Knowledge (XXG)

Macromolecule

Source 📝

1026: 942: 412: 50: 147: 812:
into the amino acid sequence of proteins, as evidenced by the messenger RNA molecules present within every cell, and the RNA genomes of a large number of viruses. The single-stranded nature of RNA, together with tendency for rapid breakdown and a lack of repair systems means that RNA is not so well
748:
DNA has three primary attributes that allow it to be far better than RNA at encoding genetic information. First, it is normally double-stranded, so that there are a minimum of two copies of the information encoding each gene in every cell. Second, DNA has a much greater stability against breakdown
744:
DNA and RNA are both capable of encoding genetic information, because there are biochemical mechanisms which read the information coded within a DNA or RNA sequence and use it to generate a specified protein. On the other hand, the sequence information of a protein molecule is not used by cells to
773:
The single-stranded nature of protein molecules, together with their composition of 20 or more different amino acid building blocks, allows them to fold in to a vast number of different three-dimensional shapes, while providing binding pockets through which they can specifically interact with all
816:
In addition, RNA is a single-stranded polymer that can, like proteins, fold into a very large number of three-dimensional structures. Some of these structures provide binding sites for other molecules and chemically active centers that can catalyze specific chemical reactions on those bound
557:
in the case of proteins). In general, they are all unbranched polymers, and so can be represented in the form of a string. Indeed, they can be viewed as a string of beads, with each bead representing a single nucleotide or amino acid monomer linked together through
749:
than does RNA, an attribute primarily associated with the absence of the 2'-hydroxyl group within every nucleotide of DNA. Third, highly sophisticated DNA surveillance and repair systems are present which monitor damage to the DNA and
370:
as used in polymer science refers only to a single molecule. For example, a single polymeric molecule is appropriately described as a "macromolecule" or "polymer molecule" rather than a "polymer," which suggests a
1078: 753:
the sequence when necessary. Analogous systems have not evolved for repairing damaged RNA molecules. Consequently, chromosomes can contain many billions of atoms, arranged in a specific chemical structure.
774:
manner of molecules. In addition, the chemical diversity of the different amino acids, together with different chemical environments afforded by local 3D structure, enables many proteins to act as
817:
molecules. The limited number of different building blocks of RNA (4 nucleotides vs >20 amino acids in proteins), together with their lack of chemical diversity, results in catalytic RNA (
714:
In contrast, both RNA and proteins are normally single-stranded. Therefore, they are not constrained by the regular geometry of the DNA double helix, and so fold into complex
1670: 238: 565:
In most cases, the monomers within the chain have a strong propensity to interact with other amino acids or nucleotides. In DNA and RNA, this can take the form of
718:
dependent on their sequence. These different shapes are responsible for many of the common properties of RNA and proteins, including the formation of specific
1167: 1567:
Roland E. Bauer; Volker Enkelmann; Uwe M. Wiesler; Alexander J. Berresheim; Klaus Müllen (2002). "Single-Crystal Structures of Polyphenylene Dendrimers".
1149: 778:, catalyzing a wide range of specific biochemical transformations within cells. In addition, proteins have evolved the ability to bind a wide range of 386:. Complicated biomacromolecules, on the other hand, require multi-faceted structural description such as the hierarchy of structures used to describe 1626: 1354: 1207: 1663: 1551: 1522: 1489: 1456: 1131: 382:
alone. The structure of simple macromolecules, such as homopolymers, may be described in terms of the individual monomer subunit and total
38: 987:
in arthropods and fungi). Many carbohydrates contain modified monosaccharide units that have had functional groups replaced or removed.
467:
Another common macromolecular property that does not characterize smaller molecules is their relative insolubility in water and similar
770:
that sustain life. Proteins carry out all functions of an organism, for example photosynthesis, neural function, vision, and movement.
543: 911:
Some lipids are held together by ester bonds; some are huge aggregates of small molecules held together by hydrophobic interactions.
1341: 451: 133: 1580: 786:, smaller molecules that can endow the protein with specific activities beyond those associated with the polypeptide chain alone. 1656: 1604: 1065:. The incorporation of inorganic elements enables the tunability of properties and/or responsive behavior as for instance in 433: 429: 71: 67: 114: 86: 908:
unlike the other macromolecules, lipids are not defined by chemical Structure. Lipids are any organic nonpolar molecule.
