Knowledge (XXG)

Biomolecular condensate

Source đź“ť

143: 729: 302: 26: 1000:
condensate" directly addresses this challenge by making no assumption regarding either the physical mechanism through which assembly is achieved, nor the material state of the resulting assembly. Consequently, cellular bodies that form through liquid–liquid phase separation are a subset of biomolecular condensates, as are those where the physical origins of assembly are unknown. Historically, many cellular non-membrane bound compartments identified microscopically fall under the broad umbrella of biomolecular condensates.
103: 1300:(Dsh or Dvl) protein undergoes clustering in the cytoplasm via its DIX domain, which mediates protein clustering (polymerisation) and phase separation, and is important for signal transduction. The Dsh protein functions both in planar polarity and Wnt signalling, where it recruits another supramolecular complex (the Axin complex) to Wnt receptors at the plasma membrane. The formation of these Dishevelled and Axin containing droplets is conserved across metazoans, including in 562:. With this in mind, the term 'biomolecular condensates' was deliberately introduced to reflect this breadth (see below). Since biomolecular condensation generally involves oligomeric or polymeric interactions between an indefinite number of components, it is generally considered distinct from formation of smaller stoichiometric protein complexes with defined numbers of subunits, such as viral capsids or the proteasome – although both are examples of spontaneous 900: 593: 1638:
amino acid residues are represented by single interaction sites. Compared to more detailed molecular descriptions, residue-level models provide high computational efficiency, which enables simulations to cover the long length and time scales required to study phase separation. Moreover, the resolution of these models is sufficiently detailed to capture the dependence on amino acid sequence of the properties of the system.
251: 211:: "Hence the study of life may be best begun by the study of those physico-chemical phenomena which result from the contact of two different liquids. Biology is thus but a branch of the physico-chemistry of liquids; it includes the study of electrolytic and colloidal solutions, and of the molecular forces brought into play by solution, osmosis, diffusion, cohesion, and crystallization." 1520:. In this case, light-activation removes the dimerizer cage, allowing it to recruit IDRs to multivalent cores, which then triggers phase separation. Light-activation of a different wavelength results in the dimerizer being cleaved, which then releases the IDRs from the core and consequentially dissolves the condensate. This dimerizer system requires significantly reduced amounts of 1326:. These granules separate out from the cytoplasm and form droplets, as oil does from water. Both the granules and the surrounding cytoplasm are liquid in the sense that they flow in response to forces, and two of the granules can coalesce when they come in contact. When (some of) the molecules in the granules are studied (via 1448:
that govern the formation of biomolecular condensates, synthetic condensates can still be engineered to exhibit different behaviors. One popular way to conceptualize condensate interactions and aid in design is through the "sticker-spacer" framework. Multivalent interaction sites, or "stickers", are
1670:
constituted by folded domains connected by intrinsically disordered regions. Current residue-level models are only applicable to the study of condensates of intrinsically disordered proteins and nucleic acids. Including an accurate description of the folded domains in these models will considerably
1641:
Several residue-level models of intrinsically disordered proteins have been developed in recent years. Their common features are (i) the absence of an explicit representation of solvent molecules and salt ions, (ii) a mean-field description of the electrostatic interactions between charged residues
1571:
of interest, thus allowing the condensate to serve as a scaffold for protein release or recruitment. These binding sites can be modified to be sensitive to light activation or small molecule addition, thus giving temporal control over the recruitment of a specific protein of interest. By recruiting
121:
in 1858. Amorphous substances such as starch and cellulose were proposed to consist of building blocks, packed in a loosely crystalline array to form what he later termed "micelles". Water could penetrate between the micelles, and new micelles could form in the interstices between old micelles. The
1637:
have been extensively used to gain insights into the formation and the material properties of biomolecular condensates. Although molecular models of different resolution have been employed, modelling efforts have mainly focused on coarse-grained models of intrinsically disordered proteins, wherein
1679:
To identify liquid-liquid phase separation and formation of condensate liquid droplets, one needs to demonstrate the liquid behaviors (viscoelasticity) of the condensates. Furthermore, mechanical processes are key to condensate related diseases, as pathological changes to condensates can lead to
999:
within cells or extracellular secretions. However, unequivocally demonstrating that a cellular body forms through liquid–liquid phase separation is challenging, because different material states (liquid vs. gel vs. solid) are not always easy to distinguish in living cells. The term "biomolecular
959:
was introduced in the context of intracellular assemblies as a convenient and non-exclusionary term to describe non-stoichiometric assemblies of biomolecules. The choice of language here is specific and important. It has been proposed that many biomolecular condensates form through liquid–liquid
1650:
or from a bioinformatic analysis of crystal structures of folded proteins. Further refinement of the parameters has been achieved through iterative procedures which maximize the agreement between model predictions and a set of experiments, or by leveraging data obtained from all-atom molecular
715:
Bacteria Ribonucleoprotein Bodies (BR-bodies)- In recent studies it has been shown that bacteria RNA degradosomes can assemble into phase-separated structures, termed bacterial ribonucleoprotein bodies (BR-bodies), with many analogous properties to eukaryotic processing bodies and stress
1542:
is trigger by light activation, phase separation is preferentially induced on the specific genomic region which is recognized by fusion protein. Because condensates of the same composition can interact and fuse with each other, if they are tethered to specific regions of the
1654:
Residue-level models of intrinsically disordered proteins have been validated by direct comparison with experimental data, and their predictions have been shown to be accurate across diverse amino acid sequences. Examples of experimental data used to validate the models are
5322:
C. P. Brangwynne, T. J. Mitchison, and A. A. Hyman, “Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4334–4339,
6850:
Leicher, Rachel; Osunsade, Adewola; Chua, Gabriella N. L.; Faulkner, Sarah C.; Latham, Andrew P.; Watters, John W.; Nguyen, Tuan; Beckwitt, Emily C.; Christodoulou-Rubalcava, Sophia; Young, Paul G.; Zhang, Bin; David, Yael; Liu, Shixin (28 April 2022).
1508:, the oligomerization domains bind each other and form a 'core', which also brings multiple IDRs close together because they are fused to the oligomerization domains. The recruitment of multiple IDRs effectively creates a new biopolymer with increased 5515:
D. Bracha, M. T. Walls, M. T. Wei, L. Zhu, M. Kurian, J. L. Avalos, J. E. Toettcher, and C. P. Brangwynne, “Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds,” Cell, vol. 175, no. 6, pp. 1467–1480.e13,
194:, stating that: "The globulin is dispersed in the solvent as particles which are the colloid particles and which are so large as to form an internal phase", and further contributed to the basic physical description of oil-water phase separation. 1601:
A number of experimental and computational methods have been developed to examine the physico-chemical properties and underlying molecular interactions of biomolecular condensates. Experimental approaches include phase separation assays using
1589:, the linker is broken, and the protein is released from the condensate. Using these design principles, proteins can either be released to, or sequestered from, their native environment, allowing condensates to serve as a tool to alter the 1680:
their solidification. Rheological methods are commonly used to demonstrate the liquid behavior of biomolecular condensates. These include active microrheological characterization by means of optical tweezers and scanning probe microscopy.
5537:
Y. Shin, Y. C. Chang, D. S. Lee, J. Berry, D. W. Sanders, P. Ronceray, N. S.Wingreen, M. Haataja, and C. P. Brangwynne, “Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome,” Cell, vol. 175, no. 6,pp. 1481–1491.e13,
4487:
Dorone, Yanniv; Boeynaems, Steven; Jin, Benjamin; Bossi, Flavia; Flores, Eduardo; Lazarus, Elena; Michiels, Emiel; De Decker, Mathias; Baatsen, Pieter; Holehouse, Alex S.; Sukenik, Shahar; Gitler, Aaron D.; Rhee, Seung Y. (July 2021).
1428:, and have a wide and growing range of applications. Engineered synthetic condensates allow for probing cellular organization, and enable the creation of novel functionalized biological materials, which have the potential to serve as 1516:. When the activation light is stopped, the oligomerization domains disassemble, causing the dissolution of the condensate. A similar system achieves the same temporal control of condensate formation by using light-sensitive 'caged' 1480:
Other tools outside of tuning the sticker-spacer framework can be used to give new functionality and to allow for high temporal and spatial control over synthetic condensates. One way to gain temporal control over the formation and
53:. Unlike many organelles, biomolecular condensate composition is not controlled by a bounding membrane. Instead, condensates can form and maintain organization through a range of different processes, the most well-known of which is 1646:), and (iii) a set of "stickiness" parameters which quantify the strength of the attraction between pairs of amino acids. In the development of most residue-level models, the stickiness parameters have been derived from 1580:
or sequestered to inhibit reactivity. In addition to protein recruitment, condensates can also be designed which release proteins in response to certain stimuli. In this case, a protein of interest can be fused to a
2827:
Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M (November 2005). "The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles".
5525:
H. Zhang, C. Aonbangkhen, E. V. Tarasovetc, E. R. Ballister, D. M.Chenoweth, and M. A. Lampson, “Optogenetic control of kinetochore function,” Nature Chemical Biology, vol. 13, pp. 1096–1101, Aug 2017.
1855:"On the structure of cell protoplasm: Part I. The Structure produced in a Cell by Fixative and Post-mortem change. The Structure of Colloidal matter and the Mechanism of Setting and of Coagulation" 1513: 1462: 1530:
systems can also be modified to gain spatial control over the formation of condensates. Multiple approaches have been developed to do so. In one approach, which localizes condensates to specific
347:
received the Nobel Prize in Physics for developing a generalized theory of phase transitions with particular applications to describing ordering and phase transitions in polymers. Unfortunately,
4287:
Esposito, Mark; Fang, Cao; Cook, Katelyn C.; Park, Nana; Wei, Yong; Spadazzi, Chiara; Bracha, Dan; Gunaratna, Ramesh T.; Laevsky, Gary; DeCoste, Christina J.; Slabodkin, Hannah (March 2021).
655: 1373:
Pa s. This is about a ten thousand times that of water at room temperature, but it is small enough to enable the LAF-1 droplets to flow like a liquid. Generally, interaction strength (
5128:
Heidenreich M, Georgeson JM, Locatelli E, Rovigatti L, Nandi SK, Steinberg A, et al. (September 2020). "Designer protein assemblies with tunable phase diagrams in living cells".
2965:
Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, Niehrs C (June 2007). "Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation".
1689: 1555:
Synthetic condensates offer a way to probe cellular function and organization with high spatial and temporal control, but can also be used to modify or add functionality to the
262:
phase separation, it was left to relative outsiders – agricultural scientists and physicists – to make further progress in the study of phase separating biomolecules in cells.
2874:
Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, Bienz M (June 2007). "The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization".
5313:
P. Ivanov, N. Kedersha, and P. Anderson, “Stress granules and processing bodies in translational control,” Cold Spring Harbor Perspectives in Biology, vol. 11, no. 5, 2019.
122:
swelling of starch grains and their growth was described by a molecular-aggregate model, which he also applied to the cellulose of the plant cell wall. The modern usage of '
6059:
Joseph, Jerelle A.; Reinhardt, Aleks; Aguirre, Anne; Chew, Pin Yu; Russell, Kieran O.; Espinosa, Jorge R.; Garaizar, Adiran; Collepardo-Guevara, Rosana (22 November 2021).
1371: 1377:) and valence (number of binding sites) of the phase separating biomolecules influence their condensates viscosity, as well as their overall tendency to phase separate. 576:
Mechanistically, it appears that the conformational landscape (in particular, whether it is enriched in extended disordered states) and multivalent interactions between
4594:
Muschol, Martin; Rosenberger, Franz (1997). "Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization".
5506:
C. D. Reinkemeier and E. A. Lemke, “Synthetic biomolecular condensates to engineer eukaryotic cells,” Current Opinion in Chemical Biology, vol. 64, pp. 174–181, 2021.
6187:
Dannenhoffer-Lafage, Thomas; Best, Robert B. (20 April 2021). "A Data-Driven Hydrophobicity Scale for Predicting Liquid–Liquid Phase Separation of Proteins".
5550:
M. Yoshikawa and S. Tsukiji, “Modularly Built Synthetic Membraneless Organelles Enabling Targeted Protein Sequestration and Release,” Biochemistry, Oct 2021.
5332:
D. Bracha, M. T. Walls, and C. P. Brangwynne, “Probing and engineering liquid-phase organelles,” Nature Biotechnology, vol. 37, no. 12, pp. 1435–1445, 2019.
5993:
Vernon, Robert McCoy; Chong, Paul Andrew; Tsang, Brian; Kim, Tae Hun; Bah, Alaji; Farber, Patrick; Lin, Hong; Forman-Kay, Julie Deborah (9 February 2018).
2440:
Waigh TA, Gidley MJ, Komanshek BU, Donald AM (September 2000). "The phase transformations in starch during gelatinisation: a liquid crystalline approach".
1611: 1327: 7055:
Aida Naghilou, Oskar Armbruster, Alireza Mashaghi, Scanning probe microscopy elucidates gelation and rejuvenation of biomolecular condensates. (2024)
7037:
Ghosh, A., D. Kota, and H.-X. Zhou, Shear relaxation governs fusion dynamics of biomolecular condensates. Nature Communications, 2021. 12(1): p. 5995.
5664:
Saar, Kadi L.; Qian, Daoyuan; Good, Lydia L.; Morgunov, Alexey S.; Collepardo-Guevara, Rosana; Best, Robert B.; Knowles, Tuomas P. J. (12 May 2023).
719:
FLOE1 granules: FLOE1 is a prion-like seed-specific protein that controls plant seed germination via phase separation into biomolecular condensates.
1453:
flexibility and physically separate individual interaction modules from one another. Proteins regions identified as 'stickers' usually consist of
712:
form by a polymerisation process similar to phase separation, except ordered into filamentous networks instead of amorphous droplets or granules.
3092:
An S, Kumar R, Sheets ED, Benkovic SJ (April 2008). "Reversible compartmentalization of de novo purine biosynthetic complexes in living cells".
6394:"Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations" 4840: 2673: 2649: 2625: 1385:
Growing evidence suggests that anomalies in biomolecular condensates formation can lead to a number of human pathologies such as cancer and
142: 5851:
Espinosa, Jorge R.; Joseph, Jerelle A.; Sanchez-Burgos, Ignacio; Garaizar, Adiran; Frenkel, Daan; Collepardo-Guevara, Rosana (June 2020).
1330:), they are found to rapidly turnover in the droplets, meaning that molecules diffuse into and out of the granules, just as expected in a 2175:
Tanaka T, Ishimoto C, Chylack LT (September 1977). "Phase separation of a protein-water mixture in cold cataract in the young rat lens".
728: 2145:
Tanaka T, Benedek GB (June 1975). "Observation of protein diffusivity in intact human and bovine lenses with application to cataract".
1666:
Although intrinsically disordered proteins often play important roles in condensate formation, many biomolecular condensates contain
3281: 3232: 1454: 1418: 577: 1489:
tools. Several different systems have been developed which allow for control of condensate formation and dissolution which rely on
6316:"Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties" 3054:
Kedersha N, Anderson P (November 2002). "Stress granules: sites of mRNA triage that regulate mRNA stability and translatability".
