Knowledge (XXG)

Tunnel magnetoresistance

Source đź“ť

812:(MgO), amorphous aluminum oxide was used as the tunnel barrier of the MTJ, and typical room temperature TMR was in the range of tens of percent. MgO barriers increased TMR to hundreds of percent. This large increase reflects a synergetic combination of electrode and barrier electronic structures, which in turn reflects the achievement of structurally ordered junctions. Indeed, MgO filters the tunneling transmission of electrons with a particular symmetry that are fully spin-polarized within the current flowing across 839:
vacancies in the MgO tunnel barrier. Extensive solid-state tunnelling spectroscopy experiments across MgO MTJs revealed in 2014 that the electronic retention on the ground and excited states of an oxygen vacancy, which is temperature-dependent, determines the tunnelling barrier height for electrons of a given symmetry, and thus crafts the effective TMR ratio and its temperature dependence. This low barrier height in turn enables the high current densities required for spin-transfer torque, discussed hereafter.
31: 243: 608: 1399: 2462:
Schleicher, F.; Halisdemir, U.; Lacour, D.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P.; Halley, D.; Majjad, H.; Henry, Y.; Leconte, B.; Boulard, A.; Spor, D.; Beyer, N.; Kieber, C.; Sternitzky, E.; Cregut, O.; Ziegler, M.; Montaigne, F.; Beaurepaire, E.; Gilliot, P.; Hehn, M.;
1904:
In addition to grain boundaries, point defects such as boron interstitial and oxygen vacancies could be significantly altering the tunnelling magneto-resistance. Recent theoretical calculations have revealed that boron interstitials introduce defect states in the band gap potentially reducing the TMR
193:
as the insulator, the tunnel magnetoresistance can reach several thousand percent. The same year, Bowen et al. were the first to report experiments showing a significant TMR in a MgO based magnetic tunnel junction . In 2004, Parkin and Yuasa were able to make Fe/MgO/Fe junctions that reach over 200%
851:
has been studied and applied widely in MTJs, where there is a tunnelling barrier sandwiched between a set of two ferromagnetic electrodes such that there is (free) magnetization of the right electrode, while assuming that the left electrode (with fixed magnetization) acts as spin-polarizer. This may
816:
Fe-based electrodes. Thus, in the MTJ's parallel (P) state of electrode magnetization, electrons of this symmetry dominate the junction current. In contrast, in the MTJ's antiparallel (AP) state, this channel is blocked, such that electrons with the next most favorable symmetry to transmit dominate
1892:
could be affecting the insulating properties of the MgO barrier; however, the structure of films in buried stack structures is difficult to determine. The grain boundaries may act as short circuit conduction paths through the material, reducing the resistance of the device. Recently, using new
838:
While theory, first formulated in 2001, predicts large TMR values associated with a 4eV barrier height in the MTJ's P state and 12eV in the MTJ's AP state, experiments reveal barrier heights as low as 0.4eV. This contradiction is lifted if one takes into account the localized states of oxygen
1537: 1468: 448: 2627:
Matsumoto, Rie; Fukushima, Akio; Yakushiji, Kay; Nishioka, Shingo; Nagahama, Taro; Katayama, Toshikazu; Suzuki, Yoshishige; Ando, Koji; Yuasa, Shinji (2009). "Spin-dependent tunneling in epitaxial Fe/Cr/MgO/Fe magnetic tunnel junctions with an ultrathin Cr(001) spacer layer".
612:
The spin-up electrons are those with spin orientation parallel to the external magnetic field, whereas the spin-down electrons have anti-parallel alignment with the external field. The relative resistance change is now given by the spin polarizations of the two ferromagnets,
2310:
Ikeda, S.; Hayakawa, J.; Ashizawa, Y.; Lee, Y. M.; Miura, K.; Hasegawa, H.; Tsunoda, M.; Matsukura, F.; Ohno, H. (25 August 2008). "Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature".
1300: 764:
equal 1, i.e. if both electrodes have 100% spin polarization. In this case the magnetic tunnel junction becomes a switch, that switches magnetically between low resistance and infinite resistance. Materials that come into consideration for this are called
731:
during tunneling, the current can be described in a two-current model. The total current is split in two partial currents, one for the spin-up electrons and another for the spin-down electrons. These vary depending on the magnetic state of the junctions.
218:. The 1st generation technologies relied on creating cross-point magnetic fields on each bit to write the data on it, although this approach has a scaling limit at around 90–130 nm. There are two 2nd generation techniques currently being developed: 229:
Magnetic tunnel junctions are also used for sensing applications. Today they are commonly used for position sensors and current sensors in various automotive, industrial and consumer applications. These higher performance sensors are replacing
1876:) should consist of the tunnel barrier + the right ferromagnetic layer of finite thickness (as in realistic devices). The active region is attached to the left ferromagnetic electrode (modeled as semi-infinite tight-binding chain with non-zero 1151: 777:) but its experimental confirmation has been the subject of subtle debate. Nevertheless, if one considers only those electrons that enter into transport, measurements by Bowen et al. of up to 99.6% spin polarization at the interface between La 1239: 330: 2831:
Ikeda, S.; Hayakawa, J.; Ashizawa, Y.; Lee, Y.M.; Miura, K.; Hasegawa, H.; et al. (2008). "Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeBMgOCoFeB pseudo-spin-valves annealed at high temperature".
2567:
Greullet, F.; Tiusan, C.; Montaigne, F.; Hehn, M.; Halley, D.; Bengone, O.; Bowen, M.; Weber, W. (November 2007). "Evidence of a Symmetry-Dependent Metallic Barrier in Fully Epitaxial MgO Based Magnetic Tunnel Junctions".
1665: 603:{\displaystyle P={\frac {{\mathcal {D}}_{\uparrow }(E_{\mathrm {F} })-{\mathcal {D}}_{\downarrow }(E_{\mathrm {F} })}{{\mathcal {D}}_{\uparrow }(E_{\mathrm {F} })+{\mathcal {D}}_{\downarrow }(E_{\mathrm {F} })}}} 1474: 1405: 715: 194:
TMR at room temperature. In 2008, effects of up to 604% at room temperature and more than 1100% at 4.2 K were observed in junctions of CoFeB/MgO/CoFeB by S. Ikeda, H. Ohno group of Tohoku University in Japan.