484: 93: 1617: 801:, according to the instructions within a cell's DNA. They control and regulate many aspects of protein synthesis in 1780: 1770: 1215: 422: 60: 1448: 708: 1182: 1066: 100: 31: 1476:
Walter, Peter; Alberts, Bruce; Johnson, Alexander S.; Lewis, Julian; Raff, Martin C.; Roberts, Keith (2008).
1765: 1735: 1679: 1146: 779: 499: 325: 1266:"Über Isopren und Kautschuk. 5. Mitteilung. Über die Hydrierung des Kautschuks und über seine Konstitution" 37:"Macromolecular chemistry" redirects here. For the journal formerly known as Macromolecular Chemistry, see 1609: 945: 715: 82: 1641:. Cached HTML version of a missing PDF file. Retrieved March 10, 2010. The article is based on the book, 1775: 1002: 809: 734: 538:. Each of these molecules is required for life since each plays a distinct, indispensable role in the 1307: 507: 495: 352: 1385: 1240: 703:
Because of the double-stranded nature of DNA, essentially all of the nucleotides take the form of
1377: 1232: 372: 313: 167: 1638: 1643:
Inventing Polymer Science: Staudinger, Carothers, and the Emergence of Macromolecular Chemistry
1025: 464:
Macromolecules often have unusual physical properties that do not occur for smaller molecules.
343:
Usage of the term to describe large molecules varies among the disciplines. For example, while
1785: 1715: 1634: 1584: 1547: 1518: 1485: 1452: 1425: 1337: 1295: 1127: 1058: 968: 798: 1464: 979:). Polysaccharides perform numerous roles in living organisms, acting as energy stores (e.g. 1723: 1576: 1497: 1415: 1369: 1315: 1277: 1224: 1046: 763: 476: 107: 1719: 1621: 1543: 1481: 1153: 1054: 1042: 964: 503: 391: 226: 952:
composed of core of glucose units surrounded by gallic acid esters and ellagic acid units
1311: 821:) being generally less-effective catalysts than proteins for most biological reactions. 549:
DNA, RNA, and proteins all consist of a repeating structure of related building blocks (
506:
other molecules from a large part of the volume of the solution, thereby increasing the
276:
2. If a part or the whole of the molecule fits into this definition, it may be described
17: 1727: 1083: 1006: 960: 941: 539: 383: 877:
Nucleotides (a phosphate, ribose, and a base- adenine, guanine, thymine, or cytosine)
1759: 1511: 1010: 956: 887:
Nucleotides (a phosphate, ribose, and a base- adenine, guanine, uracil, or cytosine)
559: 491: 379: 356: 179: 1381: 1236: 569:(G–C and A–T or A–U), although many more complicated interactions can and do occur. 270:
few of the units has a negligible effect on the molecular properties. This statement
1123: 719: 328:
in 1832, had a different meaning from that of today: it simply was another form of
210: 202: 194: 175: 347:
refers to macromolecules as the four large molecules comprising living things, in
316:
in the 1920s, although his first relevant publication on this field only mentions
256:
comprises the multiple repetition of units derived, actually or conceptually, from
378:
Because of their size, macromolecules are not conveniently described in terms of
1743: 1703: 1088: 1014: 741:) that are required to assemble, maintain, and reproduce every living organism. 554: 523: 411: 310: 151: 49: 1117: 301: 268:
as having a high relative molecular mass if the addition or removal of one or a
266:
1. In many cases, especially for synthetic polymers, a molecule can be regarded
146: 1707: 1062: 990: 767: 750: 550: 254:
A molecule of high relative molecular mass, the structure of which essentially
222: 198: 1404:"How can biochemical reactions within cells differ from those in test tubes?" 1281: 351:, the term may refer to aggregates of two or more molecules held together by 1731: 1699: 1691: 1373: 1228: 1057:. Polymers may be prepared from inorganic matter as well as for instance in 1030: 972: 818: 802: 783: 704: 566: 348: 337: 329: 1588: 1429: 272:
fails in the case of certain macromolecules for which the properties may be
1711: 1614: 1581:
10.1002/1521-3765(20020902)8:17<3858::AID-CHEM3858>3.0.CO;2-5
1208:"Glossary of basic terms in polymer science (IUPAC Recommendations 1996)" 1050: 976: 733:
is an information storage macromolecule that encodes the complete set of
535: 519: 472: 387: 163: 1615:
Several (free) introductory macromolecule related internet-based courses
1353:
Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. (1996).
