Knowledge

Mutational signatures

Source 📝

1096:'s huge banks of DNA-sequencing machines in motion to read every single letter of DNA in a tumor. By 2009, Stratton and his team had produced the first whole cancer genome sequences. These were detailed maps showing all the genetic changes and mutations that had occurred within two individual cancers—a melanoma from the skin and a lung tumor. The melanoma and lung cancer genomes were powerful proof that the fingerprints of specific culprits could be seen in cancers with one major cause. These tumors still contained many mutations that could not be explained by ultraviolet light or tobacco smoking. The detective work became a lot more complicated for cancers with complex, multiple or even completely unknown origins. By way of analogy, imagine a forensic scientist dusting for fingerprints at a murder scene. The forensic scientist might strike it lucky and find a set of perfect prints on a windowpane or door handle that match a known killer. However, they are much more likely to uncover a mish-mash of fingerprints belonging to a whole range of folk—from the victim and potential suspects to innocent parties and police investigators—all laid on top of each other on all sorts of surfaces. This is very similar to cancer genomes where multiple mutational patterns are commonly overlaid one over another making the data incomprehensible. Fortunately, a PhD student of Stratton's, 116: 39:
unique to the signer. Uniqueness allows the mutagen to be deduced from a cell's mutations Later, the phrase referred to a pattern of mutations characteristic of a tumor type, although usually not unique to the tumor type nor to a mutagen. If a tumor mutational signature matches a unique mutagen mutational signature, it is valid to deduce the carcinogen exposure or mutagenesis process that occurred in the patient's distant past. Increasingly refined tumor signatures are becoming assignable to mutagen signatures.
934:
cellular oxidative processes. Therefore even if all mutations in a tumor were caused by UV from sunlight, one quarter of the mutations are expected to not be UV signature mutations. A second carcinogen needn't be invoked to explain those mutations, but a second mutational process is required. Identification of a UV signature in a tumor of unknown primary site is clinically important as it suggests a diagnosis of metastatic skin cancer and has important treatment implications.
795: 425: 929:, causing a strong bias for C>T substitutions enriched on the untranscribed DNA strand. The regions of a tumor suppressor protein that are mutationally inactivated in sunlight-related skin cancers are the same as in cancers of organs not exposed to sunlight, but the nucleotide mutated is often shifted a few bases to a site where a CPD could form. 1109:
data. Subsequently, they applied this framework to more than seven thousand cancer genomes creating the first comprehensive map of mutational signatures in human cancer. Currently, more than one hundred mutational signatures have been identified across the repertoire of human cancer. In April 2022 58
924:
Signature 7 has a predominance of C>T substitutions at sites of adjacent pyrimidines (adjacent C or T), with a particularly diagnostic subset being the CC>TT dinucleotide mutation. This pattern arises because the major UV-induced DNA photoproducts join two adjacent pyrimidines; the photoproduct
933:
radiation exposure is therefore the proposed underlying mutagenic mechanism of this signature. UV also illustrates a subtlety in interpreting a tumor signature as a mutagen signature: only three-quarters of mutations induced by UV in the laboratory are UV signature mutations because UV also triggers
38:
The term is used for two distinct concepts, often conflated: mutagen signatures and tumor signatures. Its original use, mutagen signature, referred to a pattern of mutations made in the laboratory by a known mutagen and not made by other mutagens – unique to the mutagen as a human signature is
403:
There are six classes of base substitution: C>A, C>G, C>T, T>A, T>C, T>G. The G>T substitution is considered equivalent to the C>A substitution because it is not possible to differentiate on which DNA strand (forward or reverse) the substitution initially occurred. Both the
428:
The 96 mutation types concept from Alexandrov et al. Considering the 5' flanking base (A, C, G, T), the 6 substitution classes (C>A, C>G, C>T, T>A, T>C, T>G) and 3' flanking base (A, C, G, T) leads to a 96 mutation types classification (4 x 6 x 4 = 96). The 16 possible mutation
407:
Taking the information from the 5' and 3' adjacent bases (also called flanking base pairs or trinucleotide context) lead to 96 possible mutation types (e.g. AA, AT, etc.). The mutation catalog of a tumor is created by categorizing each single nucleotide variant (SNV) (synonyms:
404:
C>A and G>T substitutions are therefore counted as part of the "C>A" class. For the same reason the G>C, G>A, A>T, A>G and A>C mutations are counted as part of the "C>G", "C>T", "T>A", "T>C" and "T>G" classes respectively.
925:
is typically the cyclobutane pyrimidine dimer (CPD). Specificity for C>T appears to be due to the million-fold acceleration of C deamination when it is part of a CPD, with the resulting uracil acting as T. CPDs are repaired via transcription-coupled
440:
The mutation catalog of the tumor is compared to a reference mutation catalogue, or mutational signatures reference dataset, such as the 21 Signatures of Mutational Processes in Human Cancer from the Catalogue of Somatic Mutation In Cancer
122:
Diverse mutagenesis processes shape the somatic landscape of tumors. Deciphering the underlying patterns of cancer mutations allows to uncover relationships between these recurrent patterns of mutations and infer possible causal mutational
683:
is associated with high burden of Signature 2 and Signature 13 mutations. This polymorphism is considered to be of moderate penetrance (two-fold above background risk) for breast cancer risk. The exact roles and mechanisms underlying
1100:
came up with a way of mathematically solving the problem. Alexandrov demonstrated that mutational patterns from individual mutagens found in a tumor can be distinguished from one another using a mathematical approach called
699:
Both Signature 2 and Signature 13 feature cytosine to uracil substitutions due to cytidine deaminases. Signature 2 has a higher proportion of CN substitutions and Signature 13 a higher proportion of TN substitutions.
433:
Once the mutation catalog (e.g. counts for each of the 96 mutation types) of a tumor is obtained, there are two approaches to decipher the contributions of different mutational signatures to tumor genomic landscape:
771:
Signature 10 has a transcriptional bias and is enriched for C>A substitutions in the TpCpT context as well as T>G substitutions in the TpTpTp context. Signature 10 is associated with altered function of
558:
Some mutational signatures feature strong transcriptional-bias with substitutions preferentially affecting one of the DNA strands, either the transcribed or untranscribed strand (Signatures 5, 7, 8, 10, 12,
1105:. The newly disentangled patterns of mutations were termed mutational signatures. In 2013, Alexandrov and Stratton published the first computational framework for deciphering mutational signatures from 2381:
Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, Totoki Y, Fujimoto A, Nakagawa H, Shibata T, Campbell PJ, Vineis P, Phillips DH, Stratton MR (November 2016).
