Knowledge (XXG)

Magnetoresistance

Source đź“ť

519:(exceptions related to non-collinear magnetic order notwithstanding, see Sec. 4(b) in the review ) and its detailed mechanism depends on the material. It can be for example due to a larger probability of s-d scattering of electrons in the direction of magnetization (which is controlled by the applied magnetic field). The net effect (in most materials) is that the electrical resistance has maximum value when the direction of current is parallel to the applied magnetic field. AMR of new materials is being investigated and magnitudes up to 50% have been observed in some uranium (but otherwise quite conventional) ferromagnetic compounds. Very recently, materials with extreme AMR have been identified driven by unconventional mechanisms such as a metal-insulator transition triggered by rotating the magnetic moments (while for some directions of magnetic moments, the system is semimetallic, for other directions a gap opens). 455: 500: 464:-field (for motion perpendicular to this field) is apparent. Electric current (proportional to the radial component of velocity) will decrease with increasing magnetic field and hence the resistance of the device will increase. Critically, this magnetoresistive scenario depends sensitively on the device geometry and current lines and it does not rely on magnetic materials. 90: 234: 816:(a ferromagnetic material exhibiting the AMR effect) inclined at an angle of 45°. This structure forces the current not to flow along the “easy axes” of thin film, but at an angle of 45°. The dependence of resistance now has a permanent offset which is linear around the null point. Because of its appearance, this sensor type is called ' 111: 147:
An example of magnetoresistance due to direct action of magnetic field on electric current can be studied on a Corbino disc (see Figure). It consists of a conducting annulus with perfectly conducting rims. Without a magnetic field, the battery drives a radial current between the rims. When a magnetic
85:
first discovered ordinary magnetoresistance in 1856. He experimented with pieces of iron and discovered that the resistance increases when the current is in the same direction as the magnetic force and decreases when the current is at 90° to the magnetic force. He then did the same experiment with
846:
As theoretical aspects, I. A. Campbell, A. Fert, and O. Jaoul (CFJ) derived an expression of the AMR ratio for Ni-based alloys using the two-current model with s-s and s-d scattering processes, where s is a conduction electron and d is 3d states with the spin-orbit interaction. The AMR ratio is
69:
structures are known. In these, a magnetic field can adjust the resistance by orders of magnitude. Since different mechanisms can alter the resistance, it is useful to separately consider situations where it depends on a magnetic field directly (e.g. geometric magnetoresistance and multiband
1610:
De Ranieri, E.; Rushforth, A. W.; Výborný, K.; Rana, U.; Ahmed, E.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.; Irvine, A. C.; Wunderlich, J.; Jungwirth, T. (10 June 2008), "Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As",
450:{\displaystyle \mathbf {v} ={\frac {\mu }{1+(\mu B)^{2}}}\left(\mathbf {E} +\mu \mathbf {E\times B} +\mu ^{2}(\mathbf {B\cdot E} )\mathbf {B} \right)={\frac {\mu }{1+(\mu B)^{2}}}\left(\mathbf {E} _{\perp }+\mu \mathbf {E\times B} \right)+\mu \mathbf {E} _{\parallel },\ } 945: 38:, or the common positive magnetoresistance in metals. Other effects occur in magnetic metals, such as negative magnetoresistance in ferromagnets or anisotropic magnetoresistance (AMR). Finally, in multicomponent or multilayer systems (e.g. magnetic tunnel junctions), 114:
Corbino disc. With the magnetic field turned off, a radial current flows in the conducting annulus due to the battery connected between the (infinite) conductivity rims. When a magnetic field along the axis is turned on (B points directly out of the screen), the
93: 1168:, respectively. In addition, recently, Satoshi Kokado et al. have obtained the general expression of the AMR ratio for 3d transition-metal ferromagnets by extending the CFJ theory to a more general one. The general expression can also be applied to half-metals. 97: 96: 92: 91: 98: 645: 95: 223: 811:
To compensate for the non-linear characteristics and inability to detect the polarity of a magnetic field, the following structure is used for sensors. It consists of stripes of aluminum or gold placed on a thin film of
1059: 827:), for electric current measuring (by measuring the magnetic field created around the conductor), for traffic detection and for linear position and angle sensing. The biggest AMR sensor manufacturers are 491:, an example of a high mobility semiconductor, could have an electron mobility above 4 m·V·s at 300 K. So in a 0.25 T field, for example the magnetoresistance increase would be 100%. 852: 1213:
changes sign upon magnetic field reversal and it is an orbital effect (unrelated to spin) due to the Lorentz force. Transversal AMR (planar Hall effect) does not change sign and it is caused by
1698:
Kokado, Satoshi; Tsunoda, Masakiyo; Harigaya, Kikuo; Sakuma, Akimasa (2012). "Anisotropic Magnetoresistance Effects in Fe, Co, Ni, Fe4N, and Half-Metallic Ferromagnet: A Systematic Analysis".