1038: 994: 775: 468: 436: in this section. Unsourced material may be challenged and removed. 344: 333: 218: 206: 190: 186: 171: 1420: 1403: 1319: 487:
if the solute concentration of their solution is too high or too low.
998: 984: 980: 949: 738: 498:
of the reactions of other macromolecules, through an effect known as
1648: 1265: 1206:
Jenkins, A. D; Kratochvíl, P; Stepto, R. F. T; Suter, U. W (1996).
813:
suited for the long-term storage of genetic information as is DNA.
1695: 940: 490:
High concentrations of macromolecules in a solution can alter the
363: 214: 182: 1496:. Fourth edition is available online through the NCBI Bookshelf: 1079:
List of biophysically important macromolecular crystal structures
274:
critically dependent on fine details of the molecular structure.
1652: 794: 730: 531: 527: 480: 405: 43: 1610:
Lecture notes on the structure and function of macromolecules
1478:
Molecular Biology of the Cell (5th edition, Extended version)
1443:
Berg, Jeremy Mark; Tymoczko, John L.; Stryer, Lubert (2010).
707:
between nucleotides on the two complementary strands of the
1463:
Fifth edition available online through the NCBI Bookshelf:
1037:
Some examples of macromolecules are synthetic polymers (
762:
Proteins are functional macromolecules responsible for
225:. Synthetic fibers and experimental materials such as 30:"Macromolecules" redirects here. For the journal, see 722:, and the ability to catalyse biochemical reactions. 483:
to dissolve in water. Similarly, many proteins will
74:. Unsourced material may be challenged and removed. 1510: 997:subunits. They can perform structural roles (e.g. 320:(in excess of 1,000 atoms). At that time the term 1605:Synopsis of Chapter 5, Campbell & Reece, 2002 1156:. Americanchemistry.com. Retrieved on 2011-07-01. 971:, polysaccharides can form linear polymers (e.g. 797:is multifunctional, its primary function is to 394:, the word "macromolecule" tends to be called " 243: 1664: 1509:Golnick, Larry; Wheelis, Mark. (1991-08-14). 1298:(2008). "The Origin of the Polymer Concept". 1111: 1109: 1107: 1105: 1103: 8: 1355:"Glossary of Basic Terms in Polymer Science" 993:consist of a branched structure of multiple 808:RNA encodes genetic information that can be 213:) and large non-polymeric molecules such as 1445:Biochemistry, 7th ed. (Biochemistry (Berg)) 1671: 1657: 1649: 576: 544:DNA makes RNA, and then RNA makes proteins 258:molecules of low relative molecular mass. 1419: 1168:"Nanotechnology: A Guide to Nano-Objects" 745:functionally encode genetic information. 726:DNA is optimised for encoding information 452:Learn how and when to remove this message 134:Learn how and when to remove this message 1024: 967:. Because monosaccharides have multiple 828: 145: 1116:Stryer L, Berg JM, Tymoczko JL (2002). 1099: 975:) or complex branched structures (e.g. 1029:Structure of an example polyphenylene 27:Very large molecule, such as a protein 1264:Staudinger, H.; Fritschi, J. (1922). 983:) and as structural components (e.g. 359:but which do not readily dissociate. 229:are also examples of macromolecules. 7: 1540:The Manga Guide to Molecular Biology 758:Proteins are optimised for catalysis 434:adding citations to reliable sources 193:. The most common macromolecules in 72:adding citations to reliable sources 39:Macromolecular Chemistry and Physics 1334:Principles of Physical Biochemistry 1166:Gullapalli, S.; Wong, M.S. (2011). 