982:) display transcriptional strand-bias and enrichment for C>A substitutions, but their respective composition and patterns (proportion of each mutation types) differ slightly. 2795:
Alexandrov L, Kim J, Haradhvala NJ, Huang MN, Ng AW, Boot A, Covington KR, Gordenin DA, Bergstrom E (2018-05-15). "The Repertoire of Mutational Signatures in Human Cancer".
2487:
Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC (2004). "TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer".
1583:
Chuk MK, Chang JT, Theoret MR, Sampene E, He K, Weis SL, Helms WS, Jin R, Li H, Yu J, Zhao H, Zhao L, Paciga M, Schmiel D, Rawat R, Keegan P, Pazdur R (October 2017).
395:(e.g. single nucleotide variants, indels, structural variants) can be used individually or in combination to model mutational signatures in cancer. 2167:"Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo" 1072:
at the Johns Hopkins Oncology Center in Baltimore reviewed data showing that different types of cancer had their own unique suite of mutations in
1813:"Association of a germline copy number polymorphism of APOBEC3A and APOBEC3B with burden of putative APOBEC-dependent mutations in breast cancer" 1417:
Kucab JE, Zou X, Morganella S, Joel M, Nanda AS, Nagy E, Gomez C, Degasperi A, Harris R, Jackson SP, Arlt VM, Phillips DH, Nik-Zainal S (2019).
2218:"The major mechanism of melanoma mutations is based on deamination of cytosine in pyrimidine dimers as determined by circle damage sequencing" 79:). More recently, mutational signatures profiling has proven successful in guiding oncological management and use of targeted therapies (e.g. 689: 351: 2332:
Mata, Douglas A.; Williams, Erik A.; Sokol, Ethan; Oxnard, Geoffrey R.; Fleischmann, Zoe; Tse, Julie Y.; Decker, Brennan (23 March 2022).
619: 494: 1153:
As DNA replication, maintenance and repair is not a linear process, some signatures are caused by overlapping mutagenesis mechanisms.
1092:
saw the potential for the technology to revolutionize our understanding of the genetic changes inside individual tumors, setting the
452: 320:(MMR) deficiency: The mismatch repair machinery recognizes and repairs erroneous base pair insertion, deletion or mis-incorporation. 416:) in one of the 96 mutation types and counting the total number of substitutions for each of these 96 mutation types (see figure). 1764:"Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors" 272: 230: 200: 63: 552:
types (e.g. Signature 1) while some others tend to associate with specific cancers (e.g. Signature 9 and lymphoid malignancies)
2273:
Ziegler A, Leffell DJ, Kunala S, Sharma HW, Gailani M, Simon JA, Halperin AJ, Baden HP, Shapiro PE, Bale AE, Brash DE (1993).
583:
Signature 5 has a predominance of T>C substitutions in the ApTpN trinucleotide context with transcriptional strand bias.
515:
deficiency leads to Signature 3 substitution pattern, but also to increase burden of structural variants. In the absence of
54:. Mutational signatures have shown their applicability in cancer treatment and cancer prevention. Advances in the fields of 2438:
Rogozin IB, Goncearenco A, Lada AG, De S, Yurchenkod V, Nudelman G, Panchenko AR, Cooper DN, Pavlov YI (February 2018).
1012: 1996:"A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer" 1085: 999: 953: 926: 729: 524: 520: 501: 490: 391:
in order to create the tumor mutation catalog (mutation types and counts) of a specific tumor. Different types of
1093: 288: 2551: 2953: 814: 516: 512: 478: 384: 311: 303: 100: 1585:"FDA Approval Summary: Accelerated Approval of Pembrolizumab for Second-Line Treatment of Metastatic Melanoma" 1358: 115: 1134: 1102: 979: 660:
Signature 2 and Signature 13 are enriched for C>T and C>G substitutions and are thought to arise from
343: 809:
in colorectal cancer leads to enrichment for transversion mutations (G:C>T:A), which has been linked to
172:
to correct these replication errors leads to progressive accumulation of mutations through successive cell
2575:
Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, et al. (January 2010).
810: 773: 721: 528: 409: 1945: 569: 366: 196: 1624:
O'Neil, Nigel J.; Bailey, Melanie L.; Hieter, Philip (26 June 2017). "Synthetic lethality and cancer".
2738:
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. (August 2013).
1357:
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. (August 2013).
2958: 2878: 2796: 2751: 2645: 2588: 2394: 2286: 2229: 2119: 2059: 1762:
Middlebrooks CD, Banday AR, Matsuda K, Udquim KI, Onabajo OO, Paquin A, et al. (November 2016).
1373: 1296: 826: 654: 653:
has also been found to cause unwanted host genome editing and may even participate to oncogenesis in
532: 486: 331: 1483:
Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, Stratton MR (December 2015).
696:
complex is thought to be involved in host immune response to viral infections and lipid metabolism.
1897:"APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication" 1672:"Homologous Recombination Deficiency and Platinum-Based Therapy Outcomes in Advanced Breast Cancer" 1129: 760: 725: 615: 544:
A brief description of selected mutational processes and their associated mutational signatures in
317: 307: 242: 96: 2632:
Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, et al. (January 2010).
2904: 1973: 1649: 1320: 661: 638: 347: 2896: 2847: 2777: 2720: 2671: 2614: 2527: 2492: 2469: 2420: 2363: 2314: 2255: 2198: 2147: 2085: 2025: 1965: 1944:
Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I, Church DN (February 2016).
1926: 1877: 1842: 1811:
Nik-Zainal S, Wedge DC, Alexandrov LB, Petljak M, Butler AP, Bolli N, et al. (May 2014).
1793: 1744: 1693: 1670:
Zhao EY, Shen Y, Pleasance E, Kasaian K, Leelakumari S, Jones M, et al. (December 2017).
1641: 1606: 1565: 1514: 1448: 1399: 1312: 1262: 1208: 1124: 1097: 596: 591:
Signature 3 displays high mutation counts of multiple mutation classes and is associated with
485:(up to 50 nucleotides) with overlapping microhomology at the breakpoints. In such tumors, DNA 76: 915:-induced DNA damage and repair mechanisms have been linked to specific molecular signatures. 2886: 2837: 2829: 2767: 2759: 2710: 2702: 2661: 2653: 2604: 2596: 2519: 2459: 2451: 2440:"DNA polymerase η mutational signatures are found in a variety of different types of cancer" 2410: 2402: 2353: 2345: 2304: 2294: 2245: 2237: 2188: 2178: 2137: 2127: 2075: 2067: 2015: 2007: 1957: 1916: 1908: 1869: 1832: 1824: 1783: 1775: 1734: 1724: 1683: 1633: 1596: 1555: 1545: 1504: 1496: 1438: 1430: 1389: 1381: 1304: 1252: 1244: 1198: 1190: 1177:
Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, et al. (January 2017).