154:
as an organizing principle for the compartmentalization of living cells dates back to the end of the 19th century, beginning with
6918:"Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions" 6799:
Lebold, Kathryn M.; Best, Robert B. (23 March 2022). "Tuning Formation of Protein–DNA Coacervates by Sequence and Environment".
497:
via clustering to increase the local concentration of the assembling components, and is analogous to the physical definition of
891:
bilayers, but they are not classified as biomolecular condensates, as this term is reserved for non-membrane bound organelles.
1091: 175: 25: 6464:"Modeling Concentration-dependent Phase Separation Processes Involving Peptides and RNA via Residue-Based Coarse-Graining" 1618:
analysis of phase-separated droplets. Computational approaches include coarse-grained molecular dynamics simulations and
2047: 5853:"Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components" 5559:
Y. Shin and C. P. Brangwynne, “Liquid phase condensation in cell physiology and disease,” Science, vol. 357, Sep 2017.
1547:, condensates can be used to alter the spatial organization of the genome, which can have effects on gene expression. 5731:"Unraveling Molecular Interactions in Liquid–Liquid Phase Separation of Disordered Proteins by Atomistic Simulations" 182:, an organelle within the nucleus, which has subsequently been shown to form through intracellular phase separation. 6392:
Farag, Mina; Cohen, Samuel R.; Borcherds, Wade M.; Bremer, Anne; Mittag, Tanja; Pappu, Rohit V. (13 December 2022).
4864:
Woodruff JB, Hyman AA, Boke E (February 2018). "Organization and Function of Non-dynamic Biomolecular Condensates".
3579:"Protein phase behavior in aqueous solutions: crystallization, liquid–liquid phase separation, gels, and aggregates" 2922:
Schwarz-Romond T, Metcalfe C, Bienz M (July 2007). "Dynamic recruitment of axin by Dishevelled protein assemblies".
1643: 301: 6916:
Farr, Stephen E.; Woods, Esmae J.; Joseph, Jerelle A.; Garaizar, Adiran; Collepardo-Guevara, Rosana (17 May 2021).
4099:"Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid–Liquid Phase Separation" 1386: 5071:"The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics" 3437:"Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation?" 698: 4948:
de Swaan Arons, J.; Diepen, G. A. M. (2010). "Immiscibility of gases. The system He-Xe: (Short communication)".
584:
that induce head-to-tail oligomeric or polymeric clustering, might play a role in phase separation of proteins.
6736:"Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations" 1660: 1461:
via short patches of interacting residues patterned along their unstructured chain, which collectively promote
1450: 870: 6529:"Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range" 3757:"Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles" 6653:"How do intrinsically disordered protein regions encode a driving force for liquid–liquid phase separation?" 4248:"Glycogen-Surfactant Complexes: Phase Behavior in a Water/Phytoglycogen/Sodium Dodecyl Sulfate (SDS) System" 1634: 1607: 1603: 1482: 1374: 563: 444: 424: 376: 348: 344: 102: 3019:
Bienz M (October 2014). "Signalosome assembly by domains undergoing dynamic head-to-tail polymerization".
1716:"Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates" 1336: 1322: 1174: 996: 671: 649: 644: 543: 475: 436: 226:
in 1929, suggested that life was preceded by the formation of what Haldane called a "hot dilute soup" of "
20: 7046:
Jawerth, L., et al., Protein condensates as aging Maxwell fluids. Science, 2020. 370(6522): p. 1317-1323.
1334:
droplet. The droplets can also grow to be many molecules across (micrometres) Studies of droplets of the
635: 6734:
Regy, Roshan Mammen; Dignon, Gregory L; Zheng, Wenwei; Kim, Young C; Mittal, Jeetain (2 December 2020).
6588:"A conceptual framework for understanding phase separation and addressing open questions and challenges" 5181:
Aguzzi A, Altmeyer M (July 2016). "Phase Separation: Linking Cellular Compartmentalization to Disease".
1647: 1293: 927: 702: 159: 6121:"Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins" 6061:"Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy" 3145:"Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation" 770:
form by mechanisms similar to phase separation, so can also be classified as biomolecular condensates.
5926:
Dignon, Gregory L.; Zheng, Wenwei; Kim, Young C.; Best, Robert B.; Mittal, Jeetain (24 January 2018).
238:
which might be protein, lipid or nucleic acid. These ideas strongly influenced the subsequent work of
7215: 6929: 6405: 6327: 5939: 5864: 5631: 5463: 5355: 5082: 4992: 4639:"Biophysical characterization of monofilm model systems composed of selected tear film phospholipids" 4603: 3942: 3711: 3654: 3590: 3543: 3500: 3393: 3332: 3156: 3101: 2974: 2780: 2720: 2580: 2358: 2296: 2234: 2184: 2003: 1819: 1727: 1560: 1474: 1445: 1219: 1148: 760: 2541:(1993). "A Universal Feature in the Structure of Starch Granules from Different Botanical Sources". 944:. In cells, LLPS produces a liquid subclass of biomolecular condensate that can behave as either an 7255: 5069:
Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR, Myong S, Brangwynne CP (June 2015).
4490:"A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation" 3641:
Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, et al. (June 2009).
2475:
Jenkins PJ, Donald AM (1998). "Gelatinisation of starch: A combined SAXS/WAXS/DSC and SANS study".
1714:
Garaizar, Adiran; Espinosa, Jorge R.; Joseph, Jerelle A.; Collepardo-Guevara, Rosana (2022-03-15).
1509: 1505: 1192: 984: 689: 681: 440: 388: 282:
Also in the 1970s, physicists Tanaka & Benedek at MIT identified phase-separation behaviour of
265:
Beginning in the early 1970s, Harold M Farrell Jr. at the US Department of Agriculture developed a
86: 4823:
Posey AE, Holehouse AS, Pappu RV (2018). "Phase Separation of Intrinsically Disordered Proteins".
1350: 7155: 6945: 6872: 6816: 6755: 6633: 6550: 6483: 6421: 6345: 6270: 6228: 6204: 6140: 6080: 6016: 5957: 5882: 5807: 5752: 5685: 5432: 5247: 5163: 4712: 4527: 4228: 4030: 3680: 3491:
Sear RP (May 2007). "Dishevelled: a protein that functions in living cells by phase separating".
3417: 3356: 3322: 3182: 3125: 2998: 2947: 2899: 2853: 2806: 2746: 1923: 1788: 1656: 1630: 1493: 1433: 1402: 1152: 515:
In biology the term 'condensation' is used much more broadly and can also refer to liquid–liquid
183: 155: 4899:
Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, et al. (June 2018).
4289:"TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis" 3698:
Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, et al. (July 2017).
2689: 2502:
Jenkins PJ, Donald AM (December 1995). "The influence of amylose on starch granule structure".
7233: 7190: 7147: 7104: 7056: 7020: 7002: 6963: 6898: 6880: 6832: 6824: 6781: 6763: 6690: 6672: 6625: 6607: 6568: 6509: 6491: 6439: 6371: 6353: 6296: 6278: 6220: 6212: 6166: 6148: 6098: 6034: 5975: 5908: 5890: 5833: 5815: 5768: 5760: 5711: 5693: 5600: 5489: 5424: 5383: 5296: 5239: 5198: 5155: 5110: 5051: 4965: 4930: 4881: 4846: 4836: 4805: 4756: 4704: 4660: 4619: 4576: 4519: 4469: 4420: 4382: 4326: 4308: 4269: 4220: 4179: 4130: 4079: 4022: 3968: 3879: 3827: 3786: 3755:
Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, et al. (March 2015).
3737: 3672: 3643:"Germline P granules are liquid droplets that localize by controlled dissolution/condensation" 3616: 3559: 3516: 3468: 3409: 3348: 3295: 3287: 3277: 3246: 3238: 3228: 3174: 3117: 3071: 3036: 2990: 2939: 2891: 2845: 2798: 2738: 2669: 2645: 2621: 2519: 2457: 2422: 2386: 2324: 2262: 2200: 2154: 2124: 1972: 1884: 1835: 1761: 1743: 1517: 1425: 1398: 570: 6314:
Tesei, Giulio; Schulze, Thea K.; Crehuet, Ramon; Lindorff-Larsen, Kresten (29 October 2021).
4403:
Gammons M, Bienz M (April 2018). "Multiprotein complexes governing Wnt signal transduction".
3377:
Stradner A, Sedgwick H, Cardinaux F, Poon WC, Egelhaaf SU, Schurtenberger P (November 2004).
876:
particles are also enclosed by a lipid monolayer. The formation of these structures involves
7223: 7180: 7137: 7129: 7094: 7086: 7010: 6994: 6953: 6937: 6888: 6864: 6808: 6771: 6747: 6680: 6664: 6615: 6599: 6558: 6540: 6499: 6475: 6429: 6413: 6361: 6335: 6286: 6262: 6196: 6156: 6132: 6088: 6072: 6024: 6006: 5965: 5947: 5898: 5872: 5823: 5799: 5742: 5701: 5677: 5639: 5618:
Heidari, Maziar; Moes, Duane; Schullian, Otto; Scalvini, Barbara; Mashaghi, Alireza (2022).
5590: 5582: 5479: 5471: 5414: 5373: 5363: 5286: 5278: 5229: 5190: 5145: 5137: 5100: 5090: 5041: 5031: 5000: 4957: 4920: 4912: 4873: 4828: 4795: 4787: 4776:"Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences" 4746: 4694: 4650: 4611: 4566: 4558: 4509: 4501: 4459: 4451: 4412: 4372: 4364: 4316: 4300: 4259: 4210: 4169: 4161: 4120: 4110: 4069: 4061: 4012: 4004: 3958: 3950: 3906: 3897:
Riback JA, Zhu L, Ferrolino MC, Tolbert M, Mitrea DM, Sanders DW, et al. (2019-10-22).
3869: 3861: 3817: 3776: 3768: 3727: 3719: 3662: 3606: 3598: 3551: 3508: 3458: 3448: 3401: 3340: 3269: 3220: 3164: 3109: 3063: 3028: 2982: 2931: 2883: 2837: 2788: 2728: 2596: 2588: 2550: 2511: 2484: 2449: 2376: 2366: 2314: 2304: 2252: 2242: 2223:"Cytoplasmic phase separation in formation of galactosemic cataract in lenses of young rats" 2192: 2114: 2011: 1962: 1954: 1915: 1874: 1866: 1827: 1751: 1735: 1619: 1582: 1266: 976: 961: 931: 913: 877: 551: 547: 531: 516: 509: 471: 448: 364: 322: 318: 269: 219: 200: 130:, and this legacy is reflected to this day in the description of milk as being composed of ' 54: 3806:"A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation" 2769:"A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling" 2032: 899: 7185: 7168: 5786:
Benayad, Zakarya; von Bülow, Sören; Stelzl, Lukas S.; Hummer, Gerhard (14 December 2020).
4751: 4734: 4562: 3700:"Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin" 2119: 2102: 1904:"Comparative cytological studies, with especial regard to the morphology of the nucleolus" 1512:. This increased valency allows for the IDRs to form multivalent interactions and trigger 1257: 1243: 784: 767: 745: 685: 581: 456: 314: 215: 5729:
Paloni, Matteo; Bailly, RĂ©my; Ciandrini, Luca; Barducci, Alessandro (16 September 2020).
3899:"Composition dependent phase separation underlies directional flux through the nucleolus" 2082:
Bungenberg de Jong HG, Kruyt HR. "Coacervation (partial miscibility in colloid systems".
7219: 6933: 6563: 6528: 6504: 6463: 6409: 6331: 5943: 5868: 5706: 5665: 5635: 5571:"Methods to Study Phase-Separated Condensates and the Underlying Molecular Interactions" 5467: 5359: 5086: 4996: 4607: 4054:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
3946: 3848:
Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, et al. (June 2016).
3715: 3658: 3594: 3547: 3534:
Sear RP (2008). "Phase separation of equilibrium polymers of proteins in living cells".
3504: 3397: 3378: 3336: 3160: 3105: 2978: 2784: 2724: 2584: 2362: 2300: 2238: 2188: 2007: 1992:"The tension of composite fluid surfaces and the mechanical stability of films of fluid" 1823: 1731: 865:, or in tears, so appear to fall under the 'membrane bound' category. Finally, secreted 592: 7142: 7117: 7099: 7074: 7015: 6982: 6958: 6917: 6893: 6852: 6776: 6735: 6685: 6652: 6620: 6434: 6393: 6366: 6315: 6291: 6250: 6161: 6120: 6093: 6060: 6029: 5994: 5970: 5927: 5903: 5852: 5828: 5787: 5595: 5484: 5451: 5378: 5343: 5291: 5266: 5105: 5070: 5046: 5019: 4925: 4900: 4800: 4775: 4571: 4546: 4514: 4464: 4439: 4377: 4352: 4321: 4288: 4174: 4149: 4125: 4098: 4074: 4049: 4017: 3992: 3963: 3930: 3874: 3849: 3781: 3756: 3732: 3699: 3611: 3578: 3463: 3436: 1967: 1942: 1879: 1854: 1756: 1715: 1667: 1663:, which are threshold protein concentrations above which phase separation is observed. 1556: 1497: 1414: 1126: 972: 949: 936: 888: 858: 802: 733: 625: 596: 527: 478:) has been observed in many different contexts, both within cells and in reconstituted 416: 337: 223: 204: 126:' refers strictly to lipids, but its original usage clearly extended to other types of 111: 78: 50: 3804:
Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, et al. (August 2015).
3273: 3224: 2793: 2768: 2488: 2453: 2319: 2284: 2257: 2222: 1524:
to operate, which is advantageous because high intensity light can be toxic to cells.
1273:
surrounded by a phase separated protein coat in the cytoplasm of some microorganisms.
7249: 6637: 6462:
Valdes-Garcia, Gilberto; Heo, Lim; Lapidus, Lisa J.; Feig, Michael (6 January 2023).
6232: 5452:"RNA modulation of transport properties and stability in phase-separated condensates" 5436: 5167: 5020:"An amyloid organelle, solid-state NMR evidence for cross-β assembly of gas vesicles" 4531: 4232: 3169: 3144: 2568: 2538: 2515: 2381: 2346: 1903: 1577: 1496:, and light or small molecule activation. In one system, proteins are expressed in a 1490: 1429: 1188: 1184: 1170: 1112: 1108: 992: 854: 798: 566: 539: 494: 400: 310: 239: 42: 7159: 6119:
Regy, Roshan Mammen; Thompson, Jacob; Kim, Young C.; Mittal, Jeetain (24 May 2021).
4716: 4034: 3684: 3360: 3129: 3002: 2951: 2903: 2857: 2810: 2750: 1927: 611:
that are thought to arise by either liquid–liquid or liquid–solid phase separation.
6545: 5251: 3421: 3186: 2285:"Binary liquid phase separation and critical phenomena in a protein/water solution" 1958: 1870: 1564: 1527: 1486: 1270: 1156: 1065: 930:
to from large droplets within a liquid. Ordering of molecules during liquid–liquid
709: 639: 608: 505: 498: 464: 428: 408: 34: 3313:
Sear, Richard P. (1999). "Phase behavior of a simple model of globular proteins".