511:
Thomson's experiments are an example of AMR, a property of a material in which a dependence of electrical resistance on the angle between the direction of electric current and direction of
704: 1011: 553: 94: 1126: 806: 757: 730: 560: 34:. There are a variety of effects that can be called magnetoresistance. Some occur in bulk non-magnetic metals and semiconductors, such as geometrical magnetoresistance, 1166: 86:
nickel and found that it was affected in the same way but the magnitude of the effect was greater. This effect is referred to as anisotropic magnetoresistance (AMR).
1146: 119:
drives a circular component of current, and the resistance between the inner and outer rims goes up. This increase in resistance due to the magnetic field is called
1751:
Kokado, Satoshi; Tsunoda, Masakiyo (2013). "Anisotropic Magnetoresistance Effect: General Expression of AMR Ratio and Intuitive Explanation for Sign of AMR Ratio".
780: 667: 1099: 1079: 1487: 165: 1312:
Thomson, W. (18 June 1857), "On the Electro-Dynamic Qualities of Metals:—Effects of Magnetization on the Electric Conductivity of Nickel and of Iron",
555:
between the magnetization and current direction and (as long as the resistivity of the material can be described by a rank-two tensor), it must follow
148:
field perpendicular to the plane of the annulus is applied, (either into or out of the page) a circular component of current flows as well, due to
1245: 1197: 61:, better known as Lord Kelvin, but he was unable to lower the electrical resistance of anything by more than 5%. Today, systems including 82: 58: 1016: 1192: 66: 51: 940:{\displaystyle {\frac {\Delta \rho }{\rho }}={\frac {\rho _{\parallel }-\rho _{\perp }}{\rho _{\perp }}}=\gamma (\alpha -1),} 759:, respectively. Associated with longitudinal resistivity, there is also transversal resistivity dubbed (somewhat confusingly 155:
In a simple model, supposing the response to the Lorentz force is the same as for an electric field, the carrier velocity
35: 152:. Initial interest in this problem began with Boltzmann in 1886, and independently was re-examined by Corbino in 1911. 1877: 1214: 516: 1528:
Wiśniewski, P. (2007). "Giant anisotropic magnetoresistance and magnetothermopower in cubic 3:4 uranium pnictides".
1887: 1872: 1187: 47: 1882: 1182: 676: 71: 43: 1177: 952: 526: 136: 103: 39: 1663:
Campbell, I. A.; Fert, A.; Jaoul, O. (1970). "The spontaneous resistivity anisotropy in Ni-based alloys".
823:
The AMR effect is used in a wide array of sensors for measurement of Earth's magnetic field (electronic
27: 1892: 1826: 1766: 1717: 1672: 1630: 1576: 1537: 1502: 1442: 1382: 1270: 1104: 1563:
Yang, Huali (2021). "Colossal angular magnetoresistance in the antiferromagnetic semiconductor EuTe
785: 640:{\displaystyle \rho (\varphi )=\rho _{\perp }+(\rho _{\parallel }-\rho _{\perp })\cos ^{2}\varphi } 1340: 1295: 1850: 1816: 1782: 1778: 1756: 1733: 1707: 1646: 1620: 1592: 1432: 1398: 1372: 836: 832: 735: 709: 515:
is observed. The effect arises in most cases from the simultaneous action of magnetization and
1842: 1468: 1241: 488: 476: 132: 1151: 70:
magnetoresistance) and those where it does so indirectly through magnetization (e.g. AMR and
1834: 1774: 1725: 1680: 1638: 1584: 1545: 1510: 1458: 1450: 1390: 1321: 1278: 1131: 1801: 765: 652: 1830: 1770: 1721: 1676: 1642: 1634: 1580: 1541: 1506: 1463: 1446: 1420: 1386: 1274: 1084: 1064: 31: 23: 1866: 1737: 1684: 1650: 1596: 471:
with a single carrier type, the magnetoresistance is proportional to (1 + (
468: 149: 116: 1786: 1402: 1854: 1394: 484: 1838: 218:{\displaystyle \mathbf {v} =\mu \left(\mathbf {E} +\mathbf {v\times B} \right),\ } 1235: 523:
In polycrystalline ferromagnetic materials, the AMR can only depend on the angle
1588: 1210: 817: 670: 128: 499: 1514: 1261:
Coleman, R.V.; Isin, A. (1966), "Magnetoresistance in Iron Single Crystals",
1800:
Tang, H. X.; Kawakami, R. K.; Awschalom, D. D.; Roukes, M. L. (March 2003),
828: 813: 504: 62: 1846: 1729: 1472: 1326: 507:
film is shown here as a function of the angle of an applied external field.
