Knowledge (XXG)

Macromolecular crowding

Source 📝

165: 17: 384:. The underlying physical mechanism by which macromolecular crowding helps to stabilize proteins in their folded state is often explained in terms of excluded volume - the volume inaccessible to the proteins due to their interaction with macromolecular crowders. This notion goes back to Asakura and Oosawa, who have described 350:
performed in dilute solution may fail to reflect the actual process and its kinetics taking place in the cytosol. One approach to produce more accurate measurements would be to use highly concentrated extracts of cells, to try to maintain the cell contents in a more natural state. However, such
283:
in the cell, which could counteract this reduction in folding efficiency. It has also been shown that macromolecular crowding affects protein-folding dynamics as well as overall protein shape where distinct conformational changes are accompanied by secondary structure alterations implying that
219:
and shape of the molecule involved, although mass seems to be the major factor – with the effect being stronger with larger molecules. Notably, the size of the effect is non-linear, so macromolecules are much more strongly affected than are small molecules such as
393:, which are preferentially excluded from proteins, also shift the protein folding equilibrium towards the folded state. However, it has been shown by various methods, both experimental and theoretical, that depletion forces are not always entropic in nature. 307:. Crystallins are present in the lens at extremely high concentrations, over 500 mg/ml, and at these levels crowding effects are very strong. The large crowding effect adds to the thermal stability of the crystallins, increasing their resistance to 388:
induced by steric, hard-core, interactions. A hallmark of the mechanism inferred from the above is that the effect is completely a-thermal, and thus completely entropic. These ideas were also proposed to explain why small cosolutes, namely protective
371:
to experimental media. However, using such artificial crowding agents can be complicated, as these crowding molecules can sometimes interact in other ways with the process being examined, such as by binding weakly to one of the components.
113:). The study of biochemical processes under realistically crowded conditions is very important, since these conditions are a ubiquitous property of all cells and crowding may be essential for the efficient operation of metabolism. Indeed, 271:. Here, the crowding effect can accelerate the folding process, since a compact folded protein will occupy less volume than an unfolded protein chain. However, crowding can reduce the yield of correctly folded protein by increasing 1521:
Norris MG, Malys N (2011). "What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase".
180:
These high concentrations of macromolecules occupy a large proportion of the volume of the cell, which reduces the volume of solvent that is available for other macromolecules. This
141:
can contain up to 4,288 different types of proteins, and about 1,000 of these types are produced at a high enough level to be easily detected. Added to this mix are various forms of
1464:
Hochmair J, Exner C, Franck M, Dominguez-Baquero A, Diez L, Brognaro H, Kraushar ML, Mielke T, Radbruch H, Kaniyappan S, Falke S, Mandelkow E, Betzel C, Wegmann S (June 2022).
2106: 351:
extracts contain many kinds of biologically active molecules, which can interfere with the phenomena being studied. Consequently, crowding effects are mimicked
93:
This crowding effect can make molecules in cells behave in radically different ways than in test-tube assays. Consequently, measurements of the properties of
244:. For example, the increase in the strength of interactions between proteins and DNA produced by crowding may be of key importance in processes such as 82:
available for other molecules in the solution, which has the result of increasing their effective concentrations. Crowding can promote formation of a
2114:
Satyam A; et al. (May 2014). "Macromolecular Crowding Meets Tissue Engineering by Self-Assembly: A Paradigm Shift in Regenerative Medicine".
1388:
Steadman BL, Trautman PA, Lawson EQ, et al. (December 1989). "A differential scanning calorimetric study of the bovine lens crystallins".
1274: 212:. Crowding may also affect enzyme reactions involving small molecules if the reaction involves a large change in the shape of the enzyme. 1657: 168:
The volume of accessible solvent (red) for two molecules of widely different sizes (black circles) at high concentrations of
2019:
Sapir, L; Harries, D. (2015). "Macromolecular Stabilization by Excluded Cosolutes: Mean Field Theory of Crowded Solutions".
1466:"Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates" 796: 863:"The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media" 1701:
Asakura, Sho; Oosawa, F (1 January 1954). "On Interaction between Two Bodies Immersed in a Solution of Macromolecules".
228:. Macromolecular crowding is therefore an effect exerted by large molecules on the properties of other large molecules. 311:. This effect may partly explain the extraordinary resistance shown by the lens to damage caused by high temperatures. 2183: 2178: 308: 953:"Macromolecular crowding effects on macromolecular interactions: some implications for genome structure and function" 1992:
Sapir, L; Harries, D. (2015). "Is the depletion force entropic? Molecular crowding beyond steric interactions".