1469:
and RNA sequences as well as their mixture compositions, the material properties (
6603: 5952: 5368: 5344:"LASSI: A lattice model for simulating phase transitions of multivalent proteins" 4655: 4638: 4368: 3772: 6651:
Borcherds, Wade; Bremer, Anne; Borgia, Madeleine B; Mittag, Tanja (April 2021).
5681: 4348: 4165: 4097:
Garaizar A, Sanchez-Burgos I, Collepardo-Guevara R, Espinosa JR (October 2020).
3602: 1590: 1586: 1297: 1288: 1116: 1043: 873: 838: 755: 694: 620: 412: 372: 127: 66: 7228: 7203: 6941: 6868: 6417: 6076: 5995:"Pi-Pi contacts are an overlooked protein feature relevant to phase separation" 5586: 5075:
Proceedings of the National Academy of Sciences of the United States of America
4877: 4832: 4505: 4353:"Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates" 4304: 4215: 4198: 3865: 3822: 3805: 3032: 2351:
Proceedings of the National Academy of Sciences of the United States of America
2289:
Proceedings of the National Academy of Sciences of the United States of America
2227:
Proceedings of the National Academy of Sciences of the United States of America
2065: 1739: 7090: 6998: 6668: 5644: 5475: 5419: 5402: 5194: 5141: 4916: 4699: 4682: 4416: 4115: 3379:"Equilibrium cluster formation in concentrated protein solutions and colloids" 3215:
Brooks DE (1999). "Can Cytoplasm Exist without Undergoing Phase Separation?".
1831: 1458: 1302: 1269:
are either liquid–liquid or liquid–solid, although there have been reports of
1136: 1073: 846: 750: 432: 287: 283: 250: 231: 167: 46: 7006: 6949: 6884: 6876: 6828: 6820: 6812: 6767: 6759: 6676: 6611: 6587: 6554: 6495: 6487: 6479: 6425: 6357: 6349: 6282: 6274: 6266: 6216: 6208: 6200: 6152: 6144: 6084: 6020: 5961: 5928:"Sequence determinants of protein phase behavior from a coarse-grained model" 5894: 5886: 5819: 5811: 5803: 5764: 5756: 5747: 5730: 5697: 5689: 5570: 4969: 4961: 4623: 4489: 4312: 3352: 3291: 3242: 2554: 2410: 1747: 1401:
for a number of purposes. Synthetic biomolecular condensates are inspired by
779:
Membrane protein, or membrane-associated protein, clustering at neurological
367:
behaviour, a stance that has been reflected in the reduced usage of the term
6853:"Single-stranded nucleic acid binding and coacervation by linker histone H1" 6340: 5877: 5788:"Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model" 5619: 5234: 5217: 5095: 5036: 3667: 3642: 3113: 2986: 2666:
The importance of polymer science for biological systems: University of York
2601: 2371: 2309: 1919: 1573: 1470: 1406: 1345: 1087: 968: 941: 922: 850: 824: 740: 665: 604: 523: 470:
Since 2009, further evidence for biomacromolecules undergoing intracellular
460: 420: 404: 333: 191: 179: 163: 7237: 7194: 7151: 7108: 7024: 6967: 6902: 6836: 6785: 6751: 6709: 6694: 6629: 6572: 6513: 6443: 6375: 6300: 6224: 6170: 6102: 6038: 5979: 5912: 5837: 5772: 5715: 5604: 5493: 5428: 5387: 5300: 5282: 5243: 5202: 5159: 5114: 5055: 4934: 4885: 4850: 4809: 4791: 4760: 4708: 4664: 4580: 4523: 4473: 4424: 4386: 4330: 4273: 4224: 4183: 4134: 4083: 4065: 4026: 3972: 3929:
Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, et al. (March 2012).
3883: 3831: 3790: 3741: 3676: 3620: 3563: 3520: 3472: 3453: 3413: 3299: 3250: 3121: 3075: 3040: 2994: 2943: 2895: 2849: 2802: 2742: 2461: 2266: 2247: 2196: 2016: 1991: 1976: 1888: 1839: 1765: 1320:
Another example of liquid droplets in cells are the germline P granules in
1003:
In physics, phase separation can be classified into the following types of
49:
and organelle subdomains, which carry out specialized functions within the
7075:"Who's In and Who's Out-Compositional Control of Biomolecular Condensates" 3178: 2523: 2426: 2390: 2328: 2158: 2128: 6983:"Unifying coarse-grained force fields for folded and disordered proteins" 6251:"Consistent Force Field Captures Homologue-Resolved HP1 Phase Separation" 5150: 4199:"Head-to-Tail Polymerization in the Assembly of Biomolecular Condensates" 3327: 2204: 1615: 1539: 1534:, core proteins are fused to proteins such as TRF1 or catalytically dead 1501: 1410: 1122: 945: 830: 780: 603:
Many examples of biomolecular condensates have been characterized in the
559: 555: 490: 392: 356: 291: 82: 6011: 4440:"Phase-separated bacterial ribonucleoprotein bodies organize mRNA decay" 4264: 4247: 3954: 3723: 3405: 1792: 7133: 4008: 3264:
Walter, Harry (1999). "Consequences of Phase Separation in Cytoplasm".
3067: 2935: 1568: 1466: 1308: 1285:
with a clear physiological function were the supramolecular complexes (
1281:
One of the first discovered examples of a highly dynamic intracellular
1239: 1215: 1196: 1051: 1004: 980: 965: 917: 884: 881: 820: 806: 520: 452: 403:
localising to many non-membrane bound cellular compartments within the
368: 360: 266: 259: 235: 227: 197: 187: 171: 151: 123: 70: 58: 5018:
Bayro MJ, Daviso E, Belenky M, Griffin RG, Herzfeld J (January 2012).
5004: 4455: 4438:
Muthunayake NS, Tomares DT, Childers WS, Schrader JM (November 2020).
4398: 4396: 3931:"Phase transitions in the assembly of multivalent signalling proteins" 3843: 3841: 2841: 2592: 2340: 2338: 2283:
Thomson JA, Schurtenberger P, Thurston GM, Benedek GB (October 1987).
2216: 2214: 2170: 2168: 6136: 5666:"Theoretical and Data-Driven Approaches for Biomolecular Condensates" 4615: 3555: 3512: 3344: 3268:. International Review of Cytology. Vol. 192. pp. 331–343. 3219:. International Review of Cytology. Vol. 192. pp. 321–330. 2887: 2733: 2708: 2221:
Ishimoto C, Goalwin PW, Sun ST, Nishio I, Tanaka T (September 1979).
2140: 2138: 1544: 1531: 1331: 1223: 1140: 813: 661: 630: 327: 305:
Lens epithelium containing crystallin. Hand-book of physiology (1892)
274: 131: 116: 1807: 5620:"A topology framework for macromolecular complexes and condensates" 4983:
de Swaan Arons, J.; Diepen, G. A. M. (1966). "Gas—Gas Equilibria".
4050:"Controlling compartmentalization by non-membrane-bound organelles" 3911: 3898: 1521: 1477:
regimes) of condensates can be tuned to design novel condensates.
1144: 1083: 1061: 898: 727: 591: 300: 249: 141: 101: 24: 7204:"What lava lamps and vinaigrette can teach us about cell biology" 4827:. Methods in Enzymology. Vol. 611. Elsevier. pp. 1–30. 2411:"Cataract as a protein condensation disease: the Proctor Lecture" 2345:
Broide ML, Berland CR, Pande J, Ogun OO, Benedek GB (July 1991).
203:
as a driving force in cellular organisation appealed strongly to
5403:"Designer Condensates: A Toolkit for the Biomolecular Architect" 1535: 1235: 1160: 1132: 1102: 1069: 862: 7118:"Biomolecular condensates: organizers of cellular biochemistry" 6457: 6455: 6453: 6182: 6180: 3993:"Biomolecular condensates: organizers of cellular biochemistry" 279:
that form within mammary gland cells before secretion as milk.
6054: 6052: 6050: 6048: 2668:. Cambridge, England: Royal Society of Chemistry. March 2008. 1229: 1180: 1057: 988: 866: 535: 396: 146:
Glycogen granules in Spermiogenesis in Pleurogenidae (Digenea)
74: 62: 3850:"Coexisting Liquid Phases Underlie Nucleolar Subcompartments" 2917: 2915: 2913: 5267:"Are aberrant phase transitions a driver of cellular aging?" 3577:
Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM (January 2008).
2869: 2867: 2571:, Windle AH, Hanna S (1993). "Liquid Crystalline Polymers". 2278: 2276: 1593:
activity of specific proteins with a high level of control.
861:
are surrounded by a lipid monolayer in the cytoplasm, or in
558:
of the cell cycle or protein condensation of crystallins in
6527:
Tesei, Giulio; Lindorff-Larsen, Kresten (17 January 2023).
6387: 6385: 4547:"Regulation of Transmembrane Signaling by Phase Separation" 4150:"Cross-β Polymerization of Low Complexity Sequence Domains" 5218:"Liquid phase condensation in cell physiology and disease" 2347:"Binary-liquid phase separation of lens protein solutions" 857:
are not considered biomolecular condensates. In addition,
4774:
McSwiggen DT, Mir M, Darzacq X, Tjian R (December 2019).
4342: 4340: 489:" refers to biological polymers (as opposed to synthetic 222:
in Russian in 1924 (published in English in 1936) and by
16:
Class of membrane-less organelles within biological cells
2644:. Cambridge, England: Royal Society of Chemistry. 1997. 1781:
Proceedings of the American Academy of Arts and Sciences
1504:
domains fused to IDRs. Upon irradiation with a specific
6114: 6112: 4901:"Protein Phase Separation: A New Phase in Cell Biology" 3372: 3370: 3266:
Microcompartmentation and Phase Separation in Cytoplasm
3217:
Microcompartmentation and Phase Separation in Cytoplasm
3202:
Microcompartmentation and Phase Separation in Cytoplasm
1779:
Farlow, William G. (1890). "Karl Wilhelm von Naegeli".
1465:. By modifying the sticker-spacer framework, i.e. the 447:'. During this time period (1995-2008) the concept of 371:
to describe the higher-order association behaviour of
363:, even though they can display similar clustering and 234:' (after de Jong) – particles composed of two or more 230:
organic substances", and which Oparin referred to as '
5450:
Tejedor, R.; Garaizar, A.; Ramı, J. (December 2021).
2822: 2820: 1353: 1007:, of which biomolecular condensates are one example: 411:
which were variously referred to as 'puncta/dots', '