110: 1821: 1454: 824: 1549: 1282: 228:
where ÎĽ is the carrier mobility. Solving for the velocity, we find:
1437: 1421:"Anisotropic magnetoresistance: Materials, models and applications" 1377: 1761: 1712: 1625: 1363:
G Giuliani (2008). "A general law for electromagnetic induction".
88: 1054:{\displaystyle \alpha =\rho _{\downarrow }/\rho _{\uparrow }} 57:
The first magnetoresistive effect was discovered in 1856 by
1488:"Anisotropic magnetoresistance in ferromagnetic 3d alloys" 840: 135:
were jointly awarded the Nobel Prize for the discovery of
1802:"Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices" 762:) the planar Hall effect. In monocrystals, resistivity 1154: 1134: 1107: 1087: 1067: 1019: 955: 855: 788: 768: 738: 712: 679: 655: 563: 529: 460:
where the effective reduction in mobility due to the
237: 168: 102:Animation about graphs related to the discovery of 1160: 1140: 1120: 1093: 1073: 1053: 1005: 939: 800: 774: 751: 724: 698: 661: 639: 547: 449: 217: 1148:), an exchange field, and a resistivity for spin 1128:are a spin-orbit coupling constant (so-called 8: 1419:Ritzinger, Philipp; Vyborny, Karel (2023). 1414: 1412: 1779:10.4028/www.scientific.net/AMR.750-752.978 1820: 1760: 1711: 1624: 1462: 1436: 1376: 1325: 1153: 1133: 1112: 1106: 1086: 1066: 1045: 1036: 1030: 1018: 997: 985: 968: 954: 905: 894: 881: 874: 856: 854: 787: 767: 743: 737: 711: 699:{\displaystyle \rho _{\parallel ,\perp }} 684: 678: 654: 625: 612: 599: 583: 562: 528: 435: 430: 407: 395: 390: 375: 350: 337: 323: 314: 296: 285: 271: 246: 238: 236: 193: 185: 169: 167: 1307: 1305: 498: 109: 1226: 1006:{\displaystyle \gamma =(3/4)(A/H)^{2}} 548:{\displaystyle \varphi =\psi -\theta } 16:Magnetically-induced resistance change 1198:Magnetoresistive random-access memory 22:is the tendency of a material (often 7: 495:Anisotropic magnetoresistance (AMR) 859: 14: 1486:McGuire, T.; Potter, R. (1975). 431: 414: 408: 391: 338: 330: 324: 303: 297: 286: 239: 200: 194: 186: 170: 1342:The Nobel Prize in Physics 2007 1296:"Unstoppable Magnetoresistance" 1193:Extraordinary magnetoresistance 1121:{\displaystyle \rho _{\sigma }} 52:extraordinary magnetoresistance 1495:IEEE Transactions on Magnetics 1240:. Cambridge University Press. 1046: 1031: 994: 979: 976: 962: 931: 919: 760: 685: 618: 592: 573: 567: 372: 362: 334: 320: 268: 258: 36:Shubnikov–de Haas oscillations 1: 1839:10.1103/PhysRevLett.90.107201 1643:10.1088/1367-2630/10/6/065003 801:{\displaystyle \psi ,\theta } 483:is the magnetic field (units 143:Geometrical magnetoresistance 83:William Thomson (Lord Kelvin) 26:) to change the value of its 1345:, Nobel Media AB, 9 Oct 2007 1753:Advanced Materials Research 1589:10.1103/PhysRevB.104.214419 1237:Magnetoresistance in Metals 752:{\displaystyle 90^{\circ }} 1909: 1685:10.1088/0022-3719/3/1S/310 1425:Royal Society Open Science 1395:10.1209/0295-5075/81/60002 1263:Journal of Applied