1738: 1905:
further These theoretical calculations have also been backed up by experimental evidence showing the nature of boron within the MgO layer between two different systems and how the TMR is different.
1394:{\displaystyle ({\boldsymbol {\sigma }}\cdot \mathbf {p} )({\boldsymbol {\sigma }}\cdot \mathbf {q} )=\mathbf {p} \cdot \mathbf {q} +i(\mathbf {p} \times \mathbf {q} )\cdot {\boldsymbol {\sigma }}} 1784:
In symmetric MTJs (made of electrodes with the same geometry and exchange splitting), the spin-transfer torque vector has only one active component, as the perpendicular component disappears:
3027:
Xu, X.D.; Mukaiyama, K.; Kasai, S.; Ohkubo, T.; Hono, K. (2018). "Impact of boron diffusion at MgO grain boundaries on magneto-transport properties of MgO/CoFeB/W magnetic tunnel junctions".
989: 2663:
Mahfouzi, F.; Nagaosa, N.; Nikolić, B.K. (2012). "Spin-Orbit Coupling Induced Spin-Transfer Torque and Current Polarization in Topological-Insulator/Ferromagnet Vertical Heterostructures".
943: 1293: 1869:
needs to be plotted at the site of the right electrode to characterise tunnelling in symmetric MTJs, making them appealing for production and characterisation at an industrial scale.
1570: 1028: 1598: 1817: 800:
excitations and interactions with magnons, as well as due to tunnelling with respect to localized states induced by oxygen vacancies (see Symmetry Filtering section hereafter).
365: 1780: 824:
has been indirectly confirmed by engineering the junction's potential landscape for electrons of a given symmetry. This was first achieved by examining how the electrons of a
394: 1847: 437: 132:
will tunnel through the insulating film than if they are in the oppositional (antiparallel) orientation. Consequently, such a junction can be switched between two states of
2408:
Bowen, M; Barthélémy, A; Bibes, M; Jacquet, E; Contour, J P; Fert, A; Wortmann, D; Blügel, S (2005-10-19). "Half-metallicity proven using fully spin-polarized tunnelling".
1263: 1035: 835:
tunnel barrier. The conceptually simpler experiment of inserting an appropriate metal spacer at the junction interface during sample growth was also later demonstrated .
1867: 175:
found 11.8% in junctions with electrodes of CoFe and Co. The highest effects observed at this time with aluminum oxide insulators was around 70% at room temperature.
3075: 1160: 256: 1888:
Theoretical tunnelling magneto-resistance ratios of 10000% have been predicted. However, the largest that have been observed are only 604%. One suggestion is that
2205:
S Yuasa; T Nagahama; A Fukushima; Y Suzuki & K Ando (2004). "Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions".
1901:
calculations to be performed on structural units that are present in real films. Such calculations have shown that the band gap can be reduced by as much as 45%.
1894: 1603: 105: 1880:) and the right N electrode (semi-infinite tight-binding chain without any Zeeman splitting), as encoded by the corresponding self-energy terms. 1873: 2151: 2875:
Benedetti, S.; Torelli, P.; Valeri, S.; Benia, H.M.; Nilius, N.; Renaud, G. (2008). "Structure and morphology of thin MgO films on Mo(001)".
853: 1532:{\displaystyle {\boldsymbol {\sigma }}({\boldsymbol {\sigma }}\cdot \mathbf {q} )=\mathbf {q} +i\mathbf {q} \times {\boldsymbol {\sigma }}} 1463:{\displaystyle ({\boldsymbol {\sigma }}\cdot \mathbf {p} ){\boldsymbol {\sigma }}=\mathbf {p} +i{\boldsymbol {\sigma }}\times \mathbf {p} } 863:
The spin-transfer torque vector, driven by the linear response voltage, can be computed from the expectation value of the torque operator:
2360: 632: 160:-junctions at 4.2 K. The relative change of resistance was around 14%, and did not attract much attention. In 1991 Terunobu Miyazaki ( 77:
from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly
2377: 769:. Their conduction electrons are fully spin-polarized. This property is theoretically predicted for a number of materials (e.g. CrO 1676: 2256:
S. S. P. Parkin; et al. (2004). "Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers".
2027:
J. S. Moodera; et al. (1995). "Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions".
1897:
techniques, the grain boundaries within FeCoB/MgO/FeCoB MTJs have been atomically resolved. This has allowed first principles
817:
the junction current. Since those electrons tunnel with respect to a larger barrier height, this results in the sizeable TMR.
210:
work on the basis of magnetic tunnel junctions. TMR, or more specifically the magnetic tunnel junction, is also the basis of
164:, Japan) found a change of 2.7% at room temperature. Later, in 1994, Miyazaki found 18% in junctions of iron separated by an 825: 739:(by using different materials or different film thicknesses). And second, one of the ferromagnets can be coupled with an 2520:
Bowen, M.; Barthélémy, A.; Bellini, V.; Bibes, M.; Seneor, P.; Jacquet, E.; Contour, J.-P.; Dederichs, P. (April 2006).
820:
Beyond these large values of TMR across MgO-based MTJs, this impact of the barrier's electronic structure on tunnelling
796:
The TMR decreases with both increasing temperature and increasing bias voltage. Both can be understood in principle by
999:
for the steady-state transport, in the zero-temperature limit, in the linear-response regime, and the torque operator
185:(MgO) have been under development. In 2001 Butler and Mathon independently made the theoretical prediction that using 2115:
J. Mathon & A. Umerski (2001). "Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe (001) junction".
950: 735:
There are two possibilities to obtain a defined anti-parallel state. First, one can use ferromagnets with different
3085: 728: 219: 2522:"Observation of Fowler–Nordheim hole tunneling across an electron tunnel junction due to total symmetry filtering" 2465:"Localized states in advanced dielectrics from the vantage of spin- and symmetry-polarized tunnelling across MgO" 1898: 2729:
Bias-voltage dependence of perpendicular spin-transfer torque in a symmetric MgO-based magnetic tunnel junctions
868: 1268: 203: 1924: 1670:
The spin-transfer torque vector in general MTJs has two components: a parallel and perpendicular component:
101: 2922:"Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices" 1544: 1002: 1575: 831:
electrode with both full spin (P=+1 ) and symmetry polarization tunnel across an electrically biased SrTiO
97: 62: 1789: 133: 338: 1745: 723:
is applied to the junction, electrons tunnel in both directions with equal rates. With a bias voltage
370: 3080: 3036: 2993: 2933: 2884: 2841: 2771: 2682: 2637: 2577: 2533: 2476: 2417: 2320: 2265: 2214: 2166: 2124: 2086: 2036: 2001: 1958: 1930: 848: 813: 223: 211: 1872:
Note: In these calculations the active region (for which it is necessary to calculate the retarded
1825: 1146:{\displaystyle {\hat {\mathbf {T} }}={\frac {d{\hat {\mathbf {S} }}}{dt}}=-{\frac {i}{\hbar }}\left} 418: 2979:"Stability of point defects near MgO grain boundaries in FeCoB/MgO/FeCoB magnetic tunnel junctions" 215: 1246: 144:
The effect was originally discovered in 1975 by Michel Jullière (University of Rennes, France) in
3052: 3009: 2857: 2813: 2761: 2706: 2672: 2609: 2441: 2336: 2289: 2238: 1914: 231: 93: 2736: 2959: 2805: 2787: 2698: 2601: 2593: 2549: 2521: 2502: 2494: 2433: 2357: 2281: 2230: 2052: 1919: 1234:{\displaystyle {\hat {H}}={\hat {H}}_{0}-\Delta ({\boldsymbol {\sigma }}\cdot \mathbf {m} )/2} 727:, electrons tunnel preferentially to the positive electrode. With the assumption that spin is 412: 400: 325:{\displaystyle \mathrm {TMR} :={\frac {R_{\mathrm {ap} }-R_{\mathrm {p} }}{R_{\mathrm {p} }}}} 172: 161: 78: 74: 46: 1852: 3044: 3001: 2949: 2941: 2900: 2892: 2849: 2795: 2779: 2690: 2645: 2585: 2541: 2484: 2425: 2328: 2273: 2222: 2182: 2174: 2132: 2094: 2044: 2009: 1966: 1889: 109: 2905: 2364: 857: 809: 740: 207: 182: 30: 3040: 2997: 2937: 2888: 2845: 2775: 2748:
de Sousa, D. J. P.; Ascencio, C. O.; Haney, P. M.; Wang, J. P.; Low, Tony (2021-07-01).
2686: 2641: 2581: 2537: 2480: 2421: 2324: 2269: 2218: 2170: 2128: 2090: 2040: 2005: 1962: 17: 2954: 2921: 2800: 2749: 996: 408: 168: 125: 3005: 2429: 3069: 3056: 3013: 2861: 2817: 2445: 2340: 2152:"Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001)" 2013: 1970: 1877: 774: 744: 121: 2978: 2710: 2613: 2293: 2242: 2694: 992: 440: 3048: 2750:"Gigantic tunneling magnetoresistance in magnetic Weyl semimetal tunnel junctions" 2589: 2783: 2048: 821: 246:
Two-current model for parallel and anti-parallel alignment of the magnetizations
179: 82: 58: 2896: 2649: 2545: 2136: 2098: 242: 828: 736: 2791: 2597: 2553: 2498: 2437: 1984:
T. Miyazaki & N. Tezuka (1995). "Giant magnetic tunneling effect in Fe/Al
1660:{\displaystyle {\boldsymbol {\sigma }}=(\sigma _{x},\sigma _{y},\sigma _{z})} 747:). In this case the magnetization of the uncoupled electrode remains "free". 128:. If the magnetizations are in a parallel orientation it is more likely that 165: 149: 92:
technology. On an industrial scale the film deposition is done by magnetron
89: 66: 2963: 2809: 2702: 2605: 2506: 2285: 2234: 2056: 2073:
W. H. Butler; X.-G. Zhang; T. C. Schulthess & J. M. MacLaren (2001).
1265:
and the Pauli matrices properties involving arbitrary classical vectors
129: 70: 2489: 2464: 720: 124:
of the ferromagnetic films can be switched individually by an external
2945: 2853: 2332: 2187: 2178: 2277: 2226: 797: 157: 153: 2074: 2766: 2677: 1243:
where total magnetization (as macrospin) is along the unit vector
710:{\displaystyle \mathrm {TMR} ={\frac {2P_{1}P_{2}}{1-P_{1}P_{2}}}} 241: 29: 1541:
it is then possible to first obtain an analytical expression for
367:
is the electrical resistance in the anti-parallel state, whereas
250:
The relative resistance change—or effect amplitude—is defined as
186: 145: 2920:
Bean, J.J.; Saito, M.; Fukami, S.; Sato, H.; Ikeda, S. (2017).
2075:"Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches" 190: 1949:
M. Julliere (1975). "Tunneling between ferromagnetic films".
793:
pragmatically amount to experimental proof of this property.
1733:{\displaystyle T_{\parallel }={\sqrt {T_{x}^{2}+T_{z}^{2}}}} 568: 533: 499: 464: 424: 1030:
is obtained from the time derivative of the spin operator:
1155:
Using the general form of a 1D tight-binding Hamiltonian:
65:. If the insulating layer is thin enough (typically a few 843:
Spin-transfer torque in magnetic tunnel junctions (MTJs)
234:
in many applications due to their improved performance.