2188: 1298:
Dirar Homouz; Michael Perham; Antonios Samiotakis; Margaret S. Cheung & Pernilla Wittung-Stafshede (2008).
245: 509:"Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli" 107:) in dilute solutions may be different by many orders of magnitude from the true values seen in living cells ( 904:"Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences" 83: 1736:
Asakura, Sho; Oosawa, F. (1958). "Interaction between Particles Suspended in Solutions of Macromolecules".
410: 347: 331: 323: 78:
of macromolecules. Crowding occurs since these high concentrations of macromolecules reduce the volume of
2100: 296: 197: 1051:"Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell" 551:
Minton AP (July 2006). "How can biochemical reactions within cells differ from those in test tubes?".
2123: 1838:
Politi, R; Harries, D. (2010). "Enthalpically Driven Peptide Stabilization by Protective Osmolytes".
1784: 1745: 1710: 1311: 1203: 1003: 808: 300: 193: 185: 173: 45: 200:
by favoring the association of macromolecules, such as when multiple proteins come together to form
2193: 356: 276: 272: 257: 205: 1912:
Sukenik, S; Sapir, L.; Harries, D. (2013). "Balance of enthalpy and entropy in depletion forces".
1605:
Minton, A. (1981). "Excluded Volume as a Determinant of Macromolecular Structure and Reactivity".
2157: 1939: 1921: 1675: 1622: 1503: 1172: 576: 315: 252:. Crowding has also been suggested to be involved in processes as diverse as the aggregation of 1771:
Stagg, Loren; Zhang, Shao-Qing; Cheung, Margaret S.; Wittung-Stafshede, Pernilla (2007-11-27).
601:"DNA binding proteins explore multiple local configurations during docking via rapid rebinding" 599:
Ganji, Mahipal; Docter, Margreet; Le Grice, Stuart F. J.; Abbondanzieri, Elio A. (2016-09-30).
2149: 2088: 2036: 1974: 1894: 1855: 1820: 1802: 1663: 1653: 1587: 1538: 1495: 1446: 1405: 1370: 1339: 1280: 1270: 1231: 1164: 1129: 1080: 1031: 972: 933: 884: 834: 777: 728: 687: 638: 620: 568: 528: 486: 446: 284:
crowding-induced shape changes may be important for protein function and malfunction in vivo.
2059:"Life in a crowded world: Workshop on the Biological Implications of Macromolecular Crowding" 919: 380:
A major importance of macromolecular crowding to biological systems stems from its effect on
2139: 2131: 2078: 2070: 2028: 2001: 1966: 1931: 1886: 1847: 1810: 1792: 1753: 1718: 1645: 1614: 1577: 1569: 1530: 1485: 1477: 1436: 1397: 1329: 1319: 1262: 1258: 1251: 1221: 1211: 1156: 1119: 1111: 1070: 1062: 1021: 1011: 964: 923: 915: 874: 824: 816: 767: 759: 718: 677: 669: 628: 612: 560: 520: 478: 438: 385: 154: 149:
chromosome, giving a total concentration of macromolecules of between 300 and 400 mg/ml. In
129: 66: 1687: 381: 264: 249: 201: 181: 119:
studies have shown that crowding greatly influences binding stability of proteins to DNA.
2127: 1788: 1749: 1714: 1315: 1207: 1007: 992:"Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect" 812: 164: 2083: 2058: 1874: 1815: 1772: 1582: 1557: 1490: 1465: 1423:
Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (November 2004).
1334: 1299: 1124: 1099: 928: 903: 829: 772: 747: 633: 600: 405: 295:. These proteins have to remain stable and in solution for the lens to be transparent; 292: 225: 216: 57: 1773:"Molecular crowding enhances native structure and stability of Îą/Îē protein flavodoxin" 1649: 1075: 1050: 1026: 991: 820: 682: 657: 482: 2172: 1507: 1441: 1424: 1226: 1191: 968: 524: 442: 368: 189: 169: 49: 25: 2161: 1943: 1626: 580: 314:
Crowding may also play a role in diseases that involve protein aggregation, such as
1176: 343: 287:
A particularly striking example of the importance of crowding effects involves the
241: 237: 158: 33: 723: 706: 469:
Ellis RJ (October 2001). "Macromolecular crowding: obvious but underappreciated".