1089: 1065: 945: 777: 733: 577: 466: 189: 157: 68: 59: 2818:"Substitution mutational signatures in whole-genome–sequenced cancers in the UK population" 2106:
Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Pontén J (1991).
641:
enzymes respond to viral infections by editing viral genome, but the enzymatic activity of
2510:
Pfeifer GP, Hainaut P (2003). "On the origin of G --> T transversions in lung cancer".
1713:"Roles of APOBEC3A and APOBEC3B in Human Papillomavirus Infection and Disease Progression" 1106: 1077: 1069: 1016: 836: 576:
diagnosis. The underlying proposed biological mechanism is the spontaneous deamination of
246: 150: 84: 24: 2108:"A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma" 1534:"Advances in Targeted and Immunobased Therapies for Colorectal Cancer in the Genomic Era" 2882: 2755: 2649: 2592: 2398: 2290: 2233: 2123: 2063: 1377: 1300: 712:-mediated mutagenesis preferentially involve the lagging DNA strand during replication. 2842: 2817: 2772: 2739: 2715: 2690: 2666: 2633: 2609: 2576: 2464: 2439: 2415: 2382: 2358: 2333: 2250: 2217: 2193: 2166: 2080: 2047: 2020: 1995: 1921: 1896: 1837: 1812: 1788: 1763: 1739: 1712: 1560: 1533: 1509: 1484: 1443: 1418: 1394: 1257: 1232: 1203: 1178: 1119: 991: 462: 413: 388: 169: 161: 92: 72: 47: 2523: 2349: 1076:, which were likely to have been caused by different agents, such as the chemicals in 548:
will be included in the sections below. Some signatures are ubiquitous across diverse
451:
mutational signatures modelling can be accomplished using statistical methods such as
2947: 2908: 2309: 2274: 2142: 2107: 1895:
Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA (February 2016).
840: 104: 80: 1324: 614:
types (e.g. breast, pancreatic, ovarian, prostate). This signature results from DNA
572:
in the NpG trinucleotide contexts and correlates with the age of patient at time of
2043: 1977: 1653: 1048:
error-prone synthesis signature has been linked to non-hematological cancers (e.g.
1020: 896: 868: 844: 822: 335: 280: 234: 62:, but such therapies historically focused on inhibition of oncogenic drivers (e.g. 55: 2455: 1688: 1671: 1601: 1584: 2706: 1912: 2689:
Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR (January 2013).
2275:"Mutation hotspots due to sunlight in the p53 gene of non-melanoma skin cancers" 2011: 1860:
Yang B, Li X, Lei L, Chen J (September 2017). "APOBEC: From mutator to editor".
1081: 1053: 1049: 1036: 987:
The proposed underlying mechanism of Signature 4 is the removal of DNA adducts (
971: 930: 908: 782: 362: 339: 268: 238: 220: 212: 207: 192: 165: 134: 51: 20: 2891: 2866: 1434: 442: 424: 1873: 876: 250: 216: 182: 32: 2634:"A small-cell lung cancer genome with complex signatures of tobacco exposure" 2132: 944:
Signature 11 was identified in tumors previously exposed to Temozolamide, an
2833: 2406: 2183: 1308: 392: 28: 2922: 2900: 2851: 2781: 2724: 2675: 2618: 2577:"A comprehensive catalogue of somatic mutations from a human cancer genome" 2531: 2496: 2473: 2424: 2367: 2299: 2259: 2241: 2202: 2089: 2029: 1969: 1930: 1881: 1846: 1797: 1748: 1697: 1645: 1610: 1569: 1518: 1452: 1403: 1266: 1212: 2691:"Deciphering signatures of mutational processes operative in human cancer" 2318: 2151: 1316: 1194: 794: 1946:"A panoply of errors: polymerase proofreading domain mutations in cancer" 852: 708: 702: 679: 673: 649: 643: 592: 359: 276: 224: 88: 2763: 2657: 2600: 2071: 1961: 1637: 1385: 19:
are characteristic combinations of mutation types arising from specific
2383:"Mutational signatures associated with tobacco smoking in human cancer" 2334:"Prevalence of UV Mutational Signatures Among Cutaneous Primary Tumors" 1550: 995: 988: 975: 967: 949: 912: 872: 864: 860: 848: 634: 504:, also features enrichment of 1bp indels in nucleotide repeat regions. 284: 264: 258: 173: 1248: 1056:
and could partly explain the increase TC dinucleotides substitutions.
1729: 693: 685: 665: 623: 611: 573: 549: 545: 482: 355: 254: 138: 43: 1828: 1779: 1500: 1284: 956:. A strong transcriptional strand-bias is present in this signature. 481:(HR) deficient tumour, is associated with increased burden of large 465:
provides insight into tumor biology and can offer opportunities for
120:
Conceptual workflow of somatic mutational signatures identification.
2801: 330:
Cytidine deaminase enzymes: This family of enzymes are part of the
887: 856: 831: 606: 600: 461:
Identifying the contributions of diverse mutational signatures to
423: 114: 1031: 881: 755: 749: 743: 737: 383:
Cancer mutational signatures analyses require genomic data from
1419:"A compendium of mutational signatures of environmental agents" 1283:
Hollstein M, Sidransky D, Vogelstein B, Harris CC (July 1991).
786:
exonuclease domain mutations are associated with Signature 10.
429:
types of the substitution class C>A are shown as an example.
1073: 847:, which if remains un-repaired, will lead to incorporation of 813:
Signature 18 described by Alexandrov et al (Signature 18 plot
1994:
Viel, A, Bruselles, A, Meccia, E, et al. (April 2017).
1023:
events. It is thought to result from error-prone polymerase
46:
provides insight into the biological mechanisms involved in
688:-mediated genome editing are not yet fully delineated, but 1711:
Warren C, Westrich J, Doorslaer K, Pyeon D (August 2017).
2552:"The DNA detectives who are hunting the causes of cancer" 948:. This signature is enriched for C>T substitutions on 2867:"Trove of tumour genomes offers clues to cancer origins" 2216:
Jin SG, Pettinga D, Johnson J, Li P, Pfeifer GP (2021).
1485:"Clock-like mutational processes in human somatic cells" 2165:
Cannistraro VJ, Pondugula S, Song Q, Taylor JS (2015).