25: 522:are dependent on three essential 502:. This comes from macromolecules 178:. It is composed of thousands of 526:for their biological functions: 410: 340:and had little to do with size. 48: 1147:Life cycle of a plastic product 1122:(5th ed.). San Francisco: 607:Catalyzes biological reactions 421:needs additional citations for 59:needs additional citations for 963:) are formed from polymers of 1: 1569:Chemistry: A European Journal 1513:The Cartoon Guide to Genetics 1300:Journal of Chemical Education 1175:Chemical Engineering Progress 919:carbon, hydrogen, and oxygen 542:. The simple summary is that 593:Encodes genetic information 553:in the case of DNA and RNA, 375:composed of macromolecules. 189:of smaller molecules called 1538:Takemura, Masaharu (2009). 1336:Prentice Hall: New Jersey, 1802: 1449:W.H. Freeman & Company 1362:Pure and Applied Chemistry 1216:Pure and Applied Chemistry 1181:(5): 28–32. Archived from 362:According to the standard 185:. Many macromolecules are 36: 29: 1686: 926:Major protein Complexes? 825:The Major Macromolecules: 674:Stability to degradation 635:Building blocks (number) 1282:10.1002/hlca.19220050517 1067:smart inorganic polymers 1021:Synthetic macromolecules 716:three-dimensional shapes 562:into a very long chain. 508:effective concentrations 318:high molecular compounds 150:Chemical structure of a 32:Macromolecules (journal) 18:Macromolecular chemistry 1374:10.1351/pac199668122287 1332:van Holde, K.E. (1998) 1229:10.1351/pac199668122287 705:Watson–Crick base pairs 621:Building blocks (type) 567:Watson–Crick base pairs 560:covalent chemical bonds 500:macromolecular crowding 1270:Helvetica Chimica Acta 1034: 1001:) as well as roles as 953: 946:Raspberry ellagitannin 790:RNA is multifunctional 292: 155: 1517:. Collins Reference. 1028: 1003:secondary metabolites 944: 848:Bonds that Join them 768:biochemical reactions 496:equilibrium constants 366:definition, the term 353:intermolecular forces 149: 1736:Biomolecular complex 937:Branched biopolymers 510:of these molecules. 430:improve this article 168:biological processes 68:improve this article 1312:2008JChEd..85..624J 830: 573:Structural features 324:, as introduced by 290:used adjectivally. 1633:Winter 2002–2003, 1629:by Ulysses Magee, 1620:2011-07-18 at the 1402:Minton AP (2006). 1296:Jensen, William B. 1152:2010-03-17 at the 1059:inorganic polymers 1035: 954: 829: 514:Linear biopolymers 471:, instead forming 314:Hermann Staudinger 156: 1781:Polymer chemistry 1771:Molecular physics 1753: 1752: 1680:Hierarchy of life 1645:by Yasu Furukawa. 1575:(17): 3858–3864. 1553:978-1-59327-202-9 1524:978-0-06-273099-2 1491:978-0-8153-4111-6 1458:978-1-4292-2936-4 1421:10.1242/jcs.03063 1414:(Pt 14): 2863–9. 1320:10.1021/ed085p624 1223:(12): 2287–2311. 1133:978-0-7167-4955-4 969:functional groups 934: 933: 701: 700: 462: 461: 454: 332:for example with 180:covalently bonded 144: 143: 136: 118: 16:(Redirected from 1793: 1746: 1673: 1666: 1659: 1650: 1627:Giant Molecules! 