673: 184:
effect increases the effective concentration of macromolecules (increasing their
2005: 1935: 1757: 1266: 842: 327: 1777:
Proceedings of the National Academy of Sciences of the United States of America
1618: 1534: 1147:
Ellis RJ, Minton AP (May 2006). "Protein aggregation in crowded environments".
1115: 1066: 137:(Ξm) long and 0.5 Ξm in diameter, with a cell volume of 0.6 - 0.7 Ξm. However, 1877:(2012). "Unexpected Effects of Macromolecular Crowding on Protein Stability". 1192:"The effect of macromolecular crowding on chaperonin-mediated protein folding" 319: 288: 268: 253: 221: 134: 98: 75: 16: 2074: 2032: 1806: 1481: 1358: 624: 1797: 1324: 1300:"Crowded, cell-like environment induces shape changes in aspherical protein" 1253:
Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks
390: 150: 71: 2153: 2135: 2092: 2040: 1978: 1898: 1859: 1824: 1667: 1591: 1542: 1499: 1450: 1343: 1284: 1216: 1168: 1133: 1084: 1016: 937: 888: 879: 862: 781: 642: 572: 490: 1425:"Ageing and vision: structure, stability and function of lens crystallins" 1409: 1374: 1235: 1035: 976: 838: 763: 732: 691: 532: 450: 1257:. Advances in Experimental Medicine and Biology. Vol. 594. pp.  797:"Confinement as a determinant of macromolecular structure and reactivity" 616: 304: 115: 103: 1573: 1401: 1160: 2144: 1851: 1100:"Effects of macromolecular crowding on protein folding and aggregation" 658:"Cell volume increase in Escherichia coli after shifts to richer media" 364: 109: 87: 79: 61: 53: 29: 21: 1970: 1957:
Sapir, L; Harries, D. (2014). "Origin of Enthalpic Depletion Forces".
1890: 1722: 564: 360: 209: 94: 952: 748:"The Escherichia coli proteome: past, present, and future prospects" 508: 355:
by adding high concentrations of relatively inert molecules such as
161:, this meshwork divides the cytosol into a network of narrow pores. 1926: 1644:. International Review of Cytology. Vol. 215. pp. 1–31. 280: 163: 15: 1359:"Cataract as a protein condensation disease: the Proctor Lecture" 705:
Blattner FR, Plunkett G, Bloch CA, et al. (September 1997).
127:
The interior of cells is a crowded environment. For example, an
146: 142: 172:(grey circles). Reducing the available volume increases the 1558:"Protein folding by the effects of macromolecular crowding" 1049:
van den Berg B, Wain R, Dobson CM, Ellis RJ (August 2000).
1556:
Tokuriki N, Kinjo M, Negi S, et al. (January 2004).
260:, and the responses of cells to changes in their volume. 707:"The complete genome sequence of Escherichia coli K-12" 56:
are present. Such conditions occur routinely in living
1098:
van den Berg B, Ellis RJ, Dobson CM (December 1999).
196:
of their reactions. In particular this effect alters
215:
The size of the crowding effect depends on both the