Physics 1188:Colossal magnetoresistance 725:{\displaystyle \varphi =0} 706:are the resistivities for 48:colossal magnetoresistance 1515:10.1109/TMAG.1975.1058782 503:The resistance of a thin 30:in an externally-applied 1183:Tunnel magnetoresistance 44:tunnel magnetoresistance 1530:Applied Physics Letters 1178:Giant magnetoresistance 1161:{\displaystyle \sigma } 479:(units m·V·s or T) and 137:giant magnetoresistance 104:giant magnetoresistance 54:(EMR) can be observed. 40:giant magnetoresistance 1730:10.1143/JPSJ.81.024705 1327:10.1098/rspl.1856.0144 1234:Pippard, A.B. (1989). 1215:spin-orbit interaction 1162: 1142: 1141:{\displaystyle \zeta } 1122: 1095: 1075: 1055: 1007: 941: 802: 776: 753: 726: 700: 669:is the (longitudinal) 663: 641: 549: 517:spin-orbit interaction 508: 477:semiconductor mobility 451: 219: 124: 107: 1163: 1143: 1123: 1096: 1076: 1056: 1008: 942: 803: 777: 775:{\displaystyle \rho } 754: 727: 701: 664: 662:{\displaystyle \rho } 642: 550: 502: 452: 220: 113: 101: 28:electrical resistance 1755:. 750–752: 978–982. 1152: 1132: 1105: 1085: 1065: 1017: 953: 853: 786: 766: 736: 710: 677: 653: 561: 527: 235: 166: 65:and concentric ring 1831:2003PhRvL..90j7201T 1771:2013arXiv1305.3517K 1722:2012JPSJ...81b4705K 1677:1970JPhC....3S..95C 1635:2008NJPh...10f5003D 1581:2021PhRvB.104u4419Y 1542:2007ApPhL..90s2106W 1507:1975ITM....11.1018M 1455:10.1098/rsos.230564 1447:2023RSOS...1030564R 1387:2008EL.....8160002G 1314:Proc. R. Soc. Lond. 1275:1966JAP....37.1028C 475:)), where ÎĽ is the 1878:1856 introductions 1706:(2): 024705–1–17. 1209:1. The (ordinary) 1158: 1138: 1118: 1091: 1071: 1051: 1003: 937: 837:STMicroelectronics 833:NXP Semiconductors 798: 772: 749: 722: 696: 659: 637: 545: 509: 447: 215: 125: 108: 1888:Magnetic ordering 1873:Magnetoresistance 1700:J. Phys. Soc. Jpn 1550:10.1063/1.2737904 1283:10.1063/1.1708320 1247:978-0-521-32660-5 1094:{\displaystyle H} 1074:{\displaystyle A} 911: 869: 673:of the film and 489:Indium antimonide 446: 382: 278: 214: 121:magnetoresistance 99: 20:Magnetoresistance 1900: 1858: 1857: 1824: 1822:cond-mat/0210118 1809:Phys. Rev. Lett. 1806: 1797: 1791: 1790: 1764: 1748: 1742: 1741: 1715: 1695: 1689: 1688: 1671:(1S): S95–S101. 1660: 1654: 1653: 1628: 1607: 1601: 1600: 1560: 1554: 1553: 1525: 1519: 1518: 1492: 1483: 1477: 1476: 1466: 1440: 1416: 1407: 1406: 1380: 1360: 1354: 1353: 1352: 1350: 1337: 1331: 1330: 1329: 1309: 1300: 1299: 1292: 1286: 1285: 1258: 1252: 1251: 1231: 1167: 1165: 1164: 1159: 1147: 1145: 1144: 1139: 1127: 1125: 1124: 1119: 1117: 1116: 1100: 1098: 1097: 1092: 1080: 1078: 1077: 1072: 1060: 1058: 1057: 1052: 1050: 1049: 1040: 1035: 1034: 1012: 1010: 1009: 1004: 1002: 1001: 989: 972: 946: 944: 943: 938: 912: 910: 909: 900: 899: 898: 886: 885: 875: 870: 865: 857: 807: 805: 804: 799: 782:depends also on 781: 779: 778: 773: 758: 756: 755: 750: 748: 747: 731: 729: 728: 723: 705: 703: 702: 697: 