403:
of the ferromagnetic electrodes. The spin polarization
1855: 1828: 1792: 1748: 1679: 1606: 1578: 1547: 1477: 1408: 1303: 1271: 1249: 1163: 1038: 1005: 953: 871: 635: 451: 421: 373: 341: 259: 2457: 2455: 1861: 1841: 1811: 1774: 1732: 1659: 1592: 1564: 1531: 1462: 1393: 1287: 1257: 1233: 1145: 1022: 983: 937: 709: 602: 431: 399:The TMR effect was explained by Jullière with the 388: 359: 324: 136:, one with low and one with very high resistance. 27:Magnetic effect in insulators between ferromagnets 852:then be pinned to some selecting transistor in a 108:are also utilized. The junctions are prepared by 2403: 2401: 2110: 2108: 2068: 2066: 1572:(which can be expressed in compact form using 984:{\displaystyle {\hat {\rho }}_{\mathrm {neq} }} 2352: 2350: 2305: 2303: 88:Magnetic tunnel junctions are manufactured in 2200: 2198: 8: 856:device, or connected to a preamplifier in a 938:{\displaystyle \mathbf {T} =\mathrm {Tr} } 57:), which is a component consisting of two 2953: 2904: 2799: 2765: 2676: 2488: 2186: 1895:scanning transmission electron microscopy 1884:Discrepancy between theory and experiment 1854: 1833: 1827: 1797: 1791: 1766: 1753: 1747: 1722: 1717: 1704: 1699: 1693: 1684: 1678: 1648: 1635: 1622: 1607: 1605: 1585: 1577: 1551: 1549: 1548: 1546: 1524: 1516: 1505: 1494: 1486: 1478: 1476: 1455: 1447: 1436: 1428: 1420: 1412: 1407: 1386: 1375: 1367: 1353: 1345: 1334: 1326: 1315: 1307: 1302: 1288:{\displaystyle \mathbf {p} ,\mathbf {q} } 1280: 1272: 1270: 1250: 1248: 1223: 1215: 1207: 1192: 1181: 1180: 1165: 1164: 1162: 1127: 1126: 1118: 1108: 1093: 1065: 1063: 1062: 1056: 1042: 1040: 1039: 1037: 1009: 1007: 1006: 1004: 968: 967: 956: 955: 952: 919: 918: 907: 906: 894: 892: 891: 880: 872: 870: 698: 688: 670: 660: 650: 636: 634: 587: 586: 573: 567: 566: 552: 551: 538: 532: 531: 518: 517: 504: 498: 497: 483: 482: 469: 463: 462: 458: 450: 423: 422: 420: 396:is the resistance in the parallel state. 379: 378: 372: 347: 346: 340: 313: 312: 300: 299: 282: 281: 274: 260: 258: 1600:, and the vector of Pauli spin matrices 178:Since the year 2000, tunnel barriers of 1941: 1608: 1525: 1487: 1479: 1448: 1429: 1413: 1387: 1327: 1308: 1208: 1119: 1110: 1098: 808:Prior to the introduction of epitaxial 106:electron beam physical vapor deposition 3076:Electric and magnetic fields in matter 1565:{\displaystyle {\hat {\mathbf {T} }}} 1023:{\displaystyle {\hat {\mathbf {T} }}} 854:magnetoresistive random-access memory 804:Symmetry-filtering in tunnel barriers 81:phenomenon, and lies in the study of 7: 2410:Journal of Physics: Condensed Matter 1593:{\displaystyle \Delta ,\mathbf {m} } 34:Magnetic tunnel junction (schematic) 2977:Bean, J.J.; McKenna, K.P. (2018). 1812:{\displaystyle T_{\perp }\equiv 0} 1579: 1201: 975: 972: 969: 926: 923: 920: 884: 881: 643: 640: 637: 588: 553: 519: 484: 380: 351: 348: 314: 301: 286: 283: 267: 264: 261: 25: 3006:10.1103/PhysRevMaterials.2.125002 360:{\displaystyle R_{\mathrm {ap} }} 1775:{\displaystyle T_{\perp }=T_{y}} 1586: 1552: 1517: 1506: 1495: 1456: 1437: 1421: 1376: 1368: 1354: 1346: 1335: 1316: 1281: 1273: 1251: 1216: 1066: 1043: 1010: 895: 873: 389:{\displaystyle R_{\mathrm {p} }} 2358:The Emergence of Practical MRAM 1742:And a perpendicular component: 2906:11858/00-001M-0000-0010-FF18-5 2695:10.1103/PhysRevLett.109.166602 2150:M. Bowen; et al. (2001). 1842:{\displaystyle T_{\parallel }} 1654: 1615: 1556: 1499: 1483: 1425: 1409: 1380: 1364: 1339: 1323: 1320: 1304: 1220: 1204: 1186: 1170: 1132: 1070: 1047: 1014: 961: 932: 912: 899: 888: 594: 579: 574: 559: 544: 539: 525: 510: 505: 490: 475: 470: 432:{\displaystyle {\mathcal {D}}} 1: 3049:10.1016/j.actamat.2018.09.028 2590:10.1103/PhysRevLett.99.187202 826:lanthanum strontium manganite 2784:10.1103/physrevb.104.l041401 2014:10.1016/0304-8853(95)90001-2 1971:10.1016/0375-9601(75)90174-7 1258:{\displaystyle \mathbf {m} } 750:The TMR becomes infinite if 116:Phenomenological description 2430:10.1088/0953-8984/17/41/L02 2049:10.1103/PhysRevLett.74.3273 3102: 2897:10.1103/PhysRevB.78.195411 2650:10.1103/PhysRevB.79.174436 2546:10.1103/PhysRevB.73.140408 2137:10.1103/PhysRevB.63.220403 2099:10.1103/PhysRevB.63.054416 220:Thermal Assisted Switching 2986:Physical Review Materials 2671:(16): 166602 See Eq. 13. 2378:"From Hall Effect to TMR" 1899:density functional theory 767:ferromagnetic half-metals 120:The direction of the two 2463:Bowen, M. (2014-08-04). 