2057:Rivas G, Ferrone, F, Hertzfeld J. (December 2003). 1250: 275:. Crowding may also increase the effectiveness of 236:Macromolecular crowding is an important effect in 153:the cell's interior is further crowded by the 8: 2105:: CS1 maint: multiple names: authors list ( 429:Goodsell DS (1991). "Inside a living cell". 502: 500: 376:Macromolecular crowding and protein folding 2143: 2082: 1925: 1814: 1796: 1581: 1489: 1440: 1333: 1323: 1225: 1215: 1123: 1074: 1025: 1015: 927: 878: 856: 854: 852: 828: 771: 722: 681: 632: 546: 544: 542: 334:under crowded conditions within neurons. 1873:Benton, L.A.; Smith, A.E.; Young, G.B.; 1249:Ellis RJ (2007). "Protein Misassembly". 920:10.1146/annurev.biophys.37.032807.125817 507:Zimmerman SB, Trach SO (December 1991). 44:alters the properties of molecules in a 990:Zimmerman SB, Harrison B (April 1987). 464: 462: 460: 421: 2098: 1683: 1673: 7: 1190:Martin J, Hartl FU (February 1997). 902:Zhou HX, Rivas G, Minton AP (2008). 594: 592: 590: 24:of cells alters the properties of 14: 1994:Curr. Opin. Colloid Interface Sci 1914:Curr. Opin. Colloid Interface Sci 101:that are made in the laboratory ( 1442:10.1016/j.pbiomolbio.2003.11.012 656:Kubitschek HE (1 January 1990). 342:Due to macromolecular crowding, 1703:The Journal of Chemical Physics 1357:Benedek GB (1 September 1997). 20:Macromolecular crowding in the 951:Zimmerman SB (November 1993). 291:that fill the interior of the 263:The importance of crowding in 1: 1650:10.1016/S0074-7696(02)15003-0 1523:Biochem. Biophys. Res. Commun 821:10.1016/S0006-3495(92)81663-6 724:10.1126/science.277.5331.1453 483:10.1016/S0968-0004(01)01938-7 267:is of particular interest in 208:bind to their targets in the 1363:Invest. Ophthalmol. Vis. Sci 1304:Proc. Natl. Acad. Sci. U.S.A 1196:Proc. Natl. Acad. Sci. U.S.A 996:Proc. Natl. Acad. Sci. U.S.A 969:10.1016/0167-4781(93)90142-Z 746:Han MJ, Lee SY (June 2006). 674:10.1128/jb.172.1.94-101.1990 525:10.1016/0022-2836(91)90499-V 443:10.1016/0968-0004(91)90083-8 188:), which in turn alters the 70:contains about 300–400  48:when high concentrations of 2006:10.1016/j.cocis.2014.12.003 1936:10.1016/j.cocis.2013.10.002 1758:10.1002/pol.1958.1203312618 1267:10.1007/978-0-387-39975-1_1 2210: 1738:Journal of Polymer Science 1642:Protein-water interactions 1619:10.1002/bip.1981.360201006 1535:10.1016/j.bbrc.2011.01.037 795:Minton AP (October 1992). 752:Microbiol. Mol. Biol. Rev 2075:10.1038/sj.embor.7400056 2033:10.1021/acs.jctc.5b00258 1482:10.15252/embj.2021108882 1429:Prog. Biophys. Mol. Biol 1116:10.1093/emboj/18.24.6927 1067:10.1093/emboj/19.15.3870 348:biophysical measurements 1798:10.1073/pnas.0705127104 1640:Parsegian, VA. (2002). 1325:10.1073/pnas.0803672105 332:neurofibrillary tangles 174:effective concentration 84:biomolecular condensate 42:macromolecular crowding 2136:10.1002/adma.201304428 2021:J. Chem. Theory Comput 1217:10.1073/pnas.94.4.1107 1017:10.1073/pnas.84.7.1871 957:Biochim. Biophys. Acta 880:10.1074/jbc.R100005200 605:Nucleic Acids Research 411:Colligative properties 303:of crystallins causes 198:dissociation constants 177: 37: 764:10.1128/MMBR.00036-05 322:forms aggregates and 194:equilibrium constants 167: 133:cell is only about 2 19: 206:DNA-binding proteins 60:; for instance, the 2128:2014AdM....26.3024S 1959:J. Phys. Chem. Lett 1789:2007PNAS..10418976S 1783:(48): 18976–18981. 1750:1958JPoSc..33..183A 1715:1954JChPh..22.1255A 1574:10.1110/ps.03288104 1402:10.1021/bi00451a017 1316:2008PNAS..10511754H 1310:(33): 11754–11759. 