1593: 1592: 1564: 1558: 1557: 1535: 1529: 1528: 1516: 1506: 1500: 1495: 1473: 1467: 1462: 1440: 1434: 1433: 1423: 1399: 1393: 1392: 1390: 1384:. Archived from 1359: 1350: 1344: 1330: 1324: 1323: 1292: 1286: 1285: 1261: 1255: 1254: 1252: 1251: 1245: 1239:. Archived from 1212: 1203: 1197: 1196: 1194: 1193: 1187: 1172: 1163: 1157: 1144: 1138: 1137: 1113: 1055:carbon nanotubes 1047:synthetic rubber 1043:synthetic fibers 959:macromolecules ( 897:Monosaccharides 894:Polysaccharides 831: 577: 520:living organisms 457: 450: 446: 443: 437: 414: 406: 309:) was coined by 227:carbon nanotubes 162:is a very large 139: 132: 128: 125: 119: 117: 76: 52: 44: 21: 1801: 1800: 1796: 1795: 1794: 1792: 1791: 1790: 1756: 1755: 1754: 1749: 1690: 1682: 1677: 1622:Wayback Machine 1601: 1596: 1566: 1565: 1561: 1554: 1544:No Starch Press 1537: 1536: 1532: 1525: 1508: 1507: 1503: 1492: 1482:Garland Science 1475: 1474: 1470: 1459: 1442: 1441: 1437: 1401: 1400: 1396: 1388: 1357: 1352: 1351: 1347: 1331: 1327: 1294: 1293: 1289: 1263: 1262: 1258: 1249: 1247: 1243: 1210: 1205: 1204: 1200: 1191: 1189: 1185: 1170: 1165: 1164: 1160: 1154:Wayback Machine 1145: 1141: 1134: 1115: 1114: 1101: 1097: 1075: 1023: 965:monosaccharides 961:polysaccharides 939: 869:Phosphodiester 842:Building Block 799:encode proteins 792: 760: 728: 720:binding pockets 688:Repair systems 575: 516: 475:. Many require 458: 447: 441: 438: 427: 415: 404: 392:British English 293: 277: 275: 273: 271: 269: 267: 257: 255: 248: 242: 235: 140: 129: 123: 120: 83:"Macromolecule" 77: 75: 65: 53: 42: 35: 28: 23: 22: 15: 12: 11: 5: 1799: 1797: 1789: 1788: 1783: 1778: 1773: 1768: 1766:Macromolecules 1758: 1757: 1751: 1750: 1748: 1747: 1687: 1684: 1683: 1678: 1676: 1675: 1668: 1661: 1653: 1647: 1646: 1624: 1612: 1607: 1600: 1599:External links 1597: 1595: 1594: 1559: 1552: 1530: 1523: 1501: 1490: 1468: 1457: 1435: 1394: 1391:on 2007-02-23. 1345: 1325: 1287: 1256: 1198: 1158: 1139: 1132: 1098: 1096: 1093: 1092: 1091: 1086: 1084:Small molecule 1081: 1074: 1071: 1033:macromolecule. 1022: 1019: 938: 935: 932: 931: 929: 927: 923: 922: 920: 917: 916:Carbohydrates 913: 912: 909: 906: 902: 901: 898: 895: 891: 890: 888: 885: 881: 880: 878: 875: 871: 870: 867: 865: 864:Nucleic acids 861: 860: 857: 854: 850: 849: 846: 840: 791: 788: 759: 756: 727: 724: 699: 698: 695: 692: 689: 685: 684: 681: 678: 675: 671: 670: 667: 664: 661: 657: 656: 653: 650: 646: 645: 642: 639: 636: 632: 631: 628: 625: 622: 618: 617: 614: 611: 608: 604: 603: 600: 597: 594: 590: 589: 586: 583: 580: 574: 571: 515: 512: 479:or particular 460: 459: 418: 416: 409: 403: 400: 384:molecular mass 357:covalent bonds 311:Nobel laureate 280:macromolecular 264: 263: 250:Large molecule 237: 236: 234: 231: 142: 141: 124:September 2024 56: 54: 47: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1798: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1763: 1761: 1745: 1741: 1740:Macromolecule 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1688: 1685: 1681: 1674: 1669: 1667: 1662: 1660: 1655: 1654: 1651: 1644: 1640: 1636: 1632: 1628: 1625: 1623: 1619: 1616: 1613: 1611: 1608: 1606: 1603: 1602: 1598: 1590: 1586: 1582: 1578: 1574: 1570: 1563: 1560: 1555: 1549: 1545: 1541: 1534: 1531: 1526: 1520: 1515: 1514: 1505: 1502: 1499: 1493: 1487: 1483: 1479: 1472: 1469: 1466: 1460: 1454: 1450: 1446: 1439: 1436: 1431: 1427: 1422: 1417: 1413: 1409: 1405: 1398: 1395: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1356: 