96:; on a laboratory scale 51:magnetic tunnel junction 39:Tunnel magnetoresistance 18:Magnetic tunnel junction 2834:Applied Physics Letters 2570:Physical Review Letters 2313:Applied Physics Letters 1925:Giant Magnetoresistance 1862:{\displaystyle \theta } 407:is calculated from the 189:as the ferromagnet and 102:pulsed laser deposition 47:magnetoresistive effect 1863: 1843: 1813: 1776: 1734: 1673:A parallel component: 1661: 1594: 1566: 1533: 1464: 1395: 1289: 1259: 1235: 1147: 1024: 985: 939: 711: 604: 433: 390: 361: 326: 247: 98:molecular beam epitaxy 35: 2469:Nature Communications 2367:. Crocus Technologies 1864: 1844: 1814: 1777: 1735: 1662: 1595: 1567: 1534: 1465: 1396: 1290: 1260: 1236: 1148: 1025: 986: 940: 712: 605: 434: 391: 362: 327: 245: 134:electrical resistance 33: 1994:J. Magn. Magn. Mater 1931:Spin-transfer torque 1853: 1826: 1790: 1746: 1677: 1604: 1576: 1545: 1475: 1406: 1301: 1269: 1247: 1161: 1036: 1003: 951: 869: 849:spin-transfer torque 633: 449: 419: 371: 339: 257: 238:Physical explanation 224:Spin-transfer torque 61:separated by a thin 3041:2018AcMat.161..360X 2998:2018PhRvM...2l5002B 2938:2017NatSR...745594B 2889:2008PhRvB..78s5411B 2846:2008ApPhL..93h2508I 2776:2021PhRvB.104d1401D 2687:2012PhRvL.109p6602M 2642:2009PhRvB..79q4436M 2582:2007PhRvL..99r7202G 2538:2006PhRvB..73n0408B 2481:2014NatCo...5.4547S 2422:2005JPCM...17L.407B 2325:2008ApPhL..93h2508I 2270:2004NatMa...3..862P 2219:2004NatMa...3..868Y 2171:2001ApPhL..79.1655B 2129:2001PhRvB..63v0403M 2091:2001PhRvB..63e4416B 2041:1995PhRvL..74.3273M 2006:1995JMMM..139L.231M 1963:1975PhLA...54..225J 1727: 1709: 814:body-centered cubic 216:non-volatile memory 2926:Scientific Reports 2490:10.1038/ncomms5547 2363:2011-04-27 at the 1859: 1839: 1809: 1772: 1730: 1713: 1695: 1657: 1590: 1562: 1529: 1460: 1391: 1285: 1255: 1231: 1143: 1020: 981: 935: 707: 600: 429: 401:spin polarizations 386: 357: 322: 248: 94:sputter deposition 79:quantum mechanical 36: 3086:Magnetoresistance 2946:10.1038/srep45594 2877:Physical Review B 2854:10.1063/1.2976435 2754:Physical Review B 2630:Physical Review B 2526:Physical Review B 2385:Crocus Technology 2333:10.1063/1.2976435 2179:10.1063/1.1404125 1920:Magnetoresistance 1915:Quantum tunneling 1728: 1559: 1189: 1173: 1135: 1116: 1101: 1085: 1073: 1050: 1017: 964: 915: 902: 705: 598: 413:density of states 320: 173:Jagadeesh Moodera 162:Tohoku University 49:that occurs in a 16:(Redirected from 3093: 3061: 3060: 3024: 3018: 3017: 2983: 2974: 2968: 2967: 2957: 2917: 2911: 2910: 2908: 2872: 2866: 2865: 2828: 2822: 2821: 2803: 2769: 2745: 2739: 2721: 2715: 2714: 2680: 2660: 2654: 2653: 2624: 2618: 2617: 2564: 2558: 2557: 2517: 2511: 2510: 2492: 2459: 2450: 2449: 2405: 2396: 2395: 2393: 2391: 2382: 2374: 2368: 2354: 2345: 2344: 2307: 2298: 2297: 2278:10.1038/nmat1256 2253: 2247: 2246: 2227:10.1038/nmat1257 2202: 2193: 2192: 2190: 2159:Appl. Phys. Lett 2156: 2147: 2141: 2140: 2112: 2103: 2102: 2070: 2061: 2060: 2024: 2018: 2017: 1981: 1975: 1974: 1946: 1890:grain boundaries 1878:Zeeman splitting 1874:Green's function 1868: 1866: 1865: 1860: 1848: 1846: 1845: 1840: 1838: 1837: 1822:Therefore, only 1818: 1816: 1815: 1810: 1802: 1801: 1781: 1779: 1778: 1773: 1771: 1770: 1758: 1757: 1739: 1737: 1736: 1731: 1729: 1726: 1721: 1708: 1703: 1694: 1689: 1688: 1666: 1664: 1663: 1658: 1653: 1652: 1640: 1639: 1627: 1626: 1611: 1599: 1597: 1596: 1591: 1589: 1571: 1569: 1568: 1563: 1561: 1560: 1555: 1550: 1538: 1536: 1535: 1530: 1528: 1520: 1509: 1498: 1490: 1482: 1469: 1467: 1466: 1461: 1459: 1451: 1440: 1432: 1424: 1416: 1400: 1398: 1397: 1392: 1390: 1379: 1371: 1357: 1349: 1338: 1330: 1319: 1311: 1294: 1292: 1291: 1286: 1284: 1276: 1264: 1262: 1261: 1256: 1254: 1240: 1238: 1237: 1232: 1227: 1219: 1211: 1197: 1196: 1191: 1190: 1182: 1175: 1174: 1166: 1152: 1150: 1149: 1144: 1142: 1138: 1137: 1136: 1128: 1122: 1117: 1109: 1102: 1094: 1086: 1084: 1076: 1075: 1074: 1069: 1064: 1057: 1052: 1051: 1046: 1041: 1029: 1027: 1026: 1021: 1019: 1018: 1013: 1008: 990: 988: 987: 982: 980: 979: 978: 966: 965: 957: 944: 942: 941: 936: 931: 930: 929: 917: 916: 908: 904: 903: 898: 893: 887: 876: 716: 714: 713: 708: 706: 704: 703: 702: 693: 692: 676: 675: 674: 665: 664: 651: 646: 609: 607: 606: 601: 599: 597: 593: 592: 591: 578: 577: 572: 571: 558: 557: 556: 543: 542: 