6244: 6242: 5659: 5657: 5655: 4637:Patterson M, Vogel HJ, Prenner EJ (February 2016). 2762: 2760: 1559:. One way this is accomplished is by modifying the 7116:Banani SF, Lee HO, Hyman AA, Rosen MK (May 2017). 4643:Biochimica et Biophysica Acta (BBA) - Biomembranes 3991:Banani SF, Lee HO, Hyman AA, Rosen MK (May 2017). 3200:Walter H, Brooks D, Srere P, eds. (October 1999). 2504:International Journal of Biological Macromolecules 1365: 1344:also show liquid-like behaviour, with an apparent 29:Formation and examples of membraneless organelles 2415:Investigative Ophthalmology & Visual Science 1690:List of liquid–liquid phase separation databases 975:in living organisms, as opposed to liquid–solid 895:Liquid–liquid phase separation (LLPS) in biology 674:such as pigment granules or cytoplasmic crystals 7173:Annual Review of Cell and Developmental Biology 6981:Latham, Andrew P.; Zhang, Bin (February 2022). 6320:Proceedings of the National Academy of Sciences 5857:Proceedings of the National Academy of Sciences 5546: 5544: 4739:Annual Review of Cell and Developmental Biology 1424:Synthetic condensates are an important tool in 1381:Liquid–liquid phase separation in human disease 7073:Ditlev JA, Case LB, Rosen MK (November 2018). 6249:Latham, Andrew P.; Zhang, Bin (7 April 2021). 3087: 3085: 1675:Mechanical analysis of bimolecular condensates 580:(including cross-beta polymerisation), and/or 4733:Hyman AA, Weber CA, JĂĽlicher F (2014-10-11). 4683:"Optogenetic tools light up phase separation" 4246:Nakano A, Trie R, Tateishi K (January 1997). 3204:. Vol. 192 (1 ed.). Academic Press. 2620:. Cambridge, UK: Cambridge University Press. 8: 6586:Mittag, Tanja; Pappu, Rohit V. (June 2022). 3014: 3012: 359:should be distinguished from other types of 7169:"Liquid–liquid phase separation in biology" 5401:Hastings, R.L.; Boeynaems, S. (June 2021). 4735:"Liquid–liquid phase separation in biology" 4676: 4674: 4252:Bioscience, Biotechnology, and Biochemistry 3486: 3484: 3482: 3441:Theoretical Biology & Medical Modelling 2404: 2402: 2400: 317:lab in Cambridge extensively characterised 294:in solution, which Benedek referred to as ' 6468:Journal of Chemical Theory and Computation 6255:Journal of Chemical Theory and Computation 5792:Journal of Chemical Theory and Computation 5533: 5531: 4950:Recueil des Travaux Chimiques des Pays-Bas 4154:Cold Spring Harbor Perspectives in Biology 1612:fluorescence recovery after photobleaching 1449:separated by "spacers", which provide the 1328:fluorescence recovery after photobleaching 391:at the end of the 20th century identified 218:theory of the origin of life, proposed by 7227: 7184: 7141: 7098: 7014: 6957: 6892: 6857:Nature Structural & Molecular Biology 6775: 6684: 6619: 6562: 6544: 6503: 6433: 6365: 6339: 6290: 6160: 6092: 6028: 6010: 5969: 5951: 5902: 5876: 5827: 5746: 5705: 5643: 5594: 5483: 5418: 5377: 5367: 5342:Choi, J.M.; Dar, F.; Pappu, R.V. (2019). 5290: 5233: 5149: 5104: 5094: 5045: 5035: 4924: 4799: 4750: 4698: 4654: 4570: 4545:Case LB, Ditlev JA, Rosen MK (May 2019). 4513: 4463: 4376: 4320: 4263: 4214: 4173: 4124: 4114: 4073: 4016: 3962: 3910: 3873: 3821: 3780: 3731: 3666: 3610: 3462: 3452: 3326: 3168: 2876:Nature Structural & Molecular Biology 2792: 2732: 2600: 2380: 2370: 2318: 2308: 2256: 2246: 2118: 2015: 1966: 1878: 1755: 1538:, which bind specific genomic loci. When 1352: 207:, who wrote in his influential 1911 book 114:was developed from his detailed study of 5216:Shin Y, Brangwynne CP (September 2017). 2767:Cliffe A, Hamada F, Bienz M (May 2003). 1485:of biomolecular condensates is by using 1009: 688:or mutant Haemoglobin S (HbS) fibres in 546:within cells as well as liquid-to-solid 7167:Hyman AA, Weber CA, JĂĽlicher F (2014). 1701: 1455:Intrinsically Disordered Regions (IDRs) 1444:Despite the dynamic nature and lack of 1265:In biology, the most relevant forms of 258:When cell biologists largely abandoned 7122:Nature Reviews. Molecular Cell Biology 3997:Nature Reviews. Molecular Cell Biology 774:Plasma membrane associated condensates 190:with phase separation in his study of 7186:10.1146/annurev-cellbio-100913-013325 6987:Current Opinion in Structural Biology 6657:Current Opinion in Structural Biology 5569:Ganser, Laura R.; Myong, Sua (2020). 4752:10.1146/annurev-cellbio-100913-013325 4563:10.1146/annurev-biophys-052118-115534 3986: 3984: 3982: 3924: 3922: 3636: 3634: 3632: 3630: 2103:"Models for casein micelle formation" 1012: 7: 6708:Ghosh, Soumyadeep (April 28, 2023). 5265:Alberti S, Hyman AA (October 2016). 4444:Wiley Interdisciplinary Reviews. RNA 3542:: 21–34, discussion 105–28, 419–20. 1709: 1707: 1705: 6801:The Journal of Physical Chemistry B 6189:The Journal of Physical Chemistry B 5735:The Journal of Physical Chemistry B 5024:The Journal of Biological Chemistry 2642:Starch: structure and functionality 2616:Windle, A.H.; Donald, A.D. (1992). 1943:"Colloidal solution. The globulins" 766:Other nuclear structures including 4148:Kato M, McKnight SL (March 2017). 3143:Walter H, Brooks DE (March 1995). 1996:Proceedings of the Royal Society A 1585:via a photocleavable linker. Upon 1572:specific proteins to condensates, 1419:cellular organization and function 1405:biomolecular condensates, such as 1393:Synthetic biomolecular condensates 792:Secreted extracellular condensates 14: 4825:Intrinsically Disordered Proteins 4048:Wheeler RJ, Hyman AA (May 2018). 2690:"The Nobel Prize in Physics 1991" 2120:10.3168/jds.S0022-0302(73)85335-4 1248:gel-like biomolecular condensates 1042:Helium and xenon are known to be 578:intrinsically disordered proteins 508:typically refers to a gas–liquid 138:Colloidal phase separation theory 3056:Biochemical Society Transactions 1576:can be concentrated to increase 1417:, which are essential to normal 1397:Biomolecular condensates can be 336:of plant cells, which behave as 178:described the morphology of the 4596:The Journal of Chemical Physics 4405:Current Opinion in Cell Biology 3315:The Journal of Chemical Physics 1626:Coarse-grained molecular models 1165:liquid biomolecular condensates 908:Liquid biomolecular condensates 816:'micelles' of the mammary gland 530:within cells, and liquid–solid 186:linked formation of biological 6546:10.12688/openreseurope.14967.2 5575:Trends in Biochemical Sciences 4866:Trends in Biochemical Sciences 3021:Trends in Biochemical Sciences 1959:10.1113/jphysiol.1905.sp001126 1871:10.1113/jphysiol.1899.sp000755 1500:which contain light-activated 1292:) formed by components of the 1283:liquid biomolecular condensate 1201:solid biomolecular condensates 1092:atmospheric particulate matter 916:(LLPS) generates a subtype of 841:are not considered condensates 837:Lipid-enclosed organelles and 459:and proposed to underlie both 246:Support from other disciplines 176:Thomas Harrison Montgomery Jr. 1: 3274:10.1016/S0074-7696(08)60533-1 3225:10.1016/S0074-7696(08)60532-X 2794:10.1016/S0960-9822(03)00370-1 2489:10.1016/S0008-6215(98)00079-2 2454:10.1016/s0008-6215(00)00098-7 2409:Benedek GB (September 1997). 2101:Farrell HM (September 1973). 1808:"The Structure of Protoplasm" 150:The concept of intracellular 7079:Journal of Molecular Biology 6604:10.1016/j.molcel.2022.05.018 6065:Nature Computational Science 5953:10.1371/journal.pcbi.1005941 5407:Journal of Molecular Biology 5369:10.1371/journal.pcbi.1007028 4656:10.1016/j.bbamem.2015.11.025 4369:10.1016/j.devcel.2019.01.025 3773:10.1016/j.molcel.2015.01.013 3170:10.1016/0014-5793(95)00159-7 2516:10.1016/0141-8130(96)81838-1 2084:Proc. K. Ned. Akad. Wet 1929 1597:Methods to study condensates 1366:{\displaystyle \eta \sim 10} 1195:, fibres/fibrils/filaments, 787:, or other membrane domains. 242:on proteinoid microspheres. 5682:10.1021/acs.chemrev.2c00586 4551:Annual Review of Biophysics 4166:10.1101/cshperspect.a023598 3603:10.1529/biophysj.107.116152 2618:Liquid crystalline polymers 2147:Investigative Ophthalmology 1671:widen their applicability. 1040:No such colloids are known. 708:It can also be argued that 375:in modern cell biology and 7274: 7229:10.1038/d41586-018-03070-2 6942:10.1038/s41467-021-23090-3 6869:10.1038/s41594-022-00760-4 6418:10.1038/s41467-022-35370-7 6077:10.1038/s43588-021-00155-3 5932:PLOS Computational Biology 5587:10.1016/j.tibs.2020.05.011 5348:PLOS Computational Biology 4878:10.1016/j.tibs.2017.11.005 4833:10.1016/bs.mie.2018.09.035 4506:10.1016/j.cell.2021.06.009 4305:10.1038/s41556-021-00641-w 4216:10.1016/j.cell.2020.07.037 3866:10.1016/j.cell.2016.04.047 3823:10.1016/j.cell.2015.07.047 3033:10.1016/j.tibs.2014.08.006 2707:de Gennes PG (July 2001). 1941:Hardy WB (December 1905). 1740:10.1038/s41598-022-08130-2 1387:neurodegenerative diseases 1046:under certain conditions. 732:Formation and examples of 383:Phase separation revisited 18: 7091:10.1016/j.jmb.2018.08.003 6999:10.1016/j.sbi.2021.08.006 6669:10.1016/j.sbi.2020.09.004 5645:10.1007/s12274-022-4355-x 5476:10.1016/j.bpj.2021.11.003 5420:10.1016/j.jmb.2021.166837 5195:10.1016/j.tcb.2016.03.004 5142:10.1038/s41589-020-0576-z 4917:10.1016/j.tcb.2018.02.004 4700:10.1038/s41592-019-0310-5 4417:10.1016/j.ceb.2017.10.008 4116:10.3390/molecules25204705 1947:The Journal of Physiology 1859:The Journal of Physiology 1832:10.1126/science.10.237.33 1661:saturation concentrations 1031: 1015: 903:Biomolecular partitioning 699:supramolecular assemblies 6813:10.1021/acs.jpcb.2c00424 6480:10.1021/acs.jctc.2c00856 6267:10.1021/acs.jctc.0c01220 6201:10.1021/acs.jpcb.0c11479 5804:10.1021/acs.jctc.0c01064 5748:10.1021/acs.jpcb.0c06288 4962:10.1002/recl.19630820810 4681:Tang L (February 2019). 3435:Iborra FJ (April 2007). 2555:10.1002/star.19930451202 2537:Jenkins PJ, Cameron RE, 2107:Journal of Dairy Science 957:biomolecular condensates 309:In the 1980s and 1990s, 174:. Around the same time, 39:biomolecular condensates 7202:Dolgin E (March 2018). 6710:"Scaffolds and Clients" 6341:10.1073/pnas.2111696118 5878:10.1073/pnas.1917569117 5235:10.1126/science.aaf4382 5130:Nature Chemical Biology 5096:10.1073/pnas.1504822112 5037:10.1074/jbc.M111.313049 4780:Genes & Development 4722:(subscription required) 4197:Bienz M (August 2020). 3668:10.1126/science.1172046 3114:10.1126/science.1152241 2987:10.1126/science.1137065 2924:Journal of Cell Science 2830:Journal of Cell Science 2372:10.1073/pnas.88.13.5660 2310:10.1073/pnas.84.20.7079 2033:"The Mechanism of Life" 1920:10.1002/jmor.1050150204 1806:Wilson EB (July 1899). 1659:of isolated chains and 1635:Monte Carlo simulations 1608:fluorescence microscopy 1551:As biochemical reactors 615:Cytoplasmic condensates 487:biomolecular condensate 485:The newly coined term " 377:molecular self-assembly 345:Pierre-Gilles de Gennes 110:The micellar theory of 106:Starch granules of corn 6740:Nucleic Acids Research 5283:10.1002/bies.201600042 5183:Trends in Cell Biology 4905:Trends in Cell Biology 4792:10.1101/gad.331520.119 4066:10.1098/rstb.2017.0193 3454:10.1186/1742-4682-4-15 2248:10.1073/pnas.76.9.4414 2197:10.1126/science.887936 2017:10.1098/rspa.1912.0053 1651:dynamics simulations. 1367: 1337:Caenorhabditis elegans 1323:Caenorhabditis elegans 904: 736: 710:cytoskeletal filaments 672:cytoplasmic inclusions 600: 467:compartmentalization. 306: 255: 147: 107: 30: 21:Cytoplasmic inclusions 6922:Nature Communications 6398:Nature Communications 4500:(16): 4284–4298.e27. 2709:"Ultradivided matter" 2477:Carbohydrate Research 2442:Carbohydrate Research 1908:Journal of Morphology 1902:Montgomery T (1898). 1853:Hardy WB (May 1899). 1668:multi-domain proteins 1648:hydrophobicity scales 1457:that act as "sticky" 1368: 1294:Wnt signaling pathway 902: 731: 703:Wnt signaling pathway 595: 451:was re-borrowed from 304: 296:protein condensation' 253: 209:The Mechanism of Life 160:Edmund Beecher Wilson 145: 105: 28: 6752:10.1093/nar/gkaa1099 6714:CD-CODE Encyclopedia 6533:Open Research Europe 4786:(23–24): 1619–1634. 2066:"The Origin of Life" 2048:"The Origin of Life" 1563:networks to include 1351: 1149:biological membranes 761:Synaptonemal complex 7220:2018Natur.555..300D 6934:2021NatCo..12.2883F 6746:(22): 12593–12603. 6410:2022NatCo..13.7722F 6332:2021PNAS..11811696T 6012:10.7554/eLife.31486 5944:2018PLSCB..14E5941D 5869:2020PNAS..11713238E 5863:(24): 13238–13247. 