1349: 1346: 1343: 1342:0-13-720459-0 1339: 1335: 1329: 1326: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1291: 1288: 1283: 1279: 1275: 1271: 1267: 1260: 1257: 1246:on 2016-03-04 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1217: 1209: 1202: 1199: 1188:on 2012-08-13 1184: 1180: 1176: 1169: 1162: 1159: 1155: 1151: 1148: 1143: 1140: 1135: 1129: 1125: 1121: 1120: 1112: 1110: 1108: 1106: 1104: 1100: 1094: 1090: 1087: 1085: 1082: 1080: 1077: 1076: 1072: 1070: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1032: 1027: 1020: 1018: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 986: 982: 978: 974: 970: 966: 962: 958: 951: 947: 943: 936: 930: 928: 925: 924: 921: 918: 915: 914: 910: 907: 904: 903: 899: 896: 893: 892: 889: 886: 883: 882: 879: 876: 873: 872: 868: 866: 863: 862: 858: 855: 852: 851: 847: 845: 841: 839: 836: 835:Macromolecule 833: 832: 827: 826: 822: 820: 814: 811: 806: 804: 800: 796: 789: 787: 785: 781: 777: 771: 769: 765: 757: 755: 752: 746: 742: 740: 736: 732: 725: 723: 721: 717: 712: 710: 706: 696: 693: 690: 687: 686: 682: 679: 676: 673: 672: 668: 665: 663:Double helix 662: 659: 658: 654: 651: 649:Strandedness 648: 647: 643: 640: 637: 634: 633: 629: 626: 623: 620: 619: 615: 612: 609: 606: 605: 601: 598: 595: 592: 591: 587: 584: 581: 579: 578: 572: 570: 568: 563: 561: 556: 552: 547: 545: 541: 537: 533: 529: 525: 521: 513: 511: 509: 505: 501: 497: 493: 488: 486: 482: 478: 474: 470: 465: 456: 453: 445: 435: 431: 425: 424: 419:This section 417: 413: 408: 407: 401: 399: 397: 393: 389: 385: 381: 380:stoichiometry 376: 374: 369: 368:macromolecule 365: 360: 358: 354: 350: 346: 341: 339: 335: 331: 327: 323: 319: 315: 312: 308: 304: 303: 298: 297:macromolecule 291: 289: 285: 281: 261: 260: 259: 252: 251: 247: 246:Macromolecule 240: 232: 230: 228: 224: 220: 216: 212: 211:carbohydrates 208: 204: 203:nucleic acids 200: 196: 192: 188: 184: 181: 177: 173: 169: 166:important to 165: 161: 160:macromolecule 154:macromolecule 153: 148: 138: 135: 127: 116: 113: 109: 106: 102: 99: 95: 92: 88: 85: –  84: 80: 79:Find sources: 73: 69: 63: 62: 57:This article 55: 51: 46: 45: 40: 33: 19: 1776:Biochemistry 1742: > 1739: 1738: > 1734: > 1730: > 1726: > 1722: > 1718: > 1716:Organ system 1714: > 1710: > 1706: > 1702: > 1698: > 1694: > 1642: 1630: 1572: 1568: 1562: 1539: 1533: 1512: 1504: 1480:. New York: 1477: 1471: 1444: 1438: 1411: 1407: 1397: 1386:the original 1368:(12): 2287. 1365: 1361: 1348: 1333: 1328: 1303: 1299: 1290: 1273: 1269: 1259: 1248:. Retrieved 1241:the original 1220: 1214: 1201: 1190:. Retrieved 1183:the original 1178: 1174: 1161: 1142: 1124:W.H. Freeman 1119:Biochemistry 1118: 1036: 1011:pigmentation 1005:involved in 989: 957:Carbohydrate 955: 856:Amino acids 843: 837: 834: 824: 823: 815: 807: 793: 772: 761: 747: 743: 735:instructions 729: 713: 709:double helix 702: 630:Amino acids 627:Nucleotides 624:Nucleotides 564: 548: 517: 489: 466: 463: 448: 439: 428:Please help 423:verification 420: 396:high polymer 395: 377: 367: 361: 355:rather than 342: 321: 317: 306: 300: 296: 294: 287: 283: 279: 265: 253: 249: 245: 244: 195:biochemistry 176:nucleic acid 170:, such as a 159: 157: 130: 121: 111: 104: 97: 90: 78: 66:Please help 61:verification 58: 1744:Biomolecule 1704:Biocoenosis 1631:ISSA Review 1408:J. Cell Sci 1089:Soft matter 1063:geopolymers 991:Polyphenols 900:Glycosidic 555:amino acids 551:nucleotides 524:biopolymers 223:macrocycles 199:biopolymers 152:polypeptide 1760:Categories 1708:Population 1306:(5): 624. 