537: 536: 528: 524: 523: 522: 509: 508: 503: 502: 489: 488: 487: 474: 473: 468: 467: 459: 438: 436: 435: 430: 428: 427: 395: 393: 392: 387: 385: 384: 383: 366: 364: 363: 358: 356: 355: 354: 331: 329: 328: 323: 321: 319: 318: 317: 307: 306: 305: 304: 291: 290: 289: 275: 270: 214:, a new type of 208:hard disk drives 110:photolithography 21: 3101: 3100: 3096: 3095: 3094: 3092: 3091: 3090: 3066: 3065: 3064: 3029:Acta Materialia 3026: 3025: 3021: 2981: 2976: 2975: 2971: 2919: 2918: 2914: 2874: 2873: 2869: 2830: 2829: 2825: 2747: 2746: 2742: 2731:, Nature Phys. 2722: 2718: 2665:Phys. Rev. Lett 2662: 2661: 2657: 2626: 2625: 2621: 2566: 2565: 2561: 2519: 2518: 2514: 2461: 2460: 2453: 2407: 2406: 2399: 2389: 2387: 2380: 2376: 2375: 2371: 2365:Wayback Machine 2356:Barry Hoberman 2355: 2348: 2309: 2308: 2301: 2255: 2254: 2250: 2213:(12): 868–871. 2204: 2203: 2196: 2154: 2149: 2148: 2144: 2114: 2113: 2106: 2072: 2071: 2064: 2029:Phys. Rev. Lett 2026: 2025: 2021: 1992:/Fe junction". 1991: 1987: 1983: 1982: 1978: 1948: 1947: 1943: 1939: 1911: 1886: 1851: 1850: 1829: 1824: 1823: 1793: 1788: 1787: 1762: 1749: 1744: 1743: 1680: 1675: 1674: 1644: 1631: 1618: 1602: 1601: 1574: 1573: 1543: 1542: 1473: 1472: 1404: 1403: 1299: 1298: 1267: 1266: 1245: 1244: 1179: 1159: 1158: 1107: 1103: 1077: 1058: 1034: 1033: 1001: 1000: 995:nonequilibrium 993:gauge-invariant 954: 949: 948: 905: 867: 866: 858:hard disk drive 845: 834: 810:magnesium oxide 806: 792: 788: 784: 780: 772: 762: 755: 741:antiferromagnet 694: 684: 677: 666: 656: 652: 631: 630: 625: 618: 582: 565: 547: 530: 529: 513: 496: 478: 461: 460: 447: 446: 417: 416: 374: 369: 368: 342: 337: 336: 308: 295: 277: 276: 255: 254: 240: 200: 183:magnesium oxide 171:insulator and 142: 118: 28: 23: 22: 15: 12: 11: 5: 3099: 3097: 3089: 3088: 3083: 3078: 3068: 3067: 3063: 3062: 3019: 2992:(12): 125002. 2969: 2912: 2867: 2823: 2740: 2735:, 898 (2009). 2716: 2655: 2636:(17): 174436. 2619: 2576:(18): 187202. 2559: 2532:(14): 140408. 2512: 2451: 2416:(41): L407–9. 2397: 2369: 2346: 2299: 2248: 2194: 2142: 2123:(22): 220403. 2104: 2062: 2035:(16): 3273–6. 2019: 1989: 1985: 1976: 1940: 1938: 1935: 1934: 1933: 1928: 1922: 1917: 1910: 1907: 1885: 1882: 1858: 1836: 1832: 1808: 1805: 1800: 1796: 1769: 1765: 1761: 1756: 1752: 1725: 1720: 1716: 1712: 1707: 1702: 1698: 1692: 1687: 1683: 1656: 1651: 1647: 1643: 1638: 1634: 1630: 1625: 1621: 1617: 1614: 1610: 1588: 1584: 1581: 1558: 1554: 1527: 1523: 1519: 1515: 1512: 1508: 1504: 1501: 1497: 1493: 1489: 1485: 1481: 1458: 1454: 1450: 1446: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1411: 1389: 1385: 1382: 1378: 1374: 1370: 1366: 1363: 1360: 1356: 1352: 1348: 1344: 1341: 1337: 1333: 1329: 1325: 1322: 1318: 1314: 1310: 1306: 1283: 1279: 1275: 1253: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1203: 1200: 1195: 1188: 1185: 1178: 1172: 1169: 1141: 1134: 1131: 1125: 1121: 1115: 1112: 1106: 1100: 1097: 1092: 1089: 1083: 1080: 1072: 1068: 1061: 1055: 1049: 1045: 1016: 1012: 997:density matrix 977: 974: 971: 963: 960: 934: 928: 925: 922: 914: 911: 901: 897: 890: 886: 883: 879: 875: 847:The effect of 844: 841: 832: 805: 802: 790: 786: 782: 778: 775:Heusler alloys 770: 760: 753: 701: 697: 691: 687: 683: 680: 673: 669: 663: 659: 655: 649: 645: 642: 639: 623: 616: 596: 590: 585: 581: 576: 570: 564: 561: 555: 550: 546: 541: 535: 527: 521: 516: 512: 507: 501: 495: 492: 486: 481: 477: 472: 466: 457: 454: 426: 382: 377: 353: 350: 345: 333: 332: 316: 311: 303: 298: 294: 288: 285: 280: 273: 269: 266: 263: 239: 236: 199: 196: 169:aluminum oxide 141: 138: 126:magnetic field 122:magnetizations 117: 114: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3098: 3087: 3084: 3082: 3079: 3077: 3074: 3073: 3071: 3058: 3054: 3050: 3046: 3042: 3038: 3034: 3030: 3023: 3020: 3015: 3011: 3007: 3003: 2999: 2995: 2991: 2987: 2980: 2973: 2970: 2965: 2961: 2956: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2923: 2916: 2913: 2907: 2902: 2898: 2894: 2890: 2886: 2882: 2878: 2871: 2868: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2827: 2824: 2819: 2815: 2811: 2807: 2802: 2797: 2793: 2789: 2785: 2781: 2777: 2773: 2768: 2763: 2760:(4): 041401. 