2740:"Signatures of mutational processes in human cancer" 1359:"Signatures of mutational processes in human cancer" 1179:"COSMIC: somatic cancer genetics at high-resolution" 141:
Signatures 1 to 30) include, but are not limited to:
58:
have enabled the development and use of molecularly
2279:
Proceedings of the National Academy of Sciences USA
2112:
Proceedings of the National Academy of Sciences USA
1862:
Journal of Genetics and Genomics = Yi Chuan Xue Bao
489:are repaired by the imprecise repair mechanisms of 164:excises an incorrectly incorporated nucleotide via 1052:) and was hypothesized to contribute to YCG motif 137:mechanisms underlying mutational signatures (e.g. 622:). Signature 3 is associated with high burden of 455:to identify potential novel mutational processes. 2816:Degasperi, Andrea; et al. (21 April 2021). 1478: 1476: 1474: 1472: 1470: 1468: 1466: 1464: 1462: 1352: 1350: 1348: 1346: 1344: 1342: 1340: 1338: 1336: 1334: 825:mutations (G:C>T:A) has been associated with 724:mutational signatures have been associated with 1989: 1987: 1278: 1276: 863:glycosylase enzyme which excise the mismatched 2923:"Cancer: Huge DNA analysis uncovers new clues" 2545: 2543: 2541: 2048:"Base-excision repair of oxidative DNA damage" 803:in base excision repair and somatic signature. 568:Signature 1 features a predominance of C>T 257:cells are most impacted because of their high 314:mechanism for accurate repair of breakpoints. 8: 2101: 2099: 1665: 1663: 1172: 1170: 1226: 1224: 1222: 671:A germline deletion polymorphism involving 523:leads to large structural variants such as 497:(MMEJ) instead of high fidelity HR repair. 1110:new mutational signatures were described. 2890: 2841: 2800: 2771: 2714: 2665: 2608: 2463: 2414: 2357: 2308: 2298: 2249: 2192: 2182: 2141: 2131: 2079: 2019: 1920: 1836: 1787: 1738: 1728: 1687: 1600: 1559: 1549: 1508: 1442: 1393: 1256: 1202: 829:(BER) deficiency and linked to defective 1068:at the US National Cancer Institute and 895:, MutT homolog 1) to remove the damaged 793: 1166: 1146: 1084:light from the sun. With the advent of 626:with microhomology at the breakpoints. 508:Types of mutations: structural variants 215:radiation: UVB radiation causes direct 1532:Seow H, Yip WK, Fifis T (March 2016). 399:Types of mutations: base substitutions 188:Endogenous cellular (e.g. spontaneous 690:activation-induced cytidine deaminase 352:activation-induced cytidine deaminase 42:Deciphering mutational signatures in 35:pathways, and DNA enzymatic editing. 27:infidelity, exogenous and endogenous 7: 780:activity. Both germline and somatic 728:deficiency and found in tumors with 271:which are harmful to DNA, including 1011:Signature 9 has been identified in 952:bases due to transcription-coupled 620:homologous recombination deficiency 587:Homologous recombination deficiency 334:and are involved in the control of 87:deficient of diverse cancer types, 1019:and feature enrichment for T>G 891:(Nudix hydrolase 1, also known as 495:microhomology-mediated end joining 14: 2350:10.1001/jamanetworkopen.2022.3833 1007:Immunoglobulin gene hypermutation 903:Exposures to exogenous genotoxins 875:base pairing, therefore enabling 500:Signature 6, seen in tumors with 453:non-negative matrix factorization 168:enzymatic reaction. Inability of 1285:"p53 mutations in human cancers" 843:damage leads to the creation of 273:polycyclic aromatic hydrocarbons 231:Alkylating antineoplastic agents 201:DNA damage (naturally occurring) 2046:; O'Shea, VL; Kundu, S (2007). 1237:Photochemistry and Photobiology 998:) by the transcription-coupled 839:, in colorectal cancer. Direct 365:and therefore introduce C>T 358:protein family) actively cause 219:and is a known risk factor for 907:Selected exogenous genotoxins/ 732:: Signature 6, 15, 20 and 26. 1: 2865:Ledford, Heidi (2022-04-21). 2524:10.1016/s0027-5107(03)00013-7 2456:10.1080/15384101.2017.1404208 1689:10.1158/1078-0432.CCR-17-1941 1602:10.1158/1078-0432.CCR-16-0663 978:chewing, gingivo-buccal oral 885:(Oxoguanine glycosylase) and 2707:10.1016/j.celrep.2012.12.008 2489:IARC Scientific Publications 1913:10.1016/j.celrep.2016.01.021 1013:chronic lymphocytic leukemia 776:, which result in deficient 2012:10.1016/j.ebiom.2017.04.022 267:: Tobacco contains several 2975: 2892:10.1038/d41586-022-01095-2 1435:10.1016/j.cell.2019.03.001 1086:next-generation sequencing 1000:nucleotide excision repair 954:nucleotide excision repair 927:nucleotide excision repair 919:Ultraviolet radiation (UV) 730:microsatellite instability 716:Mismatch repair deficiency 525:chromosomal translocations 521:non-homologous end joining 502:microsatellite instability 491:non-homologous end joining 473:Types of mutations: indels 1874:10.1016/j.jgg.2017.04.009 1094:Wellcome Sanger Institute 289:health effects of tobacco 2133:10.1073/pnas.88.22.10124 1676:Clinical Cancer Research 1589:Clinical Cancer Research 1233:"UV signature mutations" 855:during DNA replication. 