5636:2022NaRes..15.9809H 5468:2021BpJ...120.5169T 5456:Biophysical Journal 5360:2019PLSCB..15E7028C 5087:2015PNAS..112.7189E 4997:1966JChPh..44.2322D 4608:1997JChPh.107.1953M 4293:Nature Cell Biology 4265:10.1271/bbb.61.2063 4060:(1747): 4666–4684. 3955:10.1038/nature10879 3947:2012Natur.483..336L 3724:10.1038/nature22822 3716:2017Natur.547..236L 3659:2009Sci...324.1729B 3595:2008BpJ....94..570D 3583:Biophysical Journal 3548:2008FaDi..139...21S 3536:Faraday Discussions 3505:2007SMat....3..680S 3406:10.1038/nature03109 3398:2004Natur.432..492S 3337:1999JChPh.111.4800S 3161:1995FEBSL.361..135W 3106:2008Sci...320..103A 2979:2007Sci...316.1619B 2785:2003CBio...13..960C 2725:2001Natur.412..385D 2694:/www.nobelprize.org 2585:1993PhT....46k..87D 2363:1991PNAS...88.5660B 2301:1987PNAS...84.7079T 2239:1979PNAS...76.4414I 2189:1977Sci...197.1010T 2008:1912RSPSA..86..610H 1824:1899Sci....10...33W 1732:2022NatSR..12.4390G 1644:Debye–HĂĽckel theory 1614:(FRAP), as well as 1506:wavelength of light 1446:binding specificity 1312:, and human cells. 724:Nuclear condensates 690:sickle cell disease 682:protein aggregation 636:Germline P-granules 453:colloidal chemistry 389:confocal microscopy 286:proteins from lens 7134:10.1038/nrm.2017.7 5228:(6357): eaaf4382. 4357:Developmental Cell 4009:10.1038/nrm.2017.7 3068:10.1042/bst0300963 2936:10.1242/jcs.002956 2930:(Pt 14): 2402–12. 2836:(Pt 22): 5269–77. 1720:Scientific Reports 1631:Molecular dynamics 1494:protein expression 1440:Design and control 1434:therapeutic agents 1363: 905: 737: 601: 307: 256: 162:who described the 156:William Bate Hardy 148: 108: 31: 7214:(7696): 300–302. 7085:(23): 4666–4684. 6807:(12): 2407–2419. 6598:(12): 2201–2214. 6195:(16): 4046–4056. 5741:(41): 9009–9016. 5676:(14): 8988–9009. 5630:(11): 9809–9817. 5581:(11): 1004–1005. 5462:(23): 5169–5186. 5005:10.1063/1.1727043 4842:978-0-12-815649-0 4456:10.1002/wrna.1599 4351:(February 2019). 3710:(7662): 236–240. 3653:(5935): 1729–32. 3321:(10): 4800–4806. 2973:(5831): 1619–22. 2842:10.1242/jcs.02646 2675:978-0-85404-120-6 2651:978-0-85404-742-0 2627:978-0-521-30666-9 2593:10.1063/1.2809100 1990:Hardy WB (1912). 1657:radii of gyration 1426:synthetic biology 1263: 1262: 650:Glycogen granules 571:self-organisation 548:phase transitions 472:phase transitions 319:phase transitions 7263: 7241: 7231: 7198: 7188: 7163: 7145: 7112: 7102: 7059: 7053: 7047: 7044: 7038: 7035: 7029: 7028: 7018: 6978: 6972: 6971: 6961: 6913: 6907: 6906: 6896: 6847: 6841: 6840: 6796: 6790: 6789: 6779: 6731: 6725: 6724: 6722: 6720: 6705: 6699: 6698: 6688: 6648: 6642: 6641: 6623: 6583: 6577: 6576: 6566: 6548: 6524: 6518: 6517: 6507: 6459: 6448: 6447: 6437: 6389: 6380: 6379: 6369: 6343: 6311: 6305: 6304: 6294: 6261:(5): 3134–3144. 6246: 6237: 6236: 6184: 6175: 6174: 6164: 6137:10.1002/pro.4094 6131:(7): 1371–1379. 6116: 6107: 6106: 6096: 6056: 6043: 6042: 6032: 6014: 5990: 5984: 5983: 5973: 5955: 5923: 5917: 5916: 5906: 5880: 5848: 5842: 5841: 5831: 5783: 5777: 5776: 5750: 5726: 5720: 5719: 5709: 5670:Chemical Reviews 5661: 5650: 5649: 5647: 5615: 5609: 5608: 5598: 5566: 5560: 5557: 5551: 5548: 5539: 5535: 5526: 5523: 5517: 5513: 5507: 5504: 5498: 5497: 5487: 5447: 5441: 5440: 5422: 5398: 5392: 5391: 5381: 5371: 5354:(10): e1007028. 5339: 5333: 5330: 5324: 5320: 5314: 5311: 5305: 5304: 5294: 5262: 5256: 5255: 5237: 5213: 5207: 5206: 5178: 5172: 5171: 5153: 5125: 5119: 5118: 5108: 5098: 5066: 5060: 5059: 5049: 5039: 5015: 5009: 5008: 4980: 4974: 4973: 4945: 4939: 4938: 4928: 4896: 4890: 4889: 4861: 4855: 4854: 4820: 4814: 4813: 4803: 4771: 4765: 4764: 4754: 4730: 4724: 4723: 4720: 4702: 4678: 4669: 4668: 4658: 4634: 4628: 4627: 4616:10.1063/1.474547 4602:(6): 1953–1962. 4591: 4585: 4584: 4574: 4542: 4536: 4535: 4517: 4484: 4478: 4477: 4467: 4435: 4429: 4428: 4400: 4391: 4390: 4380: 4344: 4335: 4334: 4324: 4284: 4278: 4277: 4267: 4243: 4237: 4236: 4218: 4194: 4188: 4187: 4177: 4145: 4139: 4138: 4128: 4118: 4094: 4088: 4087: 4077: 4045: 4039: 4038: 4020: 3988: 3977: 3976: 3966: 3941:(7389): 336–40. 3926: 3917: 3916: 3914: 3894: 3888: 3887: 3877: 3860:(7): 1686–1697. 3845: 3836: 3835: 3825: 3801: 3795: 3794: 3784: 3752: 3746: 3745: 3735: 3695: 3689: 3688: 3670: 3638: 3625: 3624: 3614: 3574: 3568: 3567: 3556:10.1039/b713076g 3531: 3525: 3524: 3513:10.1039/b618126k 3488: 3477: 3476: 3466: 3456: 3432: 3426: 3425: 3383: 3374: 3365: 3364: 3345:10.1063/1.479243 3330: 3328:cond-mat/9904426 3310: 3304: 3303: 3261: 3255: 3254: 3212: 3206: 3205: 3197: 3191: 3190: 3172: 3140: 3134: 3133: 3089: 3080: 3079: 3051: 3045: 3044: 3016: 3007: 3006: 2962: 2956: 2955: 2919: 2908: 2907: 2888:10.1038/nsmb1247 2871: 2862: 2861: 2824: 2815: 2814: 2796: 2764: 2755: 2754: 2736: 2734:10.1038/35086662 2704: 2698: 2697: 2686: 2680: 2679: 2662: 2656: 2655: 2638: 2632: 2631: 2613: 2607: 2606: 2604: 2602:2060/19900017655 2565: 2559: 2558: 2534: 2528: 2527: 2499: 2493: 2492: 2472: 2466: 2465: 2437: 2431: 2430: 2406: 2395: 2394: 2384: 2374: 2342: 2333: 2332: 2322: 2312: 2280: 2271: 2270: 2260: 2250: 2218: 2209: 2208: 2183:(4307): 1010–2. 2172: 2163: 2162: 2142: 2133: 2132: 2122: 2098: 2092: 2091: 2079: 2073: 2072: 2070: 2061: 2055: 2054: 2052: 2043: 2037: 2036: 2031:Leduc S (1911). 2028: 2022: 2021: 2019: 2002:(591): 610–635. 1987: 1981: 1980: 1970: 1953:(4–5): 251–337. 1938: 1932: 1931: 1899: 1893: 1892: 1882: 1865:(2): 158–210.1. 1850: 1844: 1843: 1803: 1797: 1796: 1776: 1770: 1769: 1759: 1711: 1620:circuit topology 1583:scaffold protein 1372: 1370: 1369: 1364: 1267:phase separation 1016:Dispersed phase 1010: 977:phase separation 962:phase separation 932:phase separation 914:phase separation 878:phase separation 552:DNA condensation 532:phase separation 517:phase separation 510:phase transition 476:phase separation 449:phase separation 365:phase separation 323:phase separation 284:gamma-crystallin 270:phase separation 220:Alexander Oparin 201:phase separation 55:phase separation 7273: 7272: 7266: 7265: 7264: 7262: 7261: 7260: 7246: 7245: 7244: 7201: 7166: 7115: 7072: 7068: 7066:Further reading 7063: 7062: 7054: 7050: 7045: 7041: 7036: 7032: 6980: 6979: 6975: 6915: 6914: 6910: 6849: 6848: 6844: 6798: 6797: 6793: 6733: 6732: 6728: 6718: 6716: 6707: 6706: 6702: 6650: 6649: 6645: 6585: 6584: 6580: 6526: 6525: 6521: 6461: 6460: 6451: 6391: 6390: 6383: 6313: 6312: 6308: 6248: 6247: 6240: 6186: 6185: 6178: 6125:Protein Science 6118: 6117: 6110: 6071:(11): 732–743. 6058: 6057: 6046: 5992: 5991: 5987: 5938:(1): e1005941. 5925: 5924: 5920: 5850: 5849: 5845: 5785: 5784: 5780: 5728: 5727: 5723: 5663: 5662: 5653: 5617: 5616: 5612: 5568: 5567: 5563: 5558: 5554: 5549: 5542: 5536: 5529: 5524: 5520: 5514: 5510: 5505: 5501: 5449: 5448: 5444: 5400: 5399: 5395: 5341: 5340: 5336: 5331: 5327: 5321: 5317: 5312: 5308: 5264: 5263: 5259: 5215: 5214: 5210: 5180: 5179: 5175: 5127: 5126: 5122: 5081:(23): 7189–94. 5068: 5067: 5063: 5017: 5016: 5012: 4982: 4981: 4977: 4947: 4946: 4942: 4898: 4897: 4893: 4863: 4862: 4858: 4843: 4822: 4821: 4817: 4773: 4772: 4768: 4732: 4731: 4727: 4721: 4680: 4679: 4672: 4636: 4635: 4631: 4593: 4592: 4588: 4544: 4543: 4539: 4486: 4485: 4481: 4437: 4436: 4432: 4402: 4401: 4394: 4346: 4345: 4338: 4286: 4285: 4281: 4245: 4244: 4240: 4196: 4195: 4191: 4147: 4146: 4142: 4096: 4095: 4091: 4047: 4046: 4042: 3990: 3989: 3980: 3928: 3927: 3920: 3896: 3895: 3891: 3847: 3846: 3839: 3803: 3802: 3798: 3754: 3753: 3749: 3697: 3696: 3692: 3640: 3639: 3628: 3576: 3575: 3571: 3533: 3532: 3528: 3490: 3489: 3480: 3434: 3433: 3429: 3392:(7016): 492–5. 3381: 3376: 3375: 3368: 3312: 3311: 3307: 3284: 3263: 3262: 3258: 3235: 3214: 3213: 3209: 3199: 3198: 3194: 3142: 3141: 3137: 3100:(5872): 103–6. 3091: 3090: 3083: 3062:(Pt 6): 963–9. 3053: 3052: 3048: 3018: 3017: 3010: 2964: 2963: 2959: 2921: 2920: 2911: 2873: 2872: 2865: 2826: 2825: 2818: 2773:Current Biology 2766: 2765: 2758: 2706: 2705: 2701: 2688: 2687: 2683: 2676: 2664: 2663: 2659: 2652: 2640: 2639: 2635: 2628: 2615: 2614: 2610: 2567: 2566: 2562: 2543:Starch - Stärke 2536: 2535: 2531: 2501: 2500: 2496: 2474: 2473: 2469: 2439: 2438: 2434: 2421:(10): 1911–21. 2408: 2407: 2398: 2344: 2343: 2336: 2295:(20): 7079–83. 2282: 2281: 2274: 2220: 2219: 2212: 2174: 2173: 2166: 2144: 2143: 2136: 2113:(9): 1195–206. 2100: 2099: 2095: 2081: 2080: 2076: 2068: 2063: 2062: 2058: 2050: 2045: 2044: 2040: 2030: 2029: 2025: 1989: 1988: 1984: 1940: 1939: 1935: 1901: 1900: 1896: 1852: 1851: 1847: 1805: 1804: 1800: 1778: 1777: 1773: 1713: 1712: 1703: 1698: 1686: 1677: 1628: 1599: 1553: 1540:oligomerization 1532:genomic regions 1502:oligomerization 1442: 1415:stress granules 1395: 1383: 1349: 1348: 1318: 1279: 1258:cranberry glass 1255: 1233: 1213: 1178: 1130: 1106: 1081: 1055: 1041: 1033: 973:liquid crystals 964:(LLPS) to form 937:liquid crystals 910: 897: 843: 803:colloid nodules 794: 785:tight junctions 776: 768:heterochromatin 746:Nuclear speckle 726: 686:amyloid fibrils 645:Starch granules 617: 590: 582:protein domains 528:liquid crystals 493:) that undergo 457:polymer physics 385: 338:liquid crystals 315:polymer physics 272:model for milk 254:Micelle caseine 248: 216:primordial soup 140: 100: 98:Micellar theory 95: 79:liquid crystals 41:are a class of 23: 17: 12: 11: 5: 7271: 7270: 7267: 7259: 7258: 7248: 7247: 7243: 7242: 7199: 7164: 7128:(5): 285–298. 7113: 7069: 7067: 7064: 7061: 7060: 7048: 7039: 7030: 6973: 6908: 6863:(5): 463–471. 6842: 6791: 6726: 6700: 6643: 6592:Molecular Cell 6578: 6519: 6474:(2): 669–678. 6449: 6381: 6306: 6238: 6176: 6108: 6044: 5985: 5918: 5843: 5798:(1): 525–537. 5778: 5721: 5651: 5610: 5561: 5552: 5540: 5527: 5518: 5508: 5499: 5442: 5413:(12): 166837. 5393: 5334: 5325: 5315: 5306: 5277:(10): 959–68. 5257: 5208: 5189:(7): 547–558. 5173: 5136:(9): 939–945. 5120: 5061: 5030:(5): 3479–84. 5010: 4975: 4940: 4911:(6): 420–435. 4891: 4856: 4841: 4815: 4766: 4725: 4687:Nature Methods 4670: 4629: 4586: 4557:(1): 465–494. 4537: 4479: 4430: 4392: 4363:(4): 429–444. 4336: 4299:(3): 257–267. 4279: 4258:(12): 2063–8. 4238: 4209:(4): 799–811. 4189: 4160:(3): a023598. 4140: 4089: 4040: 4003:(5): 285–298. 3978: 3918: 3912:10.1101/809210 3889: 3837: 3816:(5): 1066–77. 3796: 3767:(5): 936–947. 3761:Molecular Cell 3747: 3690: 3626: 3569: 3526: 3499:(6): 680–684. 3478: 3427: 3366: 3305: 3282: 3256: 3233: 3207: 3192: 3155:(2–3): 135–9. 3135: 3081: 3046: 3027:(10): 487–95. 3008: 2957: 2909: 2863: 2816: 2756: 2699: 2681: 2674: 2657: 2650: 2633: 2626: 2608: 2560: 2529: 2494: 2467: 2432: 2396: 2357:(13): 5660–4. 2334: 2272: 2210: 2164: 2134: 2093: 2074: 2056: 2038: 2023: 1982: 1933: 1914:(1): 265–582. 1894: 1845: 1818:(237): 33–45. 