2759: 2755: 2751: 2744: 2741: 2738: 2734: 2730: 2726: 2720: 2717: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2679: 2674: 2670: 2666: 2659: 2656: 2651: 2647: 2643: 2639: 2635: 2631: 2623: 2620: 2615: 2611: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2579: 2575: 2571: 2563: 2560: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2516: 2513: 2508: 2504: 2500: 2496: 2491: 2486: 2482: 2478: 2474: 2470: 2466: 2458: 2456: 2452: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2419: 2415: 2411: 2404: 2402: 2398: 2386: 2379: 2373: 2370: 2366: 2362: 2359: 2353: 2351: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2319:(8): 082508. 2318: 2314: 2306: 2304: 2300: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2264:(12): 862–7. 2263: 2259: 2252: 2249: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2201: 2199: 2195: 2189: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2153: 2146: 2143: 2138: 2134: 2130: 2126: 2122: 2118: 2111: 2109: 2105: 2100: 2096: 2092: 2088: 2085:(5): 054416. 2084: 2080: 2076: 2069: 2067: 2063: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2023: 2020: 2015: 2011: 2007: 2003: 2000:(3): L231–4. 1999: 1995: 1980: 1977: 1972: 1968: 1964: 1960: 1956: 1952: 1945: 1942: 1936: 1932: 1929: 1926: 1923: 1921: 1918: 1916: 1913: 1912: 1908: 1906: 1902: 1900: 1896: 1891: 1883: 1881: 1879: 1875: 1870: 1856: 1834: 1830: 1820: 1806: 1803: 1798: 1794: 1785: 1782: 1767: 1763: 1759: 1754: 1750: 1740: 1723: 1718: 1714: 1710: 1705: 1700: 1696: 1690: 1685: 1681: 1671: 1668: 1649: 1645: 1641: 1636: 1632: 1628: 1623: 1619: 1612: 1582: 1539: 1521: 1513: 1510: 1502: 1491: 1470: 1452: 1444: 1441: 1433: 1417: 1401: 1383: 1372: 1361: 1358: 1350: 1342: 1331: 1312: 1296: 1277: 1241: 1228: 1224: 1212: 1198: 1193: 1183: 1176: 1167: 1156: 1153: 1139: 1129: 1123: 1113: 1104: 1095: 1090: 1087: 1081: 1078: 1059: 1053: 1031: 998: 994: 958: 945: 909: 877: 864: 861: 860:application. 859: 855: 850: 842: 840: 836: 830: 829:half-metallic 827: 823: 818: 815: 811: 803: 801: 799: 794: 776: 768: 763: 756: 748: 746: 745:exchange bias 742: 738: 733: 730: 726: 722: 717: 699: 695: 689: 685: 681: 678: 671: 667: 661: 657: 653: 647: 628: 626: 619: 610: 583: 562: 548: 514: 493: 479: 455: 452: 444: 442: 414: 410: 406: 402: 397: 375: 343: 309: 296: 292: 278: 271: 253: 252: 251: 244: 237: 235: 233: 227: 225: 221: 217: 213: 209: 205: 197: 195: 192: 188: 184: 181: 176: 174: 170: 167: 163: 159: 155: 151: 147: 139: 137: 135: 131: 127: 123: 115: 113: 111: 107: 103: 99: 95: 91: 86: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 32: 19: 3032: 3028: 3022: 2989: 2985: 2972: 2929: 2925: 2915: 2880: 2876: 2870: 2840:(8): 39–42. 2837: 2833: 2826: 2757: 2753: 2743: 2732: 2728: 2724: 2719: 2668: 2664: 2658: 2633: 2629: 2622: 2573: 2569: 2562: 2529: 2525: 2515: 2472: 2468: 2413: 2409: 2388:. Retrieved 2384: 2372: 2316: 2312: 2261: 2257: 2251: 2210: 2206: 2165:(11): 1655. 2162: 2158: 2145: 2120: 2117:Phys. Rev. B 2116: 2082: 2079:Phys. Rev. B 2078: 2032: 2028: 2022: 1997: 1993: 1979: 1957:(3): 225–6. 1954: 1950: 1944: 1903: 1887: 1871: 1821: 1786: 1783: 1741: 1672: 1669: 1540: 1471: 1402: 1297: 1242: 1157: 1154: 1032: 946: 865: 862: 846: 837: 819: 807: 795: 766: 758: 751: 749: 737:coercivities 734: 724: 718: 629: 621: 614: 611: 445: 441:Fermi energy 404: 398: 334: 249: 232:Hall sensors 228: 201: 198:Applications 177: 143: 119: 87: 59:ferromagnets 54: 50: 42: 38: 37: 3081:Spintronics 2883:(19): 1–8. 1295:, given by 822:spintronics 180:crystalline 83:spintronics 3070:Categories 2767:2103.05501 2723:[S.-C. Oh 2258:Nat. Mater 2207:Nat. Mater 2188:2445/33761 1951:Phys. Lett 1937:References 773:, various 411:dependent 222:(TAS) and 206:of modern 204:read-heads 67:nanometres 3057:140024466 3035:: 360–6. 3014:197631853 2862:122271110 2818:232168454 2792:2469-9950 2678:1202.6602 2598:0031-9007 2554:1098-0121 2499:2041-1723 2446:117180760 2438:0953-8984 2341:122271110 1857:θ 1835:∥ 1804:≡ 1799:⊥ 1755:⊥ 1686:∥ 1646:σ 1633:σ 1620:σ 1609:σ 1580:Δ 1557:^ 1526:σ 1522:× 1492:⋅ 1488:σ 1480:σ 1453:× 1449:σ 1430:σ 1418:⋅ 1414:σ 1388:σ 1384:⋅ 1373:× 1351:⋅ 1332:⋅ 1328:σ 1313:⋅ 1309:σ 1213:⋅ 1209:σ 1202:Δ 1199:− 1187:^ 1171:^ 1133:^ 1120:σ 1111:ℏ 1099:ℏ 1091:− 1071:^ 1048:^ 1015:^ 962:^ 959:ρ 913:^ 910:ρ 900:^ 789:and SrTiO 729:conserved 682:− 575:↓ 540:↑ 506:↓ 494:− 471:↑ 293:− 166:amorphous 130:electrons 90:thin film 71:electrons 63:insulator 2964:28374755 2810:36875244 2711:40870461 2703:23215105 2614:30668262 2606:17995434 2507:25088937 2475:: 4547. 