1208:1997PNAS...94.1107M 1161:10.1515/BC.2006.064 1008:1987PNAS...84.1871Z 813:1992BpJ....63.1090M 471:Trends Biochem. Sci 431:Trends Biochem. Sci 357:polyethylene glycol 324:alzheimer's disease 273:protein aggregation 258:sickle-cell disease 2184:Tissue engineering 2179:Physical chemistry 2116:Advanced Materials 1852:10.1039/c0cc01763a 861:Minton AP (2001). 617:10.1093/nar/gkw666 316:sickle cell anemia 277:chaperone proteins 178: 176:of macromolecules. 90:phase separation. 40:The phenomenon of 38: 2122:(19): 3024–3034. 1971:10.1021/jz5002715 1891:10.1021/bi300909q 1885:(49): 9773–9775. 1846:(35): 6449–6451. 1723:10.1063/1.1740347 1613:(10): 2093–2120. 1276:978-0-387-39974-4 717:(5331): 1453–74. 611:(17): 8376–8384. 565:10.1242/jcs.03063 559:(Pt 14): 2863–9. 202:protein complexes 186:chemical activity 157:that make up the 155:protein filaments 123:Cause and effects 2201: 2165: 2147: 2110: 2104: 2096: 2086: 2045: 2044: 2027:(7): 3478–3490. 2016: 2010: 2009: 1989: 1983: 1982: 1965:(7): 1061–1065. 1954: 1948: 1947: 1929: 1909: 1903: 1902: 1870: 1864: 1863: 1835: 1829: 1828: 1818: 1800: 1768: 1762: 1761: 1744:(126): 183–192. 1733: 1727: 1726: 1698: 1692: 1691: 1685: 1681: 1679: 1671: 1637: 1631: 1630: 1602: 1596: 1595: 1585: 1553: 1547: 1546: 1518: 1512: 1511: 1493: 1461: 1455: 1454: 1444: 1420: 1414: 1413: 1385: 1379: 1378: 1354: 1348: 1347: 1337: 1327: 1295: 1289: 1288: 1256: 1246: 1240: 1239: 1229: 1219: 1187: 1181: 1180: 1144: 1138: 1137: 1127: 1095: 1089: 1088: 1078: 1046: 1040: 1039: 1029: 1019: 987: 981: 980: 948: 942: 941: 931: 908:Annu Rev Biophys 899: 893: 892: 882: 873:(14): 10577–80. 858: 847: 846: 841:. Archived from 832: 792: 786: 785: 775: 743: 737: 736: 726: 702: 696: 695: 685: 653: 647: 646: 636: 596: 585: 584: 548: 537: 536: 504: 495: 494: 466: 455: 454: 426: 386:depletion forces 130:Escherichia coli 97:or processes in 67:Escherichia coli 2209: 2208: 2204: 2203: 2202: 2200: 2199: 2198: 2189:Protein methods 2169: 2168: 2113: 2097: 2056: 2053: 2048: 2018: 2017: 2013: 1991: 1990: 1986: 1956: 1955: 1951: 1911: 1910: 1906: 1872: 1871: 1867: 1837: 1836: 1832: 1770: 1769: 1765: 1735: 1734: 1730: 1700: 1699: 1695: 1682: 1672: 1660: 1639: 1638: 1634: 1604: 1603: 1599: 1555: 1554: 1550: 1520: 1519: 1515: 1476:(11): e108882. 1463: 1462: 1458: 1422: 1421: 1417: 1387: 1386: 1382: 1369:(10): 1911–21. 1356: 1355: 1351: 1297: 1296: 1292: 1277: 1248: 1247: 1243: 1189: 1188: 1184: 1146: 1145: 1141: 1110:(24): 6927–33. 1097: 1096: 1092: 1048: 1047: 1043: 989: 988: 984: 950: 949: 945: 901: 900: 896: 860: 859: 850: 807:(4): 1090–100. 794: 793: 789: 745: 744: 740: 704: 703: 699: 655: 654: 650: 598: 597: 588: 550: 549: 540: 506: 505: 498: 477:(10): 597–604. 468: 467: 458: 428: 427: 423: 419: 402: 396: 382:protein folding 378: 340: 265:protein folding 250:DNA replication 234: 182:excluded volume 145:and the cell's 125: 12: 11: 5: 2207: 2205: 2197: 2196: 2191: 2186: 2181: 2171: 2170: 2167: 2166: 2111: 2052: 2051:External links 2049: 2047: 2046: 2011: 1984: 1949: 1920:(6): 495–501. 1904: 1865: 1830: 1763: 1728: 1693: 1684:|journal= 1658: 1632: 1597: 1548: 1513: 1456: 1415: 1396:(25): 9653–8. 1380: 1349: 1290: 1275: 1241: 1202:(4): 1107–12. 1182: 1139: 1090: 1061:(15): 3870–5. 1041: 982: 943: 894: 848: 845:on 2008-09-07. 