1798: 1771: 1700: 1699: 1697: 1694: 1693: 1692: 1685: 1682: 1676: 1673: 1627: 1624: 1598: 1595: 1578:reaction rates 1552: 1549: 1451:conformational 1441: 1438: 1432:platforms and 1394: 1391: 1382: 1379: 1362: 1359: 1356: 1340:protein LAF-1 1317: 1314: 1278: 1277:Wnt signalling 1275: 1261: 1260: 1250: 1226: 1208: 1204: 1203: 1167: 1127:Liquid crystal 1119: 1099: 1095: 1094: 1076: 1047: 1038: 1035: 1029: 1028: 1025: 1022: 1018: 1017: 1014: 950:liquid crystal 912:Liquid–liquid 909: 906: 896: 893: 889:liquid crystal 859:lipid droplets 853:enclosed by a 842: 835: 834: 833: 827: 817: 810: 793: 790: 789: 788: 775: 772: 764: 763: 758: 753: 748: 743: 734:nuclear bodies 725: 722: 721: 720: 717: 713: 706: 697:, such as the 692: 678: 675: 668: 664:formation and 659: 652: 647: 642: 633: 628: 626:Stress granule 623: 616: 613: 597:Stress granule 589: 586: 384: 381: 247: 244: 224:J.B.S. Haldane 205:Stephane Leduc 166:(then called ' 139: 136: 99: 96: 94: 91: 89:within cells. 15: 13: 10: 9: 6: 4: 3: 2: 7269: 7268: 7257: 7254: 7253: 7251: 7239: 7235: 7230: 7225: 7221: 7217: 7213: 7209: 7205: 7200: 7196: 7192: 7187: 7182: 7178: 7174: 7170: 7165: 7161: 7157: 7153: 7149: 7144: 7139: 7135: 7131: 7127: 7123: 7119: 7114: 7110: 7106: 7101: 7096: 7092: 7088: 7084: 7080: 7076: 7071: 7070: 7065: 7058: 7052: 7049: 7043: 7040: 7034: 7031: 7026: 7022: 7017: 7012: 7008: 7004: 7000: 6996: 6992: 6988: 6984: 6977: 6974: 6969: 6965: 6960: 6955: 6951: 6947: 6943: 6939: 6935: 6931: 6927: 6923: 6919: 6912: 6909: 6904: 6900: 6895: 6890: 6886: 6882: 6878: 6874: 6870: 6866: 6862: 6858: 6854: 6846: 6843: 6838: 6834: 6830: 6826: 6822: 6818: 6814: 6810: 6806: 6802: 6795: 6792: 6787: 6783: 6778: 6773: 6769: 6765: 6761: 6757: 6753: 6749: 6745: 6741: 6737: 6730: 6727: 6715: 6711: 6704: 6701: 6696: 6692: 6687: 6682: 6678: 6674: 6670: 6666: 6662: 6658: 6654: 6647: 6644: 6639: 6635: 6631: 6627: 6622: 6617: 6613: 6609: 6605: 6601: 6597: 6593: 6589: 6582: 6579: 6574: 6570: 6565: 6560: 6556: 6552: 6547: 6542: 6538: 6534: 6530: 6523: 6520: 6515: 6511: 6506: 6501: 6497: 6493: 6489: 6485: 6481: 6477: 6473: 6469: 6465: 6458: 6456: 6454: 6450: 6445: 6441: 6436: 6431: 6427: 6423: 6419: 6415: 6411: 6407: 6403: 6399: 6395: 6388: 6386: 6382: 6377: 6373: 6368: 6363: 6359: 6355: 6351: 6347: 6342: 6337: 6333: 6329: 6325: 6321: 6317: 6310: 6307: 6302: 6298: 6293: 6288: 6284: 6280: 6276: 6272: 6268: 6264: 6260: 6256: 6252: 6245: 6243: 6239: 6234: 6230: 6226: 6222: 6218: 6214: 6210: 6206: 6202: 6198: 6194: 6190: 6183: 6181: 6177: 6172: 6168: 6163: 6158: 6154: 6150: 6146: 6142: 6138: 6134: 6130: 6126: 6122: 6115: 6113: 6109: 6104: 6100: 6095: 6090: 6086: 6082: 6078: 6074: 6070: 6066: 6062: 6055: 6053: 6051: 6049: 6045: 6040: 6036: 6031: 6026: 6022: 6018: 6013: 6008: 6004: 6000: 5996: 5989: 5986: 5981: 5977: 5972: 5967: 5963: 5959: 5954: 5949: 5945: 5941: 5937: 5933: 5929: 5922: 5919: 5914: 5910: 5905: 5900: 5896: 5892: 5888: 5884: 5879: 5874: 5870: 5866: 5862: 5858: 5854: 5847: 5844: 5839: 5835: 5830: 5825: 5821: 5817: 5813: 5809: 5805: 5801: 5797: 5793: 5789: 5782: 5779: 5774: 5770: 5766: 5762: 5758: 5754: 5749: 5744: 5740: 5736: 5732: 5725: 5722: 5717: 5713: 5708: 5703: 5699: 5695: 5691: 5687: 5683: 5679: 5675: 5671: 5667: 5660: 5658: 5656: 5652: 5646: 5641: 5637: 5633: 5629: 5625: 5624:Nano Research 5621: 5614: 5611: 5606: 5602: 5597: 5592: 5588: 5584: 5580: 5576: 5572: 5565: 5562: 5556: 5553: 5547: 5545: 5541: 5534: 5532: 5528: 5522: 5519: 5512: 5509: 5503: 5500: 5495: 5491: 5486: 5481: 5477: 5473: 5469: 5465: 5461: 5457: 5453: 5446: 5443: 5438: 5434: 5430: 5426: 5421: 5416: 5412: 5408: 5404: 5397: 5394: 5389: 5385: 5380: 5375: 5370: 5365: 5361: 5357: 5353: 5349: 5345: 5338: 5335: 5329: 5326: 5319: 5316: 5310: 5307: 5302: 5298: 5293: 5288: 5284: 5280: 5276: 5272: 5268: 5261: 5258: 5253: 5249: 5245: 5241: 5236: 5231: 5227: 5223: 5219: 5212: 5209: 5204: 5200: 5196: 5192: 5188: 5184: 5177: 5174: 5169: 5165: 5161: 5157: 5152: 5151:11573/1435875 5147: 5143: 5139: 5135: 5131: 5124: 5121: 5116: 5112: 5107: 5102: 5097: 5092: 5088: 5084: 5080: 5076: 5072: 5065: 5062: 5057: 5053: 5048: 5043: 5038: 5033: 5029: 5025: 5021: 5014: 5011: 5006: 5002: 4998: 4994: 4990: 4986: 4985:J. Chem. Phys 4979: 4976: 4971: 4967: 4963: 4959: 4955: 4951: 4944: 4941: 4936: 4932: 4927: 4922: 4918: 4914: 4910: 4906: 4902: 4895: 4892: 4887: 4883: 4879: 4875: 4871: 4867: 4860: 4857: 4852: 4848: 4844: 4838: 4834: 4830: 4826: 4819: 4816: 4811: 4807: 4802: 4797: 4793: 4789: 4785: 4781: 4777: 4770: 4767: 4762: 4758: 4753: 4748: 4744: 4740: 4736: 4729: 4726: 4718: 4714: 4710: 4706: 4701: 4696: 4692: 4688: 4684: 4677: 4675: 4671: 4666: 4662: 4657: 4652: 4649:(2): 403–14. 4648: 4644: 4640: 4633: 4630: 4625: 4621: 4617: 4613: 4609: 4605: 4601: 4597: 4590: 4587: 4582: 4578: 4573: 4568: 4564: 4560: 4556: 4552: 4548: 4541: 4538: 4533: 4529: 4525: 4521: 4516: 4511: 4507: 4503: 4499: 4495: 4491: 4483: 4480: 4475: 4471: 4466: 4461: 4457: 4453: 4449: 4445: 4441: 4434: 4431: 4426: 4422: 4418: 4414: 4410: 4406: 4399: 4397: 4393: 4388: 4384: 4379: 4374: 4370: 4366: 4362: 4358: 4354: 4350: 4347:Schaefer KN, 4343: 4341: 4337: 4332: 4328: 4323: 4318: 4314: 4310: 4306: 4302: 4298: 4294: 4290: 4283: 4280: 4275: 4271: 4266: 4261: 4257: 4253: 4249: 4242: 4239: 4234: 4230: 4226: 4222: 4217: 4212: 4208: 4204: 4200: 4193: 4190: 4185: 4181: 4176: 4171: 4167: 4163: 4159: 4155: 4151: 4144: 4141: 4136: 4132: 4127: 4122: 4117: 4112: 4108: 4104: 4100: 4093: 4090: 4085: 4081: 4076: 4071: 4067: 4063: 4059: 4055: 4051: 4044: 4041: 4036: 4032: 4028: 4024: 4019: 4014: 4010: 4006: 4002: 3998: 3994: 3987: 3985: 3983: 3979: 3974: 3970: 3965: 3960: 3956: 3952: 3948: 3944: 3940: 3936: 3932: 3925: 3923: 3919: 3913: 3908: 3904: 3900: 3893: 3890: 3885: 3881: 3876: 3871: 3867: 3863: 3859: 3855: 3851: 3844: 3842: 3838: 3833: 3829: 3824: 3819: 3815: 3811: 3807: 3800: 3797: 3792: 3788: 3783: 3778: 3774: 3770: 3766: 3762: 3758: 3751: 3748: 3743: 3739: 3734: 3729: 3725: 3721: 3717: 3713: 3709: 3705: 3701: 3694: 3691: 3686: 3682: 3678: 3674: 3669: 3664: 3660: 3656: 3652: 3648: 3644: 3637: 3635: 3633: 3631: 3627: 3622: 3618: 3613: 3608: 3604: 3600: 3596: 3592: 3589:(2): 570–83. 3588: 3584: 3580: 3573: 3570: 3565: 3561: 3557: 3553: 3549: 3545: 3541: 3537: 3530: 3527: 3522: 3518: 3514: 3510: 3506: 3502: 3498: 3494: 3487: 3485: 3483: 3479: 3474: 3470: 3465: 3460: 3455: 3450: 3446: 3442: 3438: 3431: 3428: 3423: 3419: 3415: 3411: 3407: 3403: 3399: 3395: 3391: 3387: 3380: 3373: 3371: 3367: 3362: 3358: 3354: 3350: 3346: 3342: 3338: 3334: 3329: 3324: 3320: 3316: 3309: 3306: 3301: 3297: 3293: 3289: 3285: 3283:9780123645968 3279: 3275: 3271: 3267: 3260: 3257: 3252: 3248: 3244: 3240: 3236: 3234:9780123645968 3230: 3226: 3222: 3218: 3211: 3208: 3203: 3196: 3193: 3188: 3184: 3180: 3176: 3171: 3166: 3162: 3158: 3154: 3150: 3146: 3139: 3136: 3131: 3127: 3123: 3119: 3115: 3111: 3107: 3103: 3099: 3095: 3088: 3086: 3082: 3077: 3073: 3069: 3065: 3061: 3057: 3050: 3047: 3042: 3038: 3034: 3030: 3026: 3022: 3015: 3013: 3009: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2968: 2961: 2958: 2953: 2949: 2945: 2941: 2937: 2933: 2929: 2925: 2918: 2916: 2914: 2910: 2905: 2901: 2897: 2893: 2889: 2885: 2882:(6): 484–92. 2881: 2877: 2870: 2868: 2864: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2823: 2821: 2817: 2812: 2808: 2804: 2800: 2795: 2790: 2786: 2782: 2779:(11): 960–6. 2778: 2774: 2770: 2763: 2761: 2757: 2752: 2748: 2744: 2740: 2735: 2730: 2726: 2722: 2719:(6845): 385. 2718: 2714: 2710: 2703: 2700: 2695: 2691: 2685: 2682: 2677: 2671: 2667: 2661: 2658: 2653: 2647: 2643: 2637: 2634: 2629: 2623: 2619: 2612: 2609: 2603: 2598: 2594: 2590: 2586: 2582: 2578: 2574: 2573:Physics Today 2570: 2564: 2561: 2556: 2552: 2548: 2544: 2540: 2533: 2530: 2525: 2521: 2517: 2513: 2510:(6): 315–21. 2509: 2505: 2498: 2495: 2490: 2486: 2482: 2478: 2471: 2468: 2463: 2459: 2455: 2451: 2448:(2): 165–76. 2447: 2443: 2436: 2433: 2428: 2424: 2420: 2416: 2412: 2405: 2403: 2401: 2397: 2392: 2388: 2383: 2378: 2373: 2368: 2364: 2360: 2356: 2352: 2348: 2341: 2339: 2335: 2330: 2326: 2321: 2316: 2311: 2306: 2302: 2298: 2294: 2290: 2286: 2279: 2277: 2273: 2268: 2264: 2259: 2254: 2249: 2244: 2240: 2236: 2233:(9): 4414–6. 2232: 2228: 2224: 2217: 2215: 2211: 2206: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2171: 2169: 2165: 2160: 2156: 2153:(6): 449–56. 2152: 2148: 2141: 2139: 2135: 2130: 2126: 2121: 2116: 2112: 2108: 2104: 2097: 2094: 2089: 2085: 2078: 2075: 2067: 2060: 2057: 2049: 2042: 2039: 2034: 2027: 2024: 2018: 2013: 2009: 2005: 2001: 1997: 1993: 1986: 1983: 1978: 1974: 1969: 1964: 1960: 1956: 1952: 1948: 1944: 1937: 1934: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1898: 1895: 1890: 1886: 1881: 1876: 1872: 1868: 1864: 1860: 1856: 1849: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1802: 1799: 1794: 1790: 1786: 1782: 1775: 1772: 1767: 1763: 1758: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1710: 1708: 1706: 1702: 1695: 1691: 1688: 1687: 1683: 1681: 1674: 1672: 1669: 1664: 1662: 1658: 1652: 1649: 1645: 1639: 1636: 1632: 1625: 1623: 1621: 1617: 1613: 1609: 1605: 1596: 1594: 1592: 1588: 1584: 1579: 1575: 1570: 1566: 1565:binding sites 1562: 1558: 1550: 1548: 1546: 1541: 1537: 1533: 1529: 1525: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1492: 1488: 1484: 1478: 1476: 1472: 1468: 1464: 1460: 1456: 1452: 1447: 1439: 1437: 1435: 1431: 1430:drug delivery 1427: 1422: 1420: 1416: 1412: 1408: 1404: 1400: 1392: 1390: 1388: 1380: 1378: 1376: 1360: 1357: 1354: 1347: 1343: 1339: 1338: 1333: 1329: 1325: 1324: 1315: 1313: 1311: 1310: 1305: 1304: 1299: 1295: 1291: 1290: 1284: 1276: 1274: 1272: 1268: 1259: 1254: 1251: 1249: 1245: 1241: 1237: 1232: 1231: 1227: 1225: 1221: 1217: 1212: 1209: 1206: 1205: 1202: 1198: 1194: 1190: 1186: 1182: 1181:pigmented ink 1177: 1176: 1172: 1168: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1129: 1128: 1124: 1120: 1118: 1114: 1113:shaving cream 1110: 1109:whipped cream 1105: 1104: 1100: 1097: 1096: 1093: 1089: 1085: 1080: 1079:Solid aerosol 1077: 1075: 1071: 1067: 1063: 1059: 1054: 1053: 1048: 1045: 1039: 1036: 1030: 1026: 1023: 1020: 1019: 1013:Medium/phase 1011: 1008: 1006: 1001: 998: 994: 990: 986: 982: 978: 974: 970: 967: 963: 958: 953: 951: 947: 943: 939: 938: 934:can generate 933: 929: 925: 924: 919: 915: 907: 901: 894: 892: 890: 886: 883: 879: 875: 872: 868: 864: 860: 856: 855:lipid bilayer 852: 848: 840: 836: 832: 828: 826: 822: 818: 815: 811: 808: 804: 800: 799:thyroglobulin 796: 795: 791: 786: 782: 778: 777: 773: 771: 769: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 738: 735: 730: 723: 718: 714: 711: 707: 704: 700: 696: 693: 691: 687: 683: 679: 676: 673: 669: 667: 663: 660: 657: 653: 651: 648: 646: 643: 641: 637: 634: 632: 629: 627: 624: 622: 619: 618: 614: 612: 610: 606: 598: 594: 587: 585: 583: 579: 574: 572: 568: 567:self-assembly 565: 561: 557: 553: 549: 545: 541: 537: 533: 529: 525: 522: 518: 513: 511: 507: 502: 500: 496: 495:self assembly 492: 488: 483: 482:experiments. 