 2697: 2695: 2691: 2685: 2684:Vitrification 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2654:Glass melting 2652: 2650: 2649:Glass forming 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2631: 2629: 2625: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2595: 2593: 2591: 2587: 2581: 2578: 2576: 2573: 2571: 2568: 2566: 2565:Uranium glass 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2545:Soluble glass 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2460:Ceramic glaze 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2437: 2435: 2431: 2425: 2422: 2420: 2417: 2415: 2412: 2411: 2409: 2405: 2400: 2393: 2388: 2386: 2381: 2379: 2374: 2373: 2370: 2364: 2361: 2359: 2356: 2355: 2351: 2344: 2338: 2334: 2330: 2325: 2324: 2319: 2302: 2298: 2292: 2289: 2286: 2281: 2278: 2268: 2261: 2258: 2245: 2241: 2237: 2231: 2228: 2215: 2211: 2207: 2201: 2198: 2192: 2189: 2184: 2182:9780750306881 2178: 2174: 2167: 2164: 2159: 2155: 2151: 2147: 2142: 2137: 2133: 2129: 2125: 2121: 2114: 2111: 2106: 2102: 2098: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2060: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2011: 2003: 1996: 1993: 1977: 1973: 1972: 1964: 1957: 1954: 1949: 1948: 1941: 1938: 1933: 1929: 1923: 1920: 1907: 1901: 1898: 1885: 1879: 1876: 1871: 1867: 1863: 1859: 1851: 1848: 1835: 1831: 1825: 1822: 1809: 1805: 1799: 1796: 1790: 1785: 1781: 1777: 1773: 1766: 1763: 1747: 1743: 1742: 1734: 1728: 1725: 1720: 1716: 1712: 1708: 1704: 1700: 1692: 1689: 1684: 1680: 1674: 1671: 1659: 1655: 1651: 1647: 1643: 1639: 1636:(4): 044201. 1635: 1631: 1624: 1617: 1614: 1609: 1605: 1600: 1595: 1591: 1587: 1586: 1581: 1574: 1571: 1566: 1562: 1557: 1552: 1547: 1542: 1538: 1534: 1531:(7): e01965. 1530: 1526: 1525: 1520: 1513: 1510: 1505: 1501: 1497: 1493: 1489: 1482: 1479: 1463: 1456: 1450: 1447: 1434: 1430: 1423: 1420: 1415: 1411: 1407: 1403: 1396: 1393: 1381: 1377: 1371: 1368: 1361: 1356: 1353: 1351: 1348: 1346: 1343: 1342: 1338: 1336: 1334: 1330: 1326: 1322: 1318: 1314: 1309: 1307: 1303: 1300:As mentioned 1292: 1283: 1279: 1276:This section 1274: 1271: 1267: 1266: 1260: 1258: 1255: 1253: 1248: 1246: 1242: 1237: 1235: 1230: 1228: 1220: 1218: 1216: 1211: 1205: 1201: 1199: 1198:visible range 1195: 1189: 1185: 1180: 1172: 1166: 1155: 1151: 1150:can be used. 1149: 1145: 1141: 1134: 1127: 1122: 1120: 1116: 1103: 1093: 1088: 1085: 1081: 1077: 1073: 1065: 1063: 1058: 1052: 1047: 1040: 1030: 1020: 1000: 993: 989: 983: 979: 973: 968: 964: 956: 955: 954: 952: 947: 942: 935: 929: 921: 914: 905: 898: 890: 883: 878: 873: 866: 859: 855: 854:Lord Rayleigh 845: 841: 837: 829: 827: 821: 817: 812: 803: 795: 786: 782: 780: 776: 772: 769: 765: 761: 757: 753: 749: 745: 744:transmittance 741: 737: 733: 729: 722: 715: 696: 691: 686: 678: 674: 670: 665: 661: 653: 649: 645: 640: 636: 629: 624: 621: 614: 613: 612: 610: 606: 602: 598: 593: 591: 587: 583: 579: 575: 571: 567: 563: 555: 553: 550: 546: 542: 538: 534: 525: 518: 516: 514: 510: 501: 494: 492: 490: 485: 483: 479: 475: 471: 466: 462: 455: 453: 451: 447: 443: 439: 435: 431: 422: 420: 418: 414: 409: 401: 399: 397: 396:nanoparticles 394: 389: 387: 371: 363: 359: 354: 351: 347: 343: 335: 333: 329: 327: 322: 318: 314: 310: 309:Lord Rayleigh 302: 297: 295: 293: 289: 285: 281: 277: 273: 266: 261: 254: 252: 250: 246: 242: 238: 230: 228: 226: 222: 218: 