787: 758:(2): 362–439. 738: 697: 648: 586: 538: 519:(3): 599–620. 496: 456: 420: 418: 415: 414: 413: 408: 406:Ideal solution 401: 398: 377: 374: 339: 336: 233: 230: 217:molecular mass 170:macromolecules 124: 121: 50:macromolecules 26:macromolecules 13: 10: 9: 6: 4: 3: 2: 2206: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2176: 2174: 2163: 2159: 2155: 2151: 2146: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2112: 2108: 2102: 2094: 2090: 2085: 2080: 2076: 2072: 2068: 2064: 2060: 2055: 2054: 2050: 2042: 2038: 2034: 2030: 2026: 2022: 2015: 2012: 2007: 2003: 1999: 1995: 1988: 1985: 1980: 1976: 1972: 1968: 1964: 1960: 1953: 1950: 1945: 1941: 1937: 1933: 1928: 1923: 1919: 1915: 1908: 1905: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1869: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1834: 1831: 1826: 1822: 1817: 1812: 1808: 1804: 1799: 1794: 1790: 1786: 1782: 1778: 1774: 1767: 1764: 1759: 1755: 1751: 1747: 1743: 1739: 1732: 1729: 1724: 1720: 1716: 1712: 1708: 1704: 1697: 1694: 1689: 1677: 1669: 1665: 1661: 1659:9780123646194 1655: 1651: 1647: 1643: 1636: 1633: 1628: 1624: 1620: 1616: 1612: 1608: 1601: 1598: 1593: 1589: 1584: 1579: 1575: 1571: 1568:(1): 125–33. 1567: 1563: 1559: 1552: 1549: 1544: 1540: 1536: 1532: 1529:(3): 388–92. 1528: 1524: 1517: 1514: 1509: 1505: 1501: 1497: 1492: 1487: 1483: 1479: 1475: 1471: 1467: 1460: 1457: 1452: 1448: 1443: 1438: 1435:(3): 407–85. 1434: 1430: 1426: 1419: 1416: 1411: 1407: 1403: 1399: 1395: 1391: 1384: 1381: 1376: 1372: 1368: 1364: 1360: 1353: 1350: 1345: 1341: 1336: 1331: 1326: 1321: 1317: 1313: 1309: 1305: 1301: 1294: 1291: 1286: 1282: 1278: 1272: 1268: 1264: 1260: 1255: 1254: 1245: 1242: 1237: 1233: 1228: 1223: 1218: 1213: 1209: 1205: 1201: 1197: 1193: 1186: 1183: 1178: 1174: 1170: 1166: 1162: 1158: 1155:(5): 485–97. 1154: 1150: 1143: 1140: 1135: 1131: 1126: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1091: 1086: 1082: 1077: 1072: 1068: 1064: 1060: 1056: 1052: 1045: 1042: 1037: 1033: 1028: 1023: 1018: 1013: 1009: 1005: 1002:(7): 1871–5. 1001: 997: 993: 986: 983: 978: 974: 970: 966: 963:(2): 175–85. 962: 958: 954: 947: 944: 939: 935: 930: 925: 921: 917: 914:(1): 375–97. 913: 909: 905: 898: 895: 890: 886: 881: 876: 872: 868: 867:J. Biol. Chem 864: 857: 855: 853: 849: 844: 840: 836: 831: 826: 822: 818: 814: 810: 806: 802: 798: 791: 788: 783: 779: 774: 769: 765: 761: 757: 753: 749: 742: 739: 734: 730: 725: 720: 716: 712: 708: 701: 698: 693: 689: 684: 679: 675: 671: 668:(1): 94–101. 667: 663: 659: 652: 649: 644: 640: 635: 630: 626: 622: 618: 614: 610: 606: 602: 595: 593: 591: 587: 582: 578: 574: 570: 566: 562: 558: 554: 547: 545: 543: 539: 534: 530: 526: 522: 518: 514: 510: 503: 501: 497: 492: 488: 484: 480: 476: 472: 465: 463: 461: 457: 452: 448: 444: 440: 436: 432: 425: 422: 416: 412: 409: 407: 404: 403: 399: 397: 394: 392: 387: 383: 375: 373: 370: 369:serum albumin 366: 362: 358: 354: 349: 345: 344:enzyme assays 337: 335: 333: 329: 325: 321: 318:where mutant 317: 312: 310: 306: 302: 298: 297:precipitation 294: 290: 285: 282: 278: 274: 270: 266: 261: 259: 255: 251: 247: 246:transcription 243: 239: 231: 229: 227: 226:simple sugars 223: 218: 213: 211: 