517:homologous recombination 513:Homologous recombination 479:homologous recombination 385:cancer genome sequencing 312:homologous recombination 304:Homologous recombination 160:is the process by which 101:homologous recombination 2834:10.1126/science.abl9283 2407:10.1126/science.aag0299 2184:10.1074/jbc.M115.673301 1626:Nature Reviews Genetics 1538:OncoTargets and Therapy 1309:10.1126/science.1905840 1135:Whole genome sequencing 1103:blind source separation 980:squamous cell carcinoma 821:Somatic enrichment for 564:Age-related mutagenesis 344:endogenous retroviruses 2300:10.1073/pnas.90.9.4216 2242:10.1126/sciadv.abi6508 1950:Nature Reviews. Cancer 1183:Nucleic Acids Research 994:covalently bounded to 818: 774:DNA polymerase epsilon 759:genes cause defective 618:repair deficiency (or 529:chromosomal inversions 430: 420:Tumor mutation catalog 410:base-pair substitution 306:deficiency (HRD): DNA 124: 1042:Recently, polymerase 879:mechanisms involving 797: 610:mutations in several 570:transition (genetics) 539:Mutational signatures 477:Signature 3, seen in 427: 367:transition (genetics) 326:Enzymatic DNA editing 299:DNA repair deficiency 241:to DNA, which causes 197:transition (genetics) 128:Mechanisms – overview 118: 31:exposures, defective 17:Mutational signatures 974:) and Signature 29 ( 827:base excision repair 790:Base excision repair 664:activity of the AID/ 655:human papillomavirus 533:copy number variants 487:double-strand breaks 342:elements (including 332:innate immune system 245:and interferes with 2883:2022Natur.604..609L 2764:10.1038/nature12477 2756:2013Natur.500..415. 2658:10.1038/nature08629 2650:2010Natur.463..184P 2601:10.1038/nature08658 2593:2010Natur.463..191P 2550:Mosaic, Kat Arney. 2399:2016Sci...354..618A 2291:1993PNAS...90.4216Z 2234:2021SciA....7.6508J 2177:(44): 26597–26609. 2124:1991PNAS...8810124B 2072:10.1038/nature05978 2064:2007Natur.447..941D 1962:10.1038/nrc.2015.12 1638:10.1038/nrg.2017.47 1386:10.1038/nature12477 1378:2013Natur.500..415. 1301:1991Sci...253...49H 1195:10.1093/nar/gkw1121 1130:Pan-cancer analysis 761:DNA mismatch repair 726:DNA mismatch repair 616:double-strand break 387:with paired-normal 318:DNA mismatch repair 308:double-strand break 243:crosslinking of DNA 97:synthetic lethality 50:and normal somatic 1551:10.2147/OTT.S95101 1064:During the 1990s, 966:Both Signature 4 ( 819: 662:cytidine deaminase 657:-related cancers. 639:cytidine deaminase 431: 348:cytidine deaminase 346:). These enzymes ( 125: 23:processes such as 2512:Mutation Research 2393:(6312): 618–622. 2338:JAMA Network Open 2058:(7147): 941–950. 1774:(11): 1330–1338. 1682:(24): 7521–7530. 1595:(19): 5666–5670. 1429:(4): 821–36 e16. 1249:10.1111/php.12377 1231:Brash DE (2015). 1189:(D1): D777–D783. 1125:Genomic signature 1098:Ludmil Alexandrov 1035:gene)-associated 939:Alkylating agents 859:encodes the mutY 597:somatic (biology) 199:) mutations (see 77:colorectal cancer 2966: 2938: 2937: 2935: 2934: 2919: 2913: 2912: 2894: 2862: 2856: 2855: 2845: 2813: 2807: 2806: 2804: 2792: 2786: 2785: 2775: 2750:(7463): 415–21. 2735: 2729: 2728: 2718: 2686: 2680: 2679: 2669: 2644:(7278): 184–90. 2629: 2623: 2622: 2612: 2572: 2566: 2565: 2563: 2562: 2547: 2536: 2535: 2507: 2501: 2500: 2484: 2478: 2477: 2467: 2435: 2429: 2428: 2418: 2378: 2372: 2371: 2361: 2329: 2323: 2322: 2312: 2302: 2270: 2264: 2263: 2253: 2222:Science Advances 2213: 2207: 2206: 2196: 2186: 2162: 2156: 2155: 2145: 2135: 2103: 2094: 2093: 2083: 2040: 2034: 2033: 2023: 1991: 1982: 1981: 1941: 1935: 1934: 1924: 1907:(6): 1273–1282. 1892: 1886: 1885: 1857: 1851: 1850: 1840: 1808: 1802: 1801: 1791: 1759: 1753: 1752: 1742: 1732: 1730:10.3390/v9080233 1708: 1702: 1701: 1691: 1667: 1658: 1657: 1621: 1615: 1614: 1604: 1580: 1574: 1573: 1563: 1553: 1529: 1523: 1522: 1512: 1480: 1457: 1456: 1446: 1414: 1408: 1407: 1397: 1372:(7463): 415–21. 1363: 1354: 1329: 1328: 1280: 1271: 1270: 1260: 1228: 1217: 1216: 1206: 1174: 1154: 1151: 1090:Michael Stratton 1046: 1027: 1002:(NER) machinery. 946:alkylating agent 778:DNA proofreading 767:DNA proofreading 734:Loss of function 668:enzymes family. 578:5-methylcytosine 560: 553: 467:targeted therapy 412:or substitution 287:and others (see 233:: This group of 195:leads to C>T 190:5-methylcytosine 158:DNA proofreading 142: 111:General concepts 69:gain-of-function 60:targeted therapy 2974: 2973: 2969: 2968: 2967: 2965: 2964: 2963: 2954:Cancer genomics 2944: 2943: 2942: 2941: 2932: 2930: 2921: 2920: 2916: 2864: 2863: 2859: 2815: 2814: 2810: 2794: 2793: 2789: 2737: 2736: 2732: 2688: 2687: 2683: 2631: 2630: 2626: 2587:(7278): 191–6. 