2390:22 March 2361:Archived 2294:33709206 2286:15516928 2243:44430045 2235:15516927 2057:10058155 1909:See also 3037:Bibcode 2994:Bibcode 2955:5379487 2934:Bibcode 2932:: 1–9. 2885:Bibcode 2842:Bibcode 2801:9982938 2772:Bibcode 2683:Bibcode 2638:Bibcode 2578:Bibcode 2534:Bibcode 2477:Bibcode 2418:Bibcode 2321:Bibcode 2266:Bibcode 2215:Bibcode 2167:Bibcode 2125:Bibcode 2087:Bibcode 2037:Bibcode 2002:Bibcode 1959:Bibcode 991:is the 721:voltage 439:at the 140:History 45:) is a 3055:  3012:  2962:  2952:  2860:  2816:  2808:  2798:  2790:  2725:et al. 2709:  2701:  2612:  2604:  2596:  2552:  2505:  2497:  2444:  2436:  2339:  2292:  2284:  2241:  2233:  2055:  947:where 798:magnon 719:If no 415:(DOS) 335:where 75:tunnel 3053:S2CID 3010:S2CID 2982:(PDF) 2858:S2CID 2814:S2CID 2762:arXiv 2737:(PDF) 2707:S2CID 2673:arXiv 2610:S2CID 2442:S2CID 2381:(PDF) 2337:S2CID 2290:S2CID 2239:S2CID 2155:(PDF) 1927:(GMR) 2960:PMID 2806:PMID 2788:ISSN 2699:PMID 2602:PMID 2594:ISSN 2550:ISSN 2503:PMID 2495:ISSN 2434:ISSN 2392:2022 2282:PMID 2231:PMID 2053:PMID 1849:vs. 757:and 620:and 409:spin 212:MRAM 202:The 187:iron 104:and 73:can 3045:doi 3033:161 3002:doi 2950:PMC 2942:doi 2901:hdl 2893:doi 2850:doi 2796:PMC 2780:doi 2758:104 2691:doi 2669:109 2646:doi 2586:doi 2542:doi 2485:doi 2426:doi 2329:doi 2274:doi 2223:doi 2183:hdl 2175:doi 2133:doi 2095:doi 2045:doi 2010:doi 1998:139 1967:doi 1955:54A 1667:). 785:MnO 783:0.3 779:0.7 191:MgO 69:), 55:MTJ 43:TMR 3072:: 3051:. 3043:. 3031:. 3008:. 3000:. 2988:. 2984:. 2958:. 2948:. 2940:. 2928:. 2924:. 2899:. 2891:. 2881:78 2879:. 2856:. 2848:. 2838:93 2836:. 2812:. 2804:. 2794:. 2786:. 2778:. 2770:. 2756:. 2752:. 2727:, 2705:. 2697:. 2689:. 2681:. 2667:. 2644:. 2634:79 2632:. 2608:. 2600:. 2592:. 2584:. 2574:99 2572:. 2548:. 2540:. 2530:73 2528:. 2524:. 2501:. 2493:. 2483:. 2471:. 2467:. 2454:^ 2440:. 2432:. 2424:. 2414:17 2412:. 2400:^ 2383:. 2349:^ 2335:. 2327:. 2317:93 2315:. 2302:^ 2288:. 2280:. 2272:. 2260:. 2237:. 2229:. 2221:. 2209:. 2197:^ 2181:. 2173:. 2163:79 2161:. 2157:. 2131:. 2121:63 2119:. 2107:^ 2093:. 2083:63 2081:. 2077:. 2065:^ 2051:. 2043:. 2033:74 2031:. 2008:. 1996:. 1965:. 1953:. 1819:. 781:Sr 627:: 443:: 272::= 226:. 158:Co 150:Ge 146:Fe 112:. 100:, 85:. 3059:. 3047:: 3039:: 3016:. 3004:: 2996:: 2990:2 2966:. 2944:: 2936:: 2930:7 2909:. 2903:: 2895:: 2887:: 2864:. 2852:: 2844:: 2820:. 2782:: 2774:: 2764:: 2733:5 2713:. 2693:: 2685:: 2675:: 2652:. 2648:: 2640:: 2616:. 2588:: 2580:: 2556:. 2544:: 2536:: 2509:. 2487:: 2479:: 2473:5 2448:. 2428:: 2420:: 2394:. 2343:. 2331:: 2323:: 2296:. 2276:: 2268:: 2262:3 2245:. 2225:: 2217:: 2211:3 2191:. 2185:: 2177:: 2169:: 2139:. 2135:: 2127:: 2101:. 2097:: 2089:: 2059:. 2047:: 2039:: 2016:. 2012:: 2004:: 1990:3 1988:O 1986:2 1973:. 1969:: 1961:: 1831:T 1807:0 1795:T 1768:y 1764:T 1760:= 1751:T 1724:2 1719:z 1715:T 1711:+ 1706:2 1701:x 1697:T 1691:= 1682:T 1655:) 1650:z 1642:, 1637:y 1629:, 1624:x 1616:( 1613:= 1587:m 1583:, 1553:T 1518:q 1514:i 1511:+ 1507:q 1503:= 1500:) 1496:q 1484:( 1457:p 1445:i 1442:+ 1438:p 1434:= 1426:) 1422:p 1410:( 1381:) 1377:q 1369:p 1365:( 1362:i 1359:+ 1355:q 1347:p 1343:= 1340:) 1336:q 1324:( 1321:) 1317:p 1305:( 1282:q 1278:, 1274:p 1252:m 1229:2 1225:/ 1221:) 1217:m 1205:( 1194:0 1184:H 1177:= 1168:H 1140:] 1130:H 1124:, 1114:2 1105:[ 1096:i 1088:= 1082:t 1079:d 1067:S 1060:d 1054:= 1044:T 1011:T 976:q 973:e 970:n 933:] 927:q 924:e 921:n 896:T 889:[ 885:r 882:T 878:= 874:T 833:3 791:3 787:3 771:2 761:2 759:P 754:1 752:P 743:( 725:U 700:2 696:P 690:1 686:P 679:1 672:2 668:P 662:1 658:P 654:2 648:= 644:R 641:M 638:T 624:2 622:P 617:1 615:P 595:) 589:F 584:E 580:( 569:D 563:+ 560:) 554:F 549:E 545:( 534:D 526:) 520:F 515:E 511:( 500:D 491:) 485:F 480:E 476:( 465:D 456:= 453:P 425:D 405:P 381:p 376:R 352:p 349:a 344:R 315:p 310:R 302:p 297:R 287:p 284:a 279:R 268:R 265:M 262:T 156:/ 154:O 152:- 148:/ 53:( 41:( 20:)

Index

Magnetic tunnel junction

magnetoresistive effect
ferromagnets
insulator
nanometres
electrons
tunnel
quantum mechanical
spintronics
thin film
sputter deposition
molecular beam epitaxy
pulsed laser deposition
electron beam physical vapor deposition
photolithography
magnetizations
magnetic field
electrons
electrical resistance
Fe
Ge
O
Co
Tohoku University
amorphous
aluminum oxide
Jagadeesh Moodera
crystalline
magnesium oxide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