207: 203: 199: 195: 191: 187: 183: 175: 171: 166: 162: 160: 156: 152: 148: 144: 140: 136: 132: 131: 122: 120: 118: 117: 112: 111: 106: 105: 100: 96: 91: 89: 85: 81: 77: 73: 69: 68: 63: 59: 55: 51: 47: 43: 35: 34:nucleic acids 31: 27: 23: 18: 2119: 2115: 2101:cite journal 2066: 2063:EMBO Reports 2062: 2024: 2020: 2014: 1997: 1993: 1987: 1962: 1958: 1952: 1917: 1913: 1907: 1882: 1879:Biochemistry 1878: 1875:Pielak, G.J. 1868: 1843: 1840:Chem. Commun 1839: 1833: 1780: 1776: 1766: 1741: 1737: 1731: 1706: 1702: 1696: 1641: 1635: 1610: 1606: 1600: 1565: 1561: 1551: 1526: 1522: 1516: 1473: 1469: 1459: 1432: 1428: 1418: 1393: 1390:Biochemistry 1389: 1383: 1366: 1362: 1352: 1307: 1303: 1293: 1252: 1244: 1199: 1195: 1185: 1152: 1148: 1142: 1107: 1103: 1093: 1058: 1054: 1044: 999: 995: 985: 960: 956: 946: 911: 907: 897: 870: 866: 843:the original 804: 800: 790: 755: 751: 741: 714: 710: 700: 665: 662:J. Bacteriol 661: 651: 608: 604: 556: 552: 516: 513:J. Mol. Biol 512: 474: 470: 437:(6): 203–6. 434: 430: 424: 395: 379: 352: 341: 313: 309:denaturation 286: 262: 242:cell biology 238:biochemistry 235: 214: 179: 159:cytoskeleton 138: 128: 126: 114: 108: 102: 92: 65: 41: 39: 2145:10379/15414 2069:(1): 23–7. 1709:(7): 1255. 1607:Biopolymers 1562:Protein Sci 553:J. Cell Sci 328:tau protein 301:aggregation 289:crystallins 222:amino acids 135:micrometres 2194:Biophysics 2173:Categories 1149:Biol. Chem 801:Biophys. J 417:References 320:hemoglobin 269:biophysics 254:hemoglobin 232:Importance 204:, or when 151:eukaryotes 99:metabolism 1927:1310.2100 1807:0027-8424 1686:ignored ( 1676:cite book 1508:247498652 625:0305-1048 391:osmolytes 305:cataracts 88:colloidal 2162:31522448 2154:24505025 2093:14710181 2041:26575781 2000:: 3–10. 1979:26274449 1944:18847346 1899:23167542 1860:20657920 1825:18024596 1668:11952225 1627:97753189 1592:14691228 1543:21237136 1500:35298090 1451:15302206 1344:18697933 1285:17205670 1169:16740119 1134:10601015 1085:10921869 938:18573087 889:11279227 782:16760308 643:27471033 581:32418833 573:16825427 491:11590012 400:See also 353:in vitro 326:, where 279:such as 116:in vitro 104:in vitro 54:proteins 52:such as 46:solution 30:proteins 28:such as 2124:Bibcode 2084:1298967 1816:2141893 1785:Bibcode 1746:Bibcode 1711:Bibcode 1583:2286514 1491:9156969 1410:2611254 1375:9331254 1335:2515223 1312:Bibcode 1236:9037014 1204:Bibcode 1177:7336464 1125:1171756 1036:3550799 1004:Bibcode 977:8241257 929:2826134 839:1420928 830:1262248 809:Bibcode 773:1489533 733:9278503 711:Science 692:2403552 634:5041478 533:1748995 451:1891800 365:dextran 139:E. coli 110:in vivo 95:enzymes 80:solvent 62:cytosol 22:cytosol 2160:  2152:  2091:  2081:  2039:  1977:  1942:  1897:  1858:  1823:  1813:  1805:  1666:  1656:  1625:  1590:  1580:  1541:  1506:  1498:  1488:  1470:EMBO J 1449:  1408:  1373:  1342:  1332:  1283:  1273:  1234:  1224:  1175:  1167:  1132:  1122:  1104:EMBO J 1083:  1076:306593 1073:  1055:EMBO J 1034:  1027:304543 1024:  975:  936:  926:  887:  837:  827:  780:  770:  731:  690:  683:208405 680:  641:  631:  623:  579:  571:  531:  489:  449:  361:ficoll 330:forms 210:genome 2158:S2CID 1940:S2CID 1922:arXiv 1623:S2CID 