214: 209: 206: 202: 197: 195: 191: 187: 180: 178: 176: 172: 168: 158: 151: 149: 147: 143: 139: 135: 131: 127: 123: 119: 115: 110: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 49:is a type of 48: 44: 40: 36: 32: 23: 19: 2893:Porous glass 2848:Safety glass 2805:Porous glass 2769: 2763:modification 2575:Wood's glass 2495:Fused quartz 2470:Cobalt glass 2424:Supercooling 2328: 2305:. Retrieved 2301:the original 2291: 2280: 2260: 2248:. Retrieved 2244:the original 2239: 2230: 2218:. Retrieved 2214:the original 2209: 2200: 2191: 2172: 2166: 2126:(5): 770–7. 2123: 2119: 2113: 2072: 2068: 2062: 2050:. Retrieved 2043:the original 2014: 2008: 1995: 1983:. Retrieved 1976:the original 1969: 1956: 1946: 1940: 1931: 1922: 1910:. Retrieved 1900: 1888:. Retrieved 1878: 1861: 1857: 1850: 1838:. Retrieved 1833: 1824: 1812:. Retrieved 1808:the original 1798: 1779: 1775: 1765: 1753:. Retrieved 1746:the original 1739: 1727: 1702: 1698: 1691: 1683:the original 1673: 1661:. Retrieved 1633: 1629: 1616: 1589: 1583: 1573: 1528: 1522: 1512: 1487: 1481: 1469:. Retrieved 1462:the original 1449: 1437:. Retrieved 1432: 1422: 1405: 1401: 1395: 1383:. Retrieved 1379: 1370: 1321:World War II 1310: 1299: 1289:January 2013 1286: 1282:adding to it 1277: 1256: 1249: 1238: 1231: 1224: 1217:-dependent. 1215:polarization 1209: 1206: 1202: 1190: 1183: 1164: 1160: 1143: 1132: 1125: 1123: 1118: 1114: 1101: 1092:interference 1089: 1079: 1069: 1056: 1050: 1048: 1038: 1028: 1018: 1015: 948: 940: 933: 927: 919: 912: 903: 896: 888: 881: 879: 871: 864: 857: 851: 839: 835: 830: 825: 819: 815: 810: 801: 793: 791: 778: 774: 770: 763: 759: 747: 743: 739: 735: 727: 720: 713: 711: 608: 604: 600: 594: 577: 562:ray of light 559: 544: 536: 532: 530: 506: 486: 459: 426: 405: 390: 386:visible band 355: 339: 330: 316: 306: 270: 234: 210: 198: 184: 164: 152:Applications 148:is offered. 111: 46: 42: 38: 34: 30: 28: 18: 2918:Glass fiber 2883:Glass cloth 2627:Preparation 2603:CorningWare 2485:Flint glass 2480:Crown glass 2433:Formulation 1245:ray tracing 1076:fibre optic 605:reflectance 560:Whenever a 450:CRT display 358:crown glass 350:reflectance 346:square root 342:transparent 272:Solar cells 255:Solar cells 241:photoresist 175:solar cells 171:camera lens 138:frequencies 91:stray light 83:microscopes 2913:Windshield 2747:Refraction 2707:Dispersion 2515:Milk glass 2510:Lead glass 2307:9 February 1439:22 January 1385:2 December 1362:References 1355:Lens flare 1317:Carl Zeiss 1194:dispersion 1026:) in air ( 756:scattering 752:absorption 732:percentage 556:Reflection 533:thick-film 482:lens flare 474:biomimicry 205:sunglasses 134:wavelength 103:binoculars 79:telescopes 75:binoculars 63:reflection 61:to reduce 2780:Corrosion 2679:Viscosity 2634:Annealing 2267:DE 685767 2240:Zeiss.com 2210:Zeiss.com 2136:CiteSeerX 2105:123191151 2097:0003-6951 1658:250840321 1608:139899251 1109:, where λ 768:intensity 646:− 578:interface 537:thin-film 513:chirality 423:Absorbing 186:Opticians 114:thin film 35:antiglare 2933:Category 2898:Pre-preg 2702:Achromat 2445:Bioglass 2440:AgInSbTe 2158:21532687 2039:15865397 1719:22188238 1565:31317080 1339:See also 1229:method. 