1276:(5): 785. 1250:2013-07-27 1192:2015-06-28 1095:References 1007:signalling 844:(Monomer) 838:(Polymer) 810:translated 803:eukaryotes 764:catalysing 660:Structure 402:Properties 278:as either 241:definition 233:Definition 94:newspapers 1732:Organelle 1700:Ecosystem 1692:Biosphere 1639:1540-9864 1031:dendrimer 973:cellulose 853:Proteins 819:ribozymes 784:coenzymes 780:cofactors 683:Variable 680:Variable 588:Proteins 504:excluding 373:substance 349:chemistry 338:acetylene 330:isomerism 326:Berzelius 295:The term 284:polymeric 1786:Polymers 1712:Organism 1618:Archived 1589:12203280 1430:16825427 1382:98774337 1237:98774337 1150:Archived 1073:See also 1051:graphene 1039:plastics 995:phenolic 977:glycogen 859:Peptide 669:Complex 666:Complex 536:proteins 485:denature 473:colloids 469:solvents 442:May 2013 388:proteins 307:molecule 286:, or by 219:nanogels 207:proteins 191:monomers 187:polymers 164:molecule 1308:Bibcode 1015:defense 905:Lipids 776:enzymes 655:Single 652:Double 345:biology 334:benzene 322:polymer 288:polymer 172:protein 108:scholar 1724:Tissue 1637:  1587:  1550:  1521:  1488:  1455:  1428:  1380:  1340:  1235:  1130:  1053:, and 1045:, and 999:lignin 985:chitin 981:starch 950:tannin 751:repair 739:genome 302:macro- 215:lipids 209:, and 110:  103:  96:  89:  81:  1720:Organ 1696:Biome 1389:(PDF) 1378:S2CID 1358:(PDF) 1244:(PDF) 1233:S2CID 1211:(PDF) 1186:(PDF) 1171:(PDF) 737:(the 677:High 492:rates 477:salts 390:. In 364:IUPAC 262:Notes 239:IUPAC 183:atoms 115:JSTOR 101:books 1728:Cell 1635:ISSN 1585:PMID 1548:ISBN 1519:ISBN 1498:link 1486:ISBN 1465:link 1453:ISBN 1426:PMID 1338:ISBN 1128:ISBN 1061:and 1013:and 948:, a 884:RNA 874:DNA 782:and 766:the 691:Yes 616:Yes 613:Yes 599:Yes 596:Yes 585:RNA 582:DNA 540:cell 534:and 518:All 494:and 481:ions 336:and 221:and 197:are 87:news 1577:doi 1416:doi 1412:119 1370:doi 1316:doi 1278:doi 1225:doi 1179:107 1049:), 795:RNA 731:DNA 697:No 694:No 644:20 610:No 602:No 532:RNA 528:DNA 432:by 398:". 282:or 174:or 70:by 1762:: 1583:. 1571:. 1546:. 1542:. 1484:. 1451:. 1447:. 1424:. 1410:. 1406:. 1376:. 1366:68 1364:. 1360:. 1314:. 1304:85 1302:. 1272:. 1268:. 1231:. 1221:68 1219:. 1213:. 1177:. 1173:. 1126:. 1102:^ 1069:. 1041:, 1017:. 1009:, 805:. 711:. 641:4 638:4 546:. 530:, 305:+ 217:, 205:, 158:A 1672:e 1665:t 1658:v 1591:. 1579:: 1573:8 1556:. 1527:. 1494:. 1461:. 1432:. 1418:: 1372:: 1322:. 1318:: 1310:: 1284:. 1280:: 1274:5 1253:. 1227:: 1195:. 1136:. 455:) 449:( 444:) 440:( 426:. 299:( 201:( 137:) 131:( 126:) 122:( 112:· 105:· 98:· 91:· 64:. 41:. 34:. 20:)

Index

Macromolecular chemistry
Macromolecules (journal)
Macromolecular Chemistry and Physics

verification
improve this article
adding citations to reliable sources
"Macromolecule"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

polypeptide
molecule
biological processes
protein
nucleic acid
covalently bonded
atoms
polymers
monomers
biochemistry
biopolymers
nucleic acids
proteins
carbohydrates
lipids

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.