2574: 2573: 2569: 2560: 2558: 2549: 2548: 2539: 2509: 2508: 2504: 2491:(157): 247–70. 2486: 2485: 2481: 2437: 2436: 2432: 2380: 2379: 2375: 2331: 2330: 2326: 2272: 2271: 2267: 2215: 2214: 2210: 2164: 2163: 2159: 2118:(22): 10124–8. 2105: 2104: 2097: 2042: 2041: 2037: 1993: 1992: 1985: 1943: 1942: 1938: 1894: 1893: 1889: 1859: 1858: 1854: 1829:10.1038/ng.2955 1817:Nature Genetics 1810: 1809: 1805: 1780:10.1038/ng.3670 1768:Nature Genetics 1761: 1760: 1756: 1710: 1709: 1705: 1669: 1668: 1661: 1632:(10): 613–623. 1623: 1622: 1618: 1582: 1581: 1577: 1544:(9): 1899–920. 1531: 1530: 1526: 1501:10.1038/ng.3441 1489:Nature Genetics 1482: 1481: 1460: 1416: 1415: 1411: 1361: 1356: 1355: 1332: 1295:(5015): 49–53. 1282: 1281: 1274: 1230: 1229: 1220: 1176: 1175: 1168: 1163: 1158: 1157: 1152: 1148: 1143: 1116: 1107:cancer genomics 1070:Bert Vogelstein 1062: 1044: 1025: 1017:B-cell lymphoma 1009: 963: 941: 921: 905: 837:DNA glycosylase 792: 769: 718: 632: 589: 566: 557: 543: 541: 510: 475: 422: 401: 381: 376: 247:DNA replication 151:DNA replication 133:The biological 132: 130: 113: 85:mismatch repair 25:DNA replication 12: 11: 5: 2972: 2970: 2962: 2961: 2956: 2946: 2945: 2940: 2939: 2914: 2857: 2808: 2802:10.1101/322859 2787: 2730: 2681: 2624: 2567: 2537: 2518:(1–2): 39–43. 2502: 2479: 2450:(3): 348–355. 2430: 2373: 2344:(3): e223833. 2324: 2285:(9): 4216–20. 2265: 2208: 2157: 2095: 2035: 1983: 1936: 1887: 1868:(9): 423–437. 1852: 1803: 1754: 1703: 1659: 1616: 1575: 1524: 1495:(12): 1402–7. 1458: 1409: 1330: 1272: 1218: 1165: 1164: 1162: 1159: 1156: 1155: 1145: 1144: 1142: 1139: 1138: 1137: 1132: 1127: 1122: 1120:Gene signature 1115: 1112: 1061: 1058: 1015:and malignant 1008: 1005: 1004: 1003: 992:benzo(a)pyrene 984: 983: 962: 959: 958: 957: 940: 937: 936: 935: 920: 917: 904: 901: 791: 788: 768: 765: 717: 714: 631: 630:APOBEC enzymes 628: 588: 585: 565: 562: 540: 537: 509: 506: 474: 471: 463:carcinogenesis 459: 458: 457: 456: 446: 421: 418: 414:point mutation 400: 397: 389:DNA sequencing 380: 377: 375: 374: 373: 372: 371: 370: 323: 322: 321: 315: 296: 295: 294: 293: 292: 262: 228: 204: 179: 178: 177: 170:DNA polymerase 162:DNA polymerase 144: 129: 126: 112: 109: 93:PARP inhibitor 73:EGFR inhibitor 48:carcinogenesis 13: 10: 9: 6: 4: 3: 2: 2971: 2960: 2957: 2955: 2952: 2951: 2949: 2928: 2924: 2918: 2915: 2910: 2906: 2902: 2898: 2893: 2888: 2884: 2880: 2877:(7907): 609. 2876: 2872: 2868: 2861: 2858: 2853: 2849: 2844: 2839: 2835: 2831: 2827: 2823: 2819: 2812: 2809: 2803: 2798: 2791: 2788: 2783: 2779: 2774: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2741: 2734: 2731: 2726: 2722: 2717: 2712: 2708: 2704: 2701:(1): 246–59. 2700: 2696: 2692: 2685: 2682: 2677: 2673: 2668: 2663: 2659: 2655: 2651: 2647: 2643: 2639: 2635: 2628: 2625: 2620: 2616: 2611: 2606: 2602: 2598: 2594: 2590: 2586: 2582: 2578: 2571: 2568: 2557: 2553: 2546: 2544: 2542: 2538: 2533: 2529: 2525: 2521: 2517: 2513: 2506: 2503: 2498: 2494: 2490: 2483: 2480: 2475: 2471: 2466: 2461: 2457: 2453: 2449: 2445: 2441: 2434: 2431: 2426: 2422: 2417: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2377: 2374: 2369: 2365: 2360: 2355: 2351: 2347: 2343: 2339: 2335: 2328: 2325: 2320: 2316: 2311: 2306: 2301: 2296: 2292: 2288: 2284: 2280: 2276: 2269: 2266: 2261: 2257: 2252: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2212: 2209: 2204: 2200: 2195: 2190: 2185: 2180: 2176: 2172: 2168: 2161: 2158: 2153: 2149: 2144: 2139: 2134: 2129: 2125: 2121: 2117: 2113: 2109: 2102: 2100: 2096: 2091: 2087: 2082: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2039: 2036: 2031: 2027: 2022: 2017: 2013: 2009: 2005: 2001: 1997: 1990: 1988: 1984: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1940: 1937: 1932: 1928: 1923: 1918: 1914: 1910: 1906: 1902: 1898: 1891: 1888: 1883: 1879: 1875: 1871: 1867: 1863: 1856: 1853: 1848: 1844: 1839: 1834: 1830: 1826: 1823:(5): 487–91. 1822: 1818: 1814: 1807: 1804: 1799: 1795: 1790: 1785: 1781: 1777: 1773: 1769: 1765: 1758: 1755: 1750: 1746: 1741: 1736: 1731: 1726: 1722: 1718: 1714: 1707: 1704: 1699: 1695: 1690: 1685: 1681: 1677: 1673: 1666: 1664: 1660: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1620: 1617: 1612: 1608: 1603: 1598: 1594: 1590: 1586: 1579: 1576: 1571: 1567: 1562: 1557: 1552: 1547: 1543: 1539: 1535: 1528: 1525: 1520: 1516: 1511: 1506: 1502: 1498: 1494: 1490: 1486: 1479: 1477: 1475: 1473: 1471: 1469: 1467: 1465: 1463: 1459: 1454: 1450: 1445: 1440: 1436: 1432: 1428: 1424: 1420: 1413: 1410: 1405: 1401: 1396: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1360: 1353: 1351: 1349: 1347: 1345: 1343: 1341: 1339: 1337: 1335: 1331: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1277: 1273: 1268: 1264: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1227: 1225: 1223: 1219: 1214: 1210: 1205: 1200: 1196: 1192: 1188: 