456:Moth eye 446:contrast 194:contrast 99:eyeglass 87:contrast 2829:Diverse 2761:Surface 2618:Zerodur 2320:Sources 2264:Patent 2250:15 June 2220:15 June 2128:Bibcode 2077:Bibcode 2052:26 June 2019:Bibcode 1985:17 June 1890:24 July 1840:24 July 1814:17 June 1755:17 June 1638:Bibcode 1556:6611928 1533:Bibcode 1524:Heliyon 1492:Bibcode 1471:25 June 1261:History 1096:λ/4 = λ 1044:≈ 1.225 738:is the 313:tarnish 71:cameras 47:coating 2831:topics 2694:Optics 2500:GeSbTe 2407:Basics 2339:  2329:Optics 2273:  2179:  2156:  2138:  2120:JOSA A 2103:  2095:  2037:  1717:  1663:13 May 1656:  1606:  1563:  1553:  1186:= 1.38 1167:≈ 1.23 918:= 1 − 902:= 1 − 838:/(1 + 822:= 0.96 818:= 1 − 712:where 582:window 566:medium 519:Theory 408:silica 290:, and 217:grease 81:, and 55:lenses 2613:Macor 2580:ZBLAN 2414:Glass 2399:Glass 2101:S2CID 2046:(PDF) 2005:(PDF) 1979:(PDF) 1966:(PDF) 1912:1 May 1749:(PDF) 1736:(PDF) 1654:S2CID 1626:(PDF) 1604:S2CID 1465:(PDF) 1458:(PDF) 1302:above 1140:phase 1034:≈ 1.0 1024:≈ 1.5 807:≈ 1.5 750:. If 742:, or 603:, or 570:glass 478:Canon 461:Moths 364:, MgF 298:Types 221:index 213:water 190:glare 132:. A 67:light 2337:ISBN 2309:2007 2252:2013 2222:2013 2177:ISBN 2154:PMID 2093:ISSN 2054:2007 2035:PMID 1987:2009 1914:2014 1892:2014 1842:2019 1816:2009 1757:2009 1715:PMID 1665:2016 1561:PMID 1473:2012 1441:2016 1387:2023 1327:and 1173:(MgF 1131:and 910:and 887:and 754:and 719:and 545:film 535:and 440:and 317:more 215:and 169:and 2146:doi 2085:doi 2027:doi 1866:doi 1784:doi 1707:doi 1646:doi 1594:doi 1551:PMC 1541:doi 1500:doi 1410:doi 1284:. 1188:). 1100:/(4 574:air 452:). 105:or 37:or 29:An 2935:: 2335:. 2238:. 2208:. 2152:. 2144:. 2134:. 2124:28 2122:. 2099:. 2091:. 2083:. 2073:93 2071:. 2033:. 2025:. 2015:30 2013:. 2007:. 1968:. 1930:. 1860:. 1832:. 1778:. 1774:. 1738:. 1713:. 1701:. 1652:. 1644:. 1634:22 1632:. 1628:. 1602:. 1590:42 1588:. 1582:. 1559:. 1549:. 1539:. 1527:. 1521:. 1498:. 1431:. 1404:. 1378:. 1323:. 1254:. 1247:. 1060:01 1054:1S 1046:. 937:01 931:1S 923:1S 916:1S 907:01 900:01 892:1S 885:01 828:. 779:TI 775:RI 746:, 611:: 607:, 592:. 507:A 484:. 476:. 328:. 294:. 286:, 282:, 278:, 247:, 177:. 146:UV 142:IR 109:. 77:, 73:, 43:AR 33:, 2391:e 2384:t 2377:v 2345:. 2311:. 2254:. 2224:. 2185:. 2160:. 2148:: 2130:: 2107:. 2087:: 2079:: 2056:. 2029:: 2021:: 1989:. 1934:. 1916:. 1894:. 1872:. 1868:: 1862:7 1844:. 1818:. 1792:. 1786:: 1780:2 1759:. 1721:. 1709:: 1703:4 1667:. 1648:: 1640:: 1610:. 1596:: 1567:. 1543:: 1535:: 1529:5 1506:. 1502:: 1494:: 1475:. 1443:. 1416:. 1412:: 1406:4 1389:. 1291:) 1287:( 1184:n 1175:2 1165:n 1144:T 1136:2 1133:R 1129:1 1126:R 1119:I 1111:0 1107:) 1105:1 1102:n 1098:0 1057:T 1051:T 1042:1 1039:n 1032:0 1029:n 1022:S 1019:n 1001:. 994:S 990:n 984:0 980:n 974:= 969:1 965:n 944:1 941:n 934:T 928:T 920:R 913:T 904:R 897:T 889:R 882:R 875:S 872:n 868:0 865:n 861:1 858:n 842:) 840:R 836:R 834:2 820:R 816:T 811:R 805:S 802:n 797:0 794:n 771:I 764:R 760:T 748:T 736:R 728:R 724:S 721:n 717:0 714:n 697:, 692:2 687:) 679:S 675:n 671:+ 666:0 662:n 654:S 650:n 641:0 637:n 630:( 625:= 622:R 609:R 382:2 378:2 374:2 366:2 45:) 41:(

Index


optical coating
lenses
photovoltaic cells
reflection
light
cameras
binoculars
telescopes
microscopes
contrast
stray light
planetary astronomy
eyeglass
binoculars
telescopic sight
thin film
refractive index
destructive interference
incident angle
oblique angles
wavelength
frequencies
IR
UV

corrective lenses
camera lens
solar cells
Opticians

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.