1504:S2CID 1227:19752 1173:S2CID 577:S2CID 367:, or 338:Study 281:GroEL 190:rates 58:cells 2150:PMID 2107:link 2089:PMID 2037:PMID 1975:PMID 1895:PMID 1856:PMID 1821:PMID 1803:ISSN 1688:help 1664:PMID 1654:ISBN 1588:PMID 1539:PMID 1496:PMID 1447:PMID 1406:PMID 1371:PMID 1340:PMID 1281:PMID 1271:ISBN 1259:1–13 1232:PMID 1165:PMID 1130:PMID 1081:PMID 1032:PMID 973:PMID 961:1216 934:PMID 885:PMID 835:PMID 778:PMID 729:PMID 688:PMID 639:PMID 621:ISSN 569:PMID 529:PMID 487:PMID 447:PMID 346:and 293:lens 248:and 240:and 192:and 32:and 2140:hdl 2132:doi 2079:PMC 2071:doi 2029:doi 2002:doi 1967:doi 1932:doi 1887:doi 1848:doi 1811:PMC 1793:doi 1781:104 1754:doi 1719:doi 1646:doi 1615:doi 1578:PMC 1570:doi 1531:doi 1527:405 1486:PMC 1478:doi 1437:doi 1398:doi 1330:PMC 1320:doi 1308:105 1263:doi 1222:PMC 1212:doi 1157:doi 1153:387 1120:PMC 1112:doi 1071:PMC 1063:doi 1022:PMC 1012:doi 965:doi 924:PMC 916:doi 875:doi 871:276 825:PMC 817:doi 768:PMC 760:doi 719:doi 715:277 678:PMC 670:doi 666:172 629:PMC 613:doi 561:doi 557:119 521:doi 517:222 479:doi 439:doi 299:or 256:in 224:or 147:DNA 143:RNA 86:by 64:of 2175:: 2156:. 2148:. 2138:. 2130:. 2120:26 2118:. 2103:}} 2099:{{ 2087:. 2077:. 2065:. 2061:. 2035:. 2025:11 2023:. 1998:20 1996:. 1973:. 1961:. 1938:. 1930:. 1918:18 1916:. 1893:. 1883:51 1881:. 1854:. 1844:46 1842:. 1819:. 1809:. 1801:. 1791:. 1779:. 1775:. 1752:. 1742:33 1740:. 1717:. 1707:22 1705:. 1680:: 1678:}} 1674:{{ 1662:. 1652:. 1621:. 1611:20 1609:. 1586:. 1576:. 1566:13 1564:. 1560:. 1537:. 1525:. 1502:. 1494:. 1484:. 1474:41 1472:. 1468:. 1445:. 1433:86 1431:. 1427:. 1404:. 1394:28 1392:. 1367:38 1365:. 1361:. 1338:. 1328:. 1318:. 1306:. 1302:. 1279:. 1269:. 1261:. 1230:. 1220:. 1210:. 1200:94 1198:. 1194:. 1171:. 1163:. 1151:. 1128:. 1118:. 1108:18 1106:. 1102:. 1079:. 1069:. 1059:19 1057:. 1053:. 1030:. 1020:. 1010:. 1000:84 998:. 994:. 971:. 959:. 955:. 932:. 922:. 912:37 910:. 906:. 883:. 869:. 865:. 851:^ 833:. 823:. 815:. 805:63 803:. 799:. 776:. 766:. 756:70 754:. 750:. 727:. 713:. 709:. 686:. 676:. 664:. 660:. 637:. 627:. 619:. 609:44 607:. 603:. 589:^ 575:. 567:. 555:. 541:^ 527:. 515:. 511:. 499:^ 485:. 475:26 473:. 459:^ 445:. 435:16 433:. 363:, 359:, 76:ml 72:mg 2164:. 2142:: 2134:: 2126:: 2109:) 2095:. 2073:: 2067:5 2043:. 2031:: 2008:. 2004:: 1981:. 1969:: 1963:5 1946:. 1934:: 1924:: 1901:. 1889:: 1862:. 1850:: 1827:. 1795:: 1787:: 1760:. 1756:: 1748:: 1725:. 1721:: 1713:: 1690:) 1670:. 1648:: 1629:. 1617:: 1594:. 1572:: 1545:. 1533:: 1510:. 1480:: 1453:. 1439:: 1412:. 1400:: 1377:. 1346:. 1322:: 1314:: 1287:. 1265:: 1238:. 1214:: 1206:: 1179:. 1159:: 1136:. 1114:: 1087:. 1065:: 1038:. 1014:: 1006:: 979:. 967:: 940:. 918:: 891:. 877:: 819:: 811:: 784:. 762:: 735:. 721:: 694:. 672:: 645:. 615:: 583:. 563:: 535:. 523:: 493:. 481:: 453:. 441:: 74:/ 36:.

Index


cytosol
macromolecules
proteins
nucleic acids
solution
macromolecules
proteins
cells
cytosol
Escherichia coli
mg
ml
solvent
biomolecular condensate
colloidal
enzymes
metabolism
in vitro
in vivo
in vitro
Escherichia coli
micrometres
RNA
DNA
eukaryotes
protein filaments
cytoskeleton

macromolecules

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