1184: 1180: 1173: 1171: 1167: 1160: 1150: 1147: 1140: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1117: 1113: 1111: 1108: 1104: 1099: 1095: 1091: 1087: 1083: 1079: 1078:tobacco smoke 1075: 1071: 1067: 1066:Curtis Harris 1059: 1057: 1055: 1051: 1047: 1040: 1038: 1034: 1033: 1028: 1022: 1018: 1014: 1006: 1001: 997: 993: 990: 986: 985: 981: 977: 973: 969: 965: 964: 960: 955: 951: 947: 943: 942: 938: 932: 928: 923: 922: 918: 916: 914: 910: 902: 900: 898: 894: 890: 889: 884: 883: 878: 874: 870: 866: 862: 858: 854: 850: 846: 842: 841:DNA oxidation 838: 834: 833: 828: 824: 816: 812: 808: 804: 802: 796: 789: 787: 785: 784: 779: 775: 766: 764: 762: 758: 757: 752: 751: 746: 745: 740: 739: 735: 731: 727: 723: 715: 713: 711: 710: 705: 704: 697: 695: 691: 687: 682: 681: 676: 675: 669: 667: 663: 658: 656: 652: 651: 646: 645: 640: 636: 629: 627: 625: 621: 617: 613: 609: 608: 603: 602: 598: 594: 586: 584: 581: 579: 575: 571: 563: 561: 555: 551: 547: 538: 536: 534: 530: 526: 522: 518: 514: 507: 505: 503: 498: 496: 492: 488: 484: 480: 472: 470: 468: 464: 454: 450: 447: 444: 439: 438: 437: 436: 435: 426: 419: 417: 415: 411: 405: 398: 396: 394: 390: 386: 378: 368: 364: 361: 357: 353: 349: 345: 341: 337: 333: 329: 328: 327: 324: 319: 316: 313: 309: 305: 302: 301: 300: 297: 290: 286: 282: 278: 274: 270: 266: 263: 260: 256: 252: 248: 244: 240: 236: 232: 229: 226: 222: 218: 214: 211: 210: 209: 205: 202: 198: 194: 191: 187: 186: 185: 184: 180: 175: 171: 167: 163: 159: 156: 155: 154: 152: 148: 147: 146: 145: 143: 140: 136: 127: 121: 117: 110: 108: 106: 105:breast cancer 102: 98: 94: 90: 86: 82: 81:immunotherapy 78: 75:treatment in 74: 71:mutation and 70: 67: 66: 61: 57: 53: 49: 45: 40: 36: 34: 30: 26: 22: 18: 2931:. Retrieved 2929:. 2022-04-21 2926: 2917: 2874: 2870: 2860: 2825: 2821: 2811: 2790: 2747: 2743: 2733: 2698: 2695:Cell Reports 2694: 2684: 2641: 2637: 2627: 2584: 2580: 2570: 2559:. Retrieved 2555: 2515: 2511: 2505: 2488: 2482: 2447: 2443: 2433: 2390: 2386: 2376: 2341: 2337: 2327: 2282: 2278: 2268: 2225: 2221: 2211: 2174: 2170: 2160: 2115: 2111: 2055: 2051: 2038: 2003: 2000:eBioMedicine 1999: 1956:(2): 71–81. 1953: 1949: 1939: 1904: 1901:Cell Reports 1900: 1890: 1865: 1861: 1855: 1820: 1816: 1806: 1771: 1767: 1757: 1720: 1716: 1706: 1679: 1675: 1629: 1625: 1619: 1592: 1588: 1578: 1541: 1537: 1527: 1492: 1488: 1426: 1422: 1412: 1369: 1365: 1292: 1288: 1243:(1): 15–26. 1240: 1236: 1186: 1182: 1149: 1063: 1043: 1041: 1030: 1024: 1021:transversion 1010: 906: 897:8-Oxoguanine 892: 886: 880: 869:8-Oxoguanine 845:8-Oxoguanine 830: 823:transversion 820: 806: 800: 798: 781: 770: 754: 748: 742: 736: 719: 707: 701: 698: 678: 672: 670: 659: 648: 642: 633: 605: 599: 590: 582: 567: 556: 542: 511: 499: 476: 460: 448: 432: 406: 402: 382: 379:Genomic data 336:retroviruses 325: 298: 281:nitrosamines 237:agents adds 235:chemotherapy 181: 149: 131: 119: 64: 56:oncogenomics 41: 37: 16: 15: 2959:Mutagenesis 2171:J Biol Chem 1082:ultraviolet 1054:mutagenesis 1050:skin cancer 1037:mutagenesis 972:lung cancer 931:Ultraviolet 909:carcinogens 851:instead of 783:POLE (gene) 445:) database. 363:deamination 340:transposons 269:carcinogens 239:alkyl group 221:skin cancer 213:Ultraviolet 208:carcinogens 193:deamination 166:exonuclease 135:mutagenesis 95:to exploit 52:mutagenesis 21:mutagenesis 2948:Categories 2933:2022-04-22 2561:2018-09-25 2444:Cell Cycle 1723:(8): 233. 1161:References 911:and their 877:DNA repair 805:Defective 637:family of 493:(NHEJ) or 369:mutations. 251:DNA repair 217:DNA damage 206:Exogenous/ 183:Genotoxins 153:infidelity 123:processes. 103:deficient 33:DNA repair 2909:248323597 2044:David, SS 2006:: 39–49. 1141:Note list 970:smoking, 393:mutations 310:requires 29:genotoxin 2927:BBC News 2901:35449305 2852:35949260 2828:(6591). 2782:23945592 2725:23318258 2676:20016488 2619:20016485 2532:12714181 2497:15055300 2474:29139326 2425:27811275 2368:35319765 2260:34330711 2203:26354431 2090:17581577 2030:28551381 1970:26822575 1931:26832400 1882:28964683 1847:24728294 1798:27643540 1749:28825669 1698:29246904 1646:28649135 1611:28235882 1570:27099521 1519:26551669 1453:30982602 1404:23945592 1325:38527914 1267:25354245 1213:27899578 1114:See also 853:cytosine 799:Role of 709:APOBEC3B 703:APOBEC3A 680:APOBEC3B 674:APOBEC3A 650:APOBEC3B 644:APOBEC3A 593:germline 360:cytidine 277:acrolein 225:melanoma 89:platinum 2879:Bibcode 2843:7613262 2822:Science 2797:bioRxiv 2773:3776390 2752:Bibcode 2716:3588146 2667:2880489 2646:Bibcode 2610:3145108 2589:Bibcode 2465:5914734 2416:6141049 2395:Bibcode 2387:Science 2359:8943639 2319:8483937 2287:Bibcode 2251:8324051 2230:Bibcode 2194:4646317 2152:1946433 2120:Bibcode 2081:2896554 2060:Bibcode 2021:5478212 1978:9359891 1922:4758883 1838:4137149 1789:6583788 1740:5580490 1717:Viruses 1654:3422717 1561:4821380 1510:4783858 1444:6506336 1395:3776390 1374:Bibcode 1317:1905840 1297:Bibcode 1289:Science 1258:4294947 1204:5210583 1060:History 996:guanine 989:tobacco 976:tobacco 968:tobacco 961:Tobacco 950:guanine 913:mutagen 873:adenine 865:adenine 861:adenine 849:adenine 635:APOBEC3 449:De novo 285:cyanide 265:Tobacco 259:mitosis 174:mitosis 2907:  2899:  2871:Nature 2850:  2840:  2799:  2780:  2770:  2744:Nature 2723:  2713:  2674:  2664:  2638:Nature 2617:  2607:  2581:Nature 2530:  2495:  2472:  2462:  2423:  2413:  2366:  2356:  2317:  2307:  2258:  2248:  2228:(31). 