481: 477: 473: 468: 466: 462: 458: 454: 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 406: 402: 401:carbohydrates 398: 394: 390: 382: 380: 378: 374: 370: 366: 362: 358: 354: 350: 346: 341: 339: 335: 331: 329: 324: 320: 316: 312: 311:Athene Donald 303: 299: 297: 293: 289: 285: 280: 278: 276: 271: 268: 263: 261: 252: 245: 243: 241: 240:Sidney W. Fox 237: 233: 229: 225: 221: 217: 212: 210: 206: 202: 199: 195: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 144: 137: 135: 133: 129: 125: 120: 118: 113: 104: 97: 92: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 27: 22: 7211: 7207: 7176: 7172: 7125: 7121: 7082: 7078: 7051: 7042: 7033: 6990: 6986: 6976: 6925: 6921: 6911: 6860: 6856: 6845: 6804: 6800: 6794: 6743: 6739: 6729: 6717:. Retrieved 6713: 6703: 6660: 6656: 6646: 6595: 6591: 6581: 6536: 6532: 6522: 6471: 6467: 6401: 6397: 6323: 6319: 6309: 6258: 6254: 6192: 6188: 6128: 6124: 6068: 6064: 6002: 5998: 5988: 5935: 5931: 5921: 5860: 5856: 5846: 5795: 5791: 5781: 5738: 5734: 5724: 5673: 5669: 5627: 5623: 5613: 5578: 5574: 5564: 5555: 5521: 5511: 5502: 5459: 5455: 5445: 5410: 5406: 5396: 5351: 5347: 5337: 5328: 5318: 5309: 5274: 5270: 5260: 5225: 5221: 5211: 5186: 5182: 5176: 5133: 5129: 5123: 5078: 5074: 5064: 5027: 5023: 5013: 4988: 4984: 4978: 4953: 4949: 4943: 4908: 4904: 4894: 4872:(2): 81–94. 4869: 4865: 4859: 4824: 4818: 4783: 4779: 4769: 4745:(1): 39–58. 4742: 4738: 4728: 4690: 4686: 4646: 4642: 4632: 4599: 4595: 4589: 4554: 4550: 4540: 4497: 4493: 4482: 4450:(6): e1599. 4447: 4443: 4433: 4411:(1): 42–49. 4408: 4404: 4360: 4356: 4296: 4292: 4282: 4255: 4251: 4241: 4206: 4202: 4192: 4157: 4153: 4143: 4109:(20): 4705. 4106: 4102: 4092: 4057: 4053: 4043: 4000: 3996: 3938: 3934: 3902: 3892: 3857: 3853: 3813: 3809: 3799: 3764: 3760: 3750: 3707: 3703: 3693: 3650: 3646: 3586: 3582: 3572: 3539: 3535: 3529: 3496: 3492: 3444: 3440: 3430: 3389: 3385: 3318: 3314: 3308: 3265: 3259: 3216: 3210: 3201: 3195: 3152: 3149:FEBS Letters 3148: 3138: 3097: 3093: 3059: 3055: 3049: 3024: 3020: 2970: 2966: 2960: 2927: 2923: 2879: 2875: 2833: 2829: 2776: 2772: 2716: 2712: 2702: 2693: 2684: 2665: 2660: 2641: 2636: 2617: 2611: 2576: 2572: 2563: 2546: 2542: 2532: 2507: 2503: 2497: 2483:(1–2): 133. 2480: 2476: 2470: 2445: 2441: 2435: 2418: 2414: 2354: 2350: 2292: 2288: 2230: 2226: 2180: 2176: 2150: 2146: 2110: 2106: 2096: 2087: 2083: 2077: 2064:Haldane JB. 2059: 2041: 2026: 1999: 1995: 1985: 1950: 1946: 1936: 1911: 1907: 1897: 1862: 1858: 1848: 1815: 1811: 1801: 1784: 1780: 1774: 1723: 1719: 1678: 1665: 1653: 1640: 1629: 1604:bright-field 1600: 1554: 1526: 1479: 1443: 1423: 1396: 1384: 1341: 1335: 1321: 1319: 1307: 1301: 1289:signalosomes 1286: 1282: 1280: 1271:gas vesicles 1264: 1252: 1247: 1228: 1210: 1200: 1189:precipitates 1169: 1164: 1157:lipoproteins 1121: 1117:Gas vesicles 1101: 1078: 1066:condensation 1049: 1002: 956: 954: 940:rather than 935: 921: 920:known as an 911: 844: 839:lipoproteins 801:colloid and 783:, cell-cell 765: 695:Signalosomes 662:Corneal lens 654:Frodosomes ( 602: 575: 514: 506:condensation 504:In physics, 503: 499:condensation 486: 484: 479: 469: 429:paraspeckles 413:signalosomes 387:Advances in 386: 352: 342: 326: 308: 295: 281: 273: 264: 257: 213: 208: 196: 149: 115: 109: 69:into either 38: 35:biochemistry 32: 6928:(1): 2883. 6404:(1): 7722. 4991:(6): 2322. 3493:Soft Matter 2549:(12): 417. 1787:: 376–381. 1726:(1): 4390. 1616:rheological 1606:imaging or 1591:biochemical 1587:irradiation 1528:Optogenetic 1522:laser light 1487:optogenetic 1483:dissolution 1467:polypeptide 1459:biopolymers 1399:synthesized 1298:Dishevelled 1074:hair sprays 1032:Dispersion 997:suspensions 874:lipoprotein 756:Paraspeckle 677:Purinosomes 621:Lewy bodies 544:suspensions 461:cytoplasmic 433:purinosomes 373:biopolymers 232:coacervates 134:micelles'. 128:biomolecule 112:Carl Nägeli 73:emulsions, 67:biopolymers 7256:Organelles 4956:(8): 806. 4693:(2): 139. 3905:: 809210. 3447:(15): 15. 2579:(11): 87. 2090:: 849–856. 2046:Oparin A. 1696:References 1622:analysis. 1567:for other 1561:condensate 1518:dimerizers 1403:endogenous 1316:P granules 1303:Drosophila 1234:Examples: 1214:Examples: 1211:Solid foam 1193:aggregates 1179:Examples: 1175:suspension 1141:hand cream 1137:mayonnaise 1131:Examples: 1082:Examples: 1056:Examples: 1044:immiscible 985:aggregates 847:organelles 751:Cajal body 680:Misfolded 441:aggregates 437:inclusions 425:assemblies 290:cells and 288:epithelial 168:protoplasm 87:aggregates 65:and other 47:organelles 19:See also: 7179:: 39–58. 7007:0959-440X 6993:: 63–70. 6950:2041-1723 6885:1545-9993 6877:1545-9985 6829:1520-6106 6821:1520-5207 6768:0305-1048 6760:1362-4962 6677:0959-440X 6663:: 41–50. 6638:249488875 6612:1097-2765 6555:2732-5121 6496:1549-9618 6488:1549-9626 6426:2041-1723 6358:0027-8424 6350:1091-6490 6283:1549-9618 6275:1549-9626 6233:233309675 6217:1520-6106 6209:1520-5207 6153:0961-8368 6145:1469-896X 6085:2662-8457 6021:2050-084X 5962:1553-7358 5895:0027-8424 5887:1091-6490 5820:1549-9618 5812:1549-9626 5765:1520-6106 5757:1520-5207 5698:0009-2665 5690:1520-6890 5437:231819801 5271:BioEssays 5168:220507058 4970:0165-0513 4689:(Paper). 4624:0021-9606 4532:221096771 4313:1476-4679 4233:221198567 4103:Molecules 3353:0021-9606 3292:0074-7696 3243:0074-7696 2569:Donald AM 2539:Donald AM 1748:2045-2322 1574:reactants 1358:∼ 1355:η 1346:viscosity 1256:Example: 1253:Solid sol 1220:styrofoam 1107:Example: 1088:ice cloud 969:emulsions 966:colloidal 955:The term 942:emulsions 926:that can 882:colloidal 851:endosomes 829:Secreted 825:globulins 812:Secreted 797:Secreted 741:Nucleolus 716:granules. 666:cataracts 605:cytoplasm 564:molecular 560:cataracts 524:emulsions 521:colloidal 445:factories 405:cytoplasm 351:wrote in 349:de Gennes 343:In 1991, 334:cytoplasm 332:from the 292:cataracts 267:colloidal 260:colloidal 228:colloidal 198:Colloidal 192:globulins 180:nucleolus 164:cytoplasm 71:colloidal 7250:Category 7238:29542707 7195:25288112 7160:37694361 7152:28225081 7109:30099028 7025:34536913 6968:34001913 6903:35484234 6837:35317553 6786:33264400 6695:33069007 6630:35675815 6573:37645312 6564:10450847 6514:36607820 6505:10323037 6444:36513655 6376:34716273 6301:33826337 6225:33876938 6171:33934416 6103:35795820 6039:29424691 5980:29364893 5913:32482873 5838:33307683 5773:32936641 5716:37171907 5707:10375482 5605:32561165 5494:34762868 5429:33539874 5388:31634364 5301:27554449 5244:28935776 5203:27051975 5160:32661377 5115:26015579 5056:22147705 4935:29602697 4886:29258725 4851:30471685 4810:31594803 4761:25288112 4717:59525729 4709:30700901 4665:26657693 4581:30951647 4524:34233164 4474:32445438 4425:29153704 4387:30782412 4349:Peifer M 4331:33723425 4274:27396883 4225:32822572 4184:27836835 4135:33076213 4084:29632271 4035:37694361 4027:28225081 3973:22398450 3884:27212236 3832:26317470 3791:25747659 3742:28636604 3685:42229928 3677:19460965 3621:18160663 3564:19048988 3521:32900127 3473:17430588 3414:15565151 3361:15005765 3300:10610363 3251:10610362 3130:24119538 3122:18388293 3076:12440955 3041:25239056 3003:25980578 2995:17569865 2952:23270805 2944:17606995 2904:29584068 2896:17529994 2858:16988383 2850:16263762 2811:15211115 2803:12781135 2751:39983702 2743:11473291 2462:11028784 2267:16592709 1977:16992817 1928:84531494 1889:16992486 1840:17829686 1793:20013496 1766:35293386 1684:See also 1569:proteins 1491:chimeric 1411:P bodies 1407:nucleoli 1375:affinity 1342:in vitro 1197:crystals 1185:sediment 1153:micelles 1123:Emulsion 981:crystals 979:to form 946:emulsion 928:coalesce 923:emulsion 885:micelles 880:to from 845:Typical 831:lysozyme 781:synapses 684:such as 607:and the 599:dynamics 588:Examples 556:prophase 550:such as 534:to form 519:to form 491:polymers 480:in vitro 417:granules 393:proteins 361:colloids 357:polymers 330:granules 277:micelles 236:colloids 188:colloids 184:WB Hardy 170:') as a 152:colloids 119:granules 83:crystals 81:, solid 59:proteins 43:membrane 7216:Bibcode 7143:7434221 7100:6204295 7016:9057422 6959:8129070 6930:Bibcode 6894:9117509 6777:7736803 6719:May 28, 6686:8044266 6621:9233049 6435:9748015 6406:Bibcode 6367:8612223 6328:Bibcode 6292:8119372 6162:8197430 6094:7612994 6030:5847340 5971:5798848 5940:Bibcode 5904:7306995 5865:Bibcode 5829:7872324 5632:Bibcode 5596:7697221 5485:8715277 5464:Bibcode 5379:6822780 5356:Bibcode 5292:5108435 5252:3693853 5222:Science 5106:4466716 5083:Bibcode 5047:3271001 4993:Bibcode 4926:6034118 4801:6942051 4604:Bibcode 4572:6771929 4515:8513799 4465:7554086 4378:6386181 4322:7970447 4175:5334260 4126:7587599 4075:5904305 4018:7434221 3964:3343696 3943:Bibcode 3903:bioRxiv 3875:5127388 3782:4352761 3733:5606208 3712:Bibcode 3655:Bibcode 3647:Science 3612:2157236 3591:Bibcode 3544:Bibcode 3501:Bibcode 3464:1853075 3422:4373710 3394:Bibcode 3333:Bibcode 3187:8843457 3179:7698310 3157:Bibcode 3102:Bibcode 3094:Science 2975:Bibcode 2967:Science 2781:Bibcode 2721:Bibcode 2581:Bibcode 2524:8789332 2427:9331254 2391:2062844 2359:Bibcode 2329:3478681 2297:Bibcode 2235:Bibcode 2185:Bibcode 2177:Science 2159:1132941 2129:4593735 2004:Bibcode 1968:1465795 1880:1516635 1820:Bibcode 1812:Science 1757:8924231 1728:Bibcode 1510:valency 1475:elastic 1471:viscous 1309:Xenopus 1240:gelatin 1216:aerogel 1098:Liquid 1052:aerosol 1050:Liquid 1034:medium 1005:colloid 918:colloid 821:albumin 807:thyroid 805:of the 701:in the 609:nucleus 554:during 465:nuclear 409:nucleus 369:colloid 172:colloid 124:micelle 93:History 7236:  7208:Nature 7193:  7158:  7150:  7140:  7107:  7097:  7023:  7013:  7005:  6966:  6956:  6948:  6901:  6891:  6883:  6875:  6835:  6827:  6819:  6784:  6774:  6766:  6758:  6693:  6683:  6675:  6636:  6628:  6618:  6610:  6571:  6561:  6553:  6539:: 94. 6512:  6502:  6494:  6486:  6442:  6432:  6424:  6374:  6364:  6356:  6348:  6326:(44). 6299:  6289:  6281:  6273:  6231:  6223:  6215:  6207:  6169:  6159:  6151:  6143:  6101:  6091:  6083:  6037:  6027:  6019:  5978:  5968:  5960:  5911:  5901:  5893:  5885:  5836:  5826:  5818:  5810:  5771:  5763:  5755:  5714:  5704:  5696:  5688:  5603:  5593:  5492:  5482:  5435:  5427:  5386:  5376:  5299:  5289:  5250:  5242:  5201:  5166:  5158:  5113:  5103:  5054:  5044:  4968:  4933:  4923:  4884:  4849:  4839:  4808:  4798:  4759:  4715:  4707:  4663:  4622:  4579:  4569:  4530:  4522:  4512:  4472:  4462:  4423:  4385:  4375:  4329:  4319:  4311:  4272:  4231:  4223:  4182:  4172:  4133:  4123:  4082:  4072:  4033:  4025:  4015:  3971:  3961:  3935:Nature 3882:  3872:  3830:  3789:  3779:  3740:  3730:  3704:Nature 3683:  3675:  3619:  3609:  3562:  3519:  3471:  3461:  3420:  3412:  3386:Nature 3359:  3351:  3298:  3290:  3280:  3249:  3241:  3231:  3185:  3177:  3128:  3120:  3074:  3039:  3001:  2993:  2950:  2942:  2902:  2894:  2856:  2848:  2809:  2801:  2749:  2741:  2713:Nature 2672:  2648:  2624:  2522:  2460:  2425:  2389:  2379:  2327:  2320:299233 2317:  2265:  2258:411585 2255:  2205:887936 2203:  2157:  2127:  1975:  1965:  1926:  1887:  1877:  1838:  1791:  1764:  1754:  1746:  1610:, and 1545:genome 1413:, and 1332:liquid 1296:. The 1224:pumice 1207:Solid 1062:clouds 1027:Solid 1024:Liquid 819:Serum 814:casein 670:Other 631:P-body 455:& 443:' or ' 421:bodies 353:Nature 328:starch 275:casein 132:casein 117:starch 45:-less 7156:S2CID 6946:eISSN 6873:eISSN 6817:eISSN 6756:eISSN 6634:S2CID 6551:eISSN 6484:eISSN 6422:eISSN 6346:eISSN 6271:eISSN 6229:S2CID 6205:eISSN 6141:eISSN 6081:eISSN 6017:eISSN 5999:eLife 5958:eISSN 5883:eISSN 5808:eISSN 5753:eISSN 5686:eISSN 5538:2018. 5516:2018. 5433:S2CID 5323:2011. 5248:S2CID 5164:S2CID 4713:S2CID 4528:S2CID 4229:S2CID 4031:S2CID 3681:S2CID 3418:S2CID 3382:(PDF) 3357:S2CID 3323:arXiv 3183:S2CID 3126:S2CID 2999:S2CID 2948:S2CID 2900:S2CID 2854:S2CID 2807:S2CID 2747:S2CID 2382:51937 2069:(PDF) 2051:(PDF) 1924:S2CID 1789:JSTOR 1642:(see 1244:jelly 1145:latex 1084:smoke 809:gland 656:Dact1 640:oskar 542:, or 355:that 7234:PMID 7191:PMID 7148:PMID 7105:PMID 7057:Link 7021:PMID 7003:ISSN 6964:PMID 6899:PMID 6881:ISSN 6833:PMID 6825:ISSN 6782:PMID 6764:ISSN 6721:2023 6691:PMID 6673:ISSN 6626:PMID 6608:ISSN 6569:PMID 6510:PMID 6492:ISSN 6440:PMID 6372:PMID 6354:ISSN 6297:PMID 6279:ISSN 6221:PMID 6213:ISSN 6167:PMID 6149:ISSN 6099:PMID 6035:PMID 5976:PMID 5909:PMID 5891:ISSN 5834:PMID 5816:ISSN 5769:PMID 5761:ISSN 5712:PMID 5694:ISSN 5601:PMID 5490:PMID 5425:PMID 5384:PMID 5297:PMID 5240:PMID 5199:PMID 5156:PMID 5111:PMID 5052:PMID 4966:ISSN 4931:PMID 4882:PMID 4847:PMID 4837:ISBN 4806:PMID 4757:PMID 4705:PMID 4661:PMID 4647:1858 4620:ISSN 4577:PMID 4520:PMID 4494:Cell 4470:PMID 4421:PMID 4383:PMID 4327:PMID 4309:ISSN 4270:PMID 4221:PMID 4203:Cell 4180:PMID 4131:PMID 4080:PMID 4023:PMID 3969:PMID 3880:PMID 3854:Cell 3828:PMID 3810:Cell 3787:PMID 3738:PMID 3673:PMID 3617:PMID 3560:PMID 3517:PMID 3469:PMID 3410:PMID 3349:ISSN 3296:PMID 3288:ISSN 3278:ISBN 3247:PMID 3239:ISSN 3229:ISBN 3175:PMID 3118:PMID 3072:PMID 3037:PMID 2991:PMID 2940:PMID 2892:PMID 2846:PMID 2799:PMID 2739:PMID 2670:ISBN 2646:ISBN 2622:ISBN 2520:PMID 2458:PMID 2423:PMID 2387:PMID 2325:PMID 2263:PMID 2201:PMID 2155:PMID 2125:PMID 1973:PMID 1885:PMID 1836:PMID 1762:PMID 1744:ISSN 1633:and 1557:cell 1536:Cas9 1514:LLPS 1498:cell 1473:and 1463:LLPS 1287:Wnt 1236:agar 1161:silk 1133:milk 1103:Foam 1070:mist 1037:Gas 993:sols 989:gels 869:and 863:milk 823:and 540:sols 536:gels 463:and 439:', ' 435:', ' 431:', ' 427:', ' 423:', ' 419:', ' 415:', ' 214:The 158:and 75:gels 51:cell 7224:doi 7212:555 7181:doi 7138:PMC 7130:doi 7095:PMC 7087:doi 7083:430 7011:PMC 6995:doi 6954:PMC 6938:doi 6889:PMC 6865:doi 6809:doi 6805:126 6772:PMC 6748:doi 6681:PMC 6665:doi 6616:PMC 6600:doi 6559:PMC 6541:doi 6500:PMC 6476:doi 6430:PMC 6414:doi 6362:PMC 6336:doi 6324:118 6287:PMC 6263:doi 6197:doi 6193:125 6157:PMC 6133:doi 6089:PMC 6073:doi 6025:PMC 6007:doi 5966:PMC 5948:doi 5899:PMC 5873:doi 5861:117 5824:PMC 5800:doi 5743:doi 5739:124 5702:PMC 5678:doi 5674:123 5640:doi 5591:PMC 5583:doi 5480:PMC 5472:doi 5460:120 5415:doi 5411:433 5374:PMC 5364:doi 5287:PMC 5279:doi 5230:doi 5226:357 5191:doi 5146:hdl 5138:doi 5101:PMC 5091:doi 5079:112 5042:PMC 5032:doi 5028:287 5001:doi 4958:doi 4921:PMC 4913:doi 4874:doi 4829:doi 4796:PMC 4788:doi 4747:doi 4695:doi 4651:doi 4612:doi 4600:107 4567:PMC 4559:doi 4510:PMC 4502:doi 4498:184 4460:PMC 4452:doi 4413:doi 4373:PMC 4365:doi 4317:PMC 4301:doi 4260:doi 4211:doi 4207:182 4170:PMC 4162:doi 4121:PMC 4111:doi 4070:PMC 4062:doi 4058:373 4013:PMC 4005:doi 3959:PMC 3951:doi 3939:483 3907:doi 3870:PMC 3862:doi 3858:165 3818:doi 3814:162 3777:PMC 3769:doi 3728:PMC 3720:doi 3708:547 3663:doi 3651:324 3607:PMC 3599:doi 3552:doi 3540:139 3509:doi 3459:PMC 3449:doi 3402:doi 3390:432 3341:doi 3319:111 3270:doi 3221:doi 3165:doi 3153:361 3110:doi 3098:320 3064:doi 3029:doi 2983:doi 2971:316 2932:doi 2928:120 2884:doi 2838:doi 2834:118 2789:doi 2729:doi 2717:412 2597:hdl 2589:doi 2551:doi 2512:doi 2485:doi 2481:308 2450:doi 2446:328 2377:PMC 2367:doi 2315:PMC 2305:doi 2253:PMC 2243:doi 2193:doi 2181:197 2115:doi 2012:doi 1963:PMC 1955:doi 1916:doi 1875:PMC 1867:doi 1828:doi 1752:PMC 1736:doi 1421:. 1230:Gel 1173:or 1171:Sol 1125:or 1058:fog 1021:Gas 995:or 987:in 971:or 948:or 887:or 871:HDL 867:LDL 849:or 569:or 526:or 407:or 399:or 397:RNA 325:of 313:'s 85:or 63:RNA 57:of 33:In 7252:: 7232:. 7222:. 7210:. 7206:. 7189:. 7177:30 7175:. 7171:. 7154:. 7146:. 7136:. 7126:18 7124:. 7120:. 7103:. 7093:. 7081:. 7077:. 7019:. 7009:. 7001:. 6991:72 6989:. 6985:. 6962:. 6952:. 6944:. 6936:. 6926:12 6924:. 6920:. 6897:. 6887:. 6879:. 6871:. 6861:29 6859:. 6855:. 6831:. 6823:. 6815:. 6803:. 6780:. 6770:. 6762:. 6754:. 6744:48 6742:. 6738:. 6712:. 6689:. 6679:. 6671:. 6661:67 6659:. 6655:. 6632:. 6624:. 6614:. 6606:. 6596:82 6594:. 6590:. 6567:. 6557:. 6549:. 6535:. 6531:. 6508:. 6498:. 6490:. 6482:. 6472:19 6470:. 6466:. 6452:^ 6438:. 6428:. 6420:. 6412:. 6402:13 6400:. 6396:. 6384:^ 6370:. 6360:. 6352:. 6344:. 6334:. 6322:. 6318:. 6295:. 6285:. 6277:. 6269:. 6259:17 6257:. 6253:. 6241:^ 6227:. 6219:. 6211:. 6203:. 6191:. 6179:^ 6165:. 6155:. 6147:. 6139:. 6129:30 6127:. 6123:. 6111:^ 6097:. 6087:. 6079:. 6067:. 6063:. 6047:^ 6033:. 6023:. 6015:. 6005:. 6001:. 5997:. 5974:. 5964:. 5956:. 5946:. 5936:14 5934:. 5930:. 5907:. 5897:. 5889:. 5881:. 5871:. 5859:. 5855:. 5832:. 5822:. 5814:. 5806:. 5796:17 5794:. 5790:. 5767:. 5759:. 5751:. 5737:. 5733:. 5710:. 5700:. 5692:. 5684:. 5672:. 5668:. 5654:^ 5638:. 5628:15 5626:. 5622:. 5599:. 5589:. 5579:45 5577:. 5573:. 5543:^ 5530:^ 5488:. 5478:. 5470:. 5458:. 5454:. 5431:. 5423:. 5409:. 5405:. 5382:. 5372:. 5362:. 5352:15 5350:. 5346:. 5295:. 5285:. 5275:38 5273:. 5269:. 5246:. 5238:. 5224:. 5220:. 5197:. 5187:26 5185:. 5162:. 5154:. 5144:. 5134:16 5132:. 5109:. 5099:. 5089:. 5077:. 5073:. 5050:. 5040:. 5026:. 5022:. 4999:. 4989:44 4987:. 4964:. 4954:82 4952:. 4929:. 4919:. 4909:28 4907:. 4903:. 4880:. 4870:43 4868:. 4845:. 4835:. 4804:. 4794:. 4784:33 4782:. 4778:. 4755:. 4743:30 4741:. 4737:. 4711:. 4703:. 4691:16 4685:. 4673:^ 4659:. 4645:. 4641:. 4618:. 4610:. 4598:. 4575:. 4565:. 4555:48 4553:. 4549:. 4526:. 4518:. 4508:. 4496:. 4492:. 4468:. 4458:. 4448:11 4446:. 4442:. 4419:. 4409:51 4407:. 4395:^ 4381:. 4371:. 4361:48 4359:. 4355:. 4339:^ 4325:. 4315:. 4307:. 4297:23 4295:. 4291:. 4268:. 4256:61 4254:. 4250:. 4227:. 4219:. 4205:. 4201:. 4178:. 4168:. 4156:. 4152:. 4129:. 4119:. 4107:25 4105:. 4101:. 4078:. 4068:. 4056:. 4052:. 4029:. 4021:. 4011:. 4001:18 3999:. 3995:. 3981:^ 3967:. 3957:. 3949:. 3937:. 3933:. 3921:^ 3901:. 3878:. 3868:. 3856:. 3852:. 3840:^ 3826:. 3812:. 3808:. 3785:. 3775:. 3765:57 3763:. 3759:. 3736:. 3726:. 3718:. 3706:. 3702:. 3679:. 3671:. 3661:. 3649:. 3645:. 3629:^ 3615:. 3605:. 3597:. 3587:94 3585:. 3581:. 3558:. 3550:. 3538:. 3515:. 3507:. 3495:. 3481:^ 3467:. 3457:. 3443:. 3439:. 3416:. 3408:. 3400:. 3388:. 3384:. 3369:^ 3355:. 3347:. 3339:. 3331:. 3317:. 3294:. 3286:. 3276:. 3245:. 3237:. 3227:. 3181:. 3173:. 3163:. 3151:. 3147:. 3124:. 3116:. 3108:. 3096:. 3084:^ 3070:. 3060:30 3058:. 3035:. 3025:39 3023:. 3011:^ 2997:. 2989:. 2981:. 2969:. 2946:. 2938:. 2926:. 2912:^ 2898:. 2890:. 2880:14 2878:. 2866:^ 2852:. 2844:. 2832:. 2819:^ 2805:. 2797:. 2787:. 2777:13 2775:. 2771:. 2759:^ 2745:. 2737:. 2727:. 2715:. 2711:. 2692:. 2595:. 2587:. 2577:46 2575:. 2547:45 2545:. 2518:. 2508:17 2506:. 2479:. 2456:. 2444:. 2419:38 2417:. 2413:. 2399:^ 2385:. 2375:. 2365:. 2355:88 2353:. 2349:. 2337:^ 2323:. 2313:. 2303:. 2293:84 2291:. 2287:. 2275:^ 2261:. 2251:. 2241:. 2231:76 2229:. 2225:. 2213:^ 2199:. 2191:. 2179:. 2167:^ 2151:14 2149:. 2137:^ 2123:. 2111:56 2109:. 2105:. 2088:32 2086:. 2010:. 2000:86 1998:. 1994:. 1971:. 1961:. 1951:33 1949:. 1945:. 1922:. 1912:15 1910:. 1906:. 1883:. 1873:. 1863:24 1861:. 1857:. 1834:. 1826:. 1816:10 1814:. 1810:. 1785:26 1783:. 1760:. 1750:. 1742:. 1734:. 1724:12 1722:. 1718:. 1704:^ 1436:. 1409:, 1389:. 1361:10 1306:, 1246:, 1242:, 1238:, 1222:, 1218:, 1199:, 1191:, 1187:, 1183:, 1163:, 1159:, 1155:, 1151:, 1147:, 1143:, 1139:, 1135:, 1115:, 1111:, 1090:, 1086:, 1072:, 1068:, 1064:, 1060:, 991:, 952:. 638:– 573:. 538:, 512:. 501:. 395:, 379:. 340:. 321:/ 298:. 77:, 61:, 37:, 7240:. 7226:: 7218:: 7197:. 7183:: 7162:. 7132:: 7111:. 7089:: 7027:. 6997:: 6970:. 6940:: 6932:: 6905:. 6867:: 6839:. 6811:: 6788:. 6750:: 6723:. 6697:. 6667:: 6640:. 6602:: 6575:. 6543:: 6537:2 6516:. 6478:: 6446:. 6416:: 6408:: 6378:. 6338:: 6330:: 6303:. 6265:: 6235:. 6199:: 6173:. 6135:: 6105:. 6075:: 6069:1 6041:. 6009:: 6003:7 5982:. 5950:: 5942:: 5915:. 5875:: 5867:: 5840:. 5802:: 5775:. 5745:: 5718:. 5680:: 5648:. 5642:: 5634:: 5607:. 5585:: 5496:. 5474:: 5466:: 5439:. 5417:: 5390:. 5366:: 5358:: 5303:. 5281:: 5254:. 5232:: 5205:. 5193:: 5170:. 5148:: 5140:: 5117:. 5093:: 5085:: 5058:. 5034:: 5007:. 5003:: 4995:: 4972:. 4960:: 4937:. 4915:: 4888:. 4876:: 4853:. 4831:: 4812:. 4790:: 4763:. 4749:: 4719:. 4697:: 4667:. 4653:: 4626:. 4614:: 4606:: 4583:. 4561:: 4534:. 4504:: 4476:. 4454:: 4427:. 4415:: 4389:. 4367:: 4333:. 4303:: 4276:. 4262:: 4235:. 4213:: 4186:. 4164:: 4158:9 4137:. 4113:: 4086:. 4064:: 4037:. 4007:: 3975:. 3953:: 3945:: 3915:. 3909:: 3886:. 3864:: 3834:. 3820:: 3793:. 3771:: 3744:. 3722:: 3714:: 3687:. 3665:: 3657:: 3623:. 3601:: 3593:: 3566:. 3554:: 3546:: 3523:. 3511:: 3503:: 3497:3 3475:. 3451:: 3445:4 3424:. 3404:: 3396:: 3363:. 3343:: 3335:: 3325:: 3302:. 3272:: 3253:. 3223:: 3189:. 3167:: 3159:: 3132:. 3112:: 3104:: 3078:. 3066:: 3043:. 3031:: 3005:. 2985:: 2977:: 2954:. 2934:: 2906:. 2886:: 2860:. 2840:: 2813:. 2791:: 2783:: 2753:. 2731:: 2723:: 2696:. 2678:. 2654:. 2630:. 2605:. 2599:: 2591:: 2583:: 2557:. 2553:: 2526:. 2514:: 2491:. 2487:: 2464:. 2452:: 2429:. 2393:. 2369:: 2361:: 2331:. 2307:: 2299:: 2269:. 2245:: 2237:: 2207:. 2195:: 2187:: 2161:. 2131:. 2117:: 2071:. 2053:. 2035:. 2020:. 2014:: 2006:: 1979:. 1957:: 1930:. 1918:: 1891:. 1869:: 1842:. 1830:: 1822:: 1795:. 1768:. 1738:: 1730:: 983:/ 705:. 658:) 474:(

Index

Cytoplasmic inclusions

biochemistry
membrane
organelles
cell
phase separation
proteins
RNA
biopolymers
colloidal
gels
liquid crystals
crystals
aggregates

Carl Nägeli
starch
micelle
biomolecule
casein

colloids
William Bate Hardy
Edmund Beecher Wilson
cytoplasm
protoplasm
colloid
Thomas Harrison Montgomery Jr.
nucleolus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