2201:  2191:  2150:  2140:  2088:  2078:  2052:Nature 2028:  2018:  1976:  1968:  1929:  1919:  1880:  1845:  1835:  1796:  1786:  1747:  1737:  1696:  1652:  1644:  1609:  1568:  1558:  1517:  1507:  1451:  1441:  1402:  1392:  1366:Nature 1323:  1315:  1265:  1255:  1211:  1201:  815:R code 811:COSMIC 722:COSMIC 694:APOBEC 692:(AID)/ 686:APOBEC 666:APOBEC 624:indels 612:cancer 574:cancer 550:cancer 546:cancer 483:indels 443:COSMIC 356:APOBEC 350:/CDA, 255:Cancer 223:(e.g. 139:COSMIC 44:cancer 2905:S2CID 2310:46477 2143:52880 1974:S2CID 1650:S2CID 1362:(PDF) 1321:S2CID 888:NUDT1 867:from 857:MUTYH 832:MUTYH 807:MUTYH 801:MUTYH 720:Four 607:BRCA2 601:BRCA1 261:rate. 2897:PMID 2848:PMID 2778:PMID 2721:PMID 2672:PMID 2615:PMID 2528:PMID 2493:PMID 2470:PMID 2421:PMID 2364:PMID 2315:PMID 2256:PMID 2199:PMID 2148:PMID 2086:PMID 2026:PMID 1966:PMID 1927:PMID 1878:PMID 1843:PMID 1794:PMID 1745:PMID 1694:PMID 1642:PMID 1607:PMID 1566:PMID 1515:PMID 1449:PMID 1423:Cell 1400:PMID 1313:PMID 1263:PMID 1209:PMID 1032:POLH 893:MTH1 882:OGG1 835:, a 756:PMS2 750:MSH6 744:MSH2 738:MLH1 706:and 677:and 647:and 604:and 595:and 559:16). 531:and 354:and 338:and 249:and 91:and 65:EGFR 2887:doi 2875:604 2838:PMC 2830:doi 2826:376 2768:PMC 2760:doi 2748:500 2711:PMC 2703:doi 2662:PMC 2654:doi 2642:463 2605:PMC 2597:doi 2585:463 2556:CNN 2520:doi 2516:526 2460:PMC 2452:doi 2411:PMC 2403:doi 2391:354 2354:PMC 2346:doi 2305:PMC 2295:doi 2246:PMC 2238:doi 2189:PMC 2179:doi 2175:290 2138:PMC 2128:doi 2076:PMC 2068:doi 2056:447 2016:PMC 2008:doi 1958:doi 1917:PMC 1909:doi 1870:doi 1833:PMC 1825:doi 1784:PMC 1776:doi 1735:PMC 1725:doi 1684:doi 1634:doi 1597:doi 1556:PMC 1546:doi 1505:PMC 1497:doi 1439:PMC 1431:doi 1427:177 1390:PMC 1382:doi 1370:500 1305:doi 1293:253 1253:PMC 1245:doi 1199:PMC 1191:doi 1080:or 1074:p53 817:). 753:or 107:). 99:in 83:in 2950:: 2925:. 2903:. 2895:. 2885:. 2873:. 2869:. 2846:. 2836:. 2824:. 2820:. 2776:. 2766:. 2758:. 2746:. 2742:. 2719:. 2709:. 2697:. 2693:. 2670:. 2660:. 2652:. 2640:. 2636:. 2613:. 2603:. 2595:. 2583:. 2579:. 2554:. 2540:^ 2526:. 2514:. 2468:. 2458:. 2448:17 2446:. 2442:. 2419:. 2409:. 2401:. 2389:. 2385:. 2362:. 2352:. 2340:. 2336:. 2313:. 2303:. 2293:. 2283:90 2281:. 2277:. 2254:. 2244:. 2236:. 2224:. 2220:. 2197:. 2187:. 2173:. 2169:. 2146:. 2136:. 2126:. 2116:88 2114:. 2110:. 2098:^ 2084:. 2074:. 2066:. 2054:. 2050:. 2024:. 2014:. 2004:20 2002:. 1998:. 1986:^ 1972:. 1964:. 1954:16 1952:. 1948:. 1925:. 1915:. 1905:14 1903:. 1899:. 1876:. 1866:44 1864:. 1841:. 1831:. 1821:46 1819:. 1815:. 1792:. 1782:. 1772:48 1770:. 1766:. 1743:. 1733:. 1719:. 1715:. 1692:. 1680:23 1678:. 1674:. 1662:^ 1648:. 1640:. 1630:18 1628:. 1605:. 1593:23 1591:. 1587:. 1564:. 1554:. 1540:. 1536:. 1513:. 1503:. 1493:47 1491:. 1487:. 1461:^ 1447:. 1437:. 1425:. 1421:. 1398:. 1388:. 1380:. 1368:. 1364:. 1333:^ 1319:. 1311:. 1303:. 1291:. 1287:. 1275:^ 1261:. 1251:. 1241:91 1239:. 1235:. 1221:^ 1207:. 1197:. 1187:45 1185:. 1181:. 1169:^ 1088:, 1039:. 899:. 763:. 747:, 741:, 580:. 554:. 535:. 527:, 519:, 469:. 283:, 279:, 275:, 253:. 2936:. 2911:. 2889:: 2881:: 2854:. 2832:: 2805:. 2784:. 2762:: 2754:: 2727:. 2705:: 2699:3 2678:. 2656:: 2648:: 2621:. 2599:: 2591:: 2564:. 2534:. 2522:: 2499:. 2476:. 2454:: 2427:. 2405:: 2397:: 2370:. 2348:: 2342:5 2321:. 2297:: 2289:: 2262:. 2240:: 2232:: 2226:7 2205:. 2181:: 2154:. 2130:: 2122:: 2092:. 2070:: 2062:: 2032:. 2010:: 1980:. 1960:: 1933:. 1911:: 1884:. 1872:: 1849:. 1827:: 1800:. 1778:: 1751:. 1727:: 1721:9 1700:. 1686:: 1656:. 1636:: 1613:. 1599:: 1572:. 1548:: 1542:9 1521:. 1499:: 1455:. 1433:: 1406:. 1384:: 1376:: 1327:. 1307:: 1299:: 1269:. 1247:: 1215:. 1193:: 1045:η 1029:( 1026:η 871:: 441:( 291:) 227:) 203:) 176:.

Index

mutagenesis
DNA replication
genotoxin
DNA repair
cancer
carcinogenesis
mutagenesis
oncogenomics
targeted therapy
EGFR
gain-of-function
EGFR inhibitor
colorectal cancer
immunotherapy
mismatch repair
platinum
PARP inhibitor
synthetic lethality
homologous recombination
breast cancer

mutagenesis
COSMIC
DNA replication
DNA proofreading
DNA polymerase
exonuclease
DNA polymerase
mitosis
Genotoxins

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.