695: 694: 668: 666: 665: 660: 646: 644: 643: 638: 630: 629: 617: 616: 604: 603: 588: 587: 554: 552: 551: 546: 456: 454: 453: 448: 444: 440: 439: 434: 422: 418: 417: 400: 399: 394: 383: 381: 380: 379: 351: 346: 342: 341: 333: 319: 318: 306: 289: 279: 277: 276: 275: 247: 242: 224: 222: 221: 216: 212: 208: 204: 203: 189: 173: 100: 1908: 1907: 1903: 1902: 1901: 1899: 1898: 1897: 1883:1856 in science 1863: 1862: 1861: 1804: 1799: 1798: 1794: 1750: 1749: 1745: 1697: 1696: 1692: 1662: 1661: 1657: 1609: 1608: 1604: 1566: 1562: 1561: 1557: 1527: 1526: 1522: 1490: 1485: 1484: 1480: 1418: 1417: 1410: 1362: 1361: 1357: 1348: 1346: 1339: 1338: 1334: 1311: 1310: 1303: 1294: 1293: 1289: 1260: 1259: 1255: 1248: 1233: 1232: 1228: 1224: 1206: 1174: 1150: 1149: 1130: 1129: 1108: 1103: 1102: 1083: 1082: 1063: 1062: 1041: 1026: 1015: 1014: 993: 951: 950: 901: 890: 877: 876: 858: 851: 850: 784: 783: 764: 763: 739: 734: 733: 708: 707: 680: 675: 674: 651: 650: 621: 608: 595: 579: 559: 558: 525: 524: 522: 497: 429: 389: 388: 384: 371: 355: 310: 284: 280: 267: 251: 233: 232: 184: 180: 164: 163: 145: 89: 80: 59:William Thomson 17: 12: 11: 5: 1906: 1904: 1896: 1895: 1890: 1885: 1880: 1875: 1865: 1864: 1860: 1859: 1815:(10): 107201, 1792: 1743: 1690: 1655: 1602: 1575:(21): 214419. 1564: 1555: 1536:(19): 192106. 1520: 1501:(4): 1018–38. 1478: 1408: 1355: 1332: 1301: 1287: 1253: 1246: 1225: 1223: 1220: 1219: 1218: 1205: 1202: 1201: 1200: 1195: 1190: 1185: 1180: 1173: 1170: 1157: 1137: 1115: 1111: 1090: 1070: 1048: 1044: 1039: 1033: 1029: 1025: 1022: 1000: 996: 992: 988: 984: 981: 978: 975: 971: 967: 964: 961: 958: 936: 933: 930: 927: 924: 921: 918: 915: 908: 904: 897: 893: 889: 884: 880: 873: 868: 864: 861: 808:individually. 797: 794: 791: 771: 746: 742: 721: 718: 715: 693: 690: 687: 683: 658: 636: 633: 628: 624: 620: 615: 611: 607: 602: 598: 594: 591: 586: 582: 578: 575: 572: 569: 566: 544: 541: 538: 535: 532: 496: 493: 458: 457: 443: 438: 433: 428: 425: 421: 416: 413: 410: 406: 403: 398: 393: 387: 378: 374: 370: 367: 364: 361: 358: 354: 349: 345: 340: 336: 332: 329: 326: 322: 317: 313: 309: 305: 302: 299: 295: 292: 288: 283: 274: 270: 266: 263: 260: 257: 254: 250: 245: 241: 226: 225: 211: 207: 202: 199: 196: 192: 188: 183: 179: 176: 172: 144: 141: 133:Peter GrĂĽnberg 79: 76: 32:magnetic field 15: 13: 10: 9: 6: 4: 3: 2: 1905: 1894: 1891: 1889: 1886: 1884: 1881: 1879: 1876: 1874: 1871: 1870: 1868: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1823: 1818: 1814: 1810: 1803: 1796: 1793: 1788: 1784: 1780: 1776: 1772: 1768: 1763: 1758: 1754: 1747: 1744: 1739: 1735: 1731: 1727: 1723: 1719: 1714: 1709: 1705: 1701: 1694: 1691: 1686: 1682: 1678: 1674: 1670: 1666: 1659: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1627: 1622: 1619:(6): 065003, 1618: 1614: 1606: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1570: 1559: 1556: 1551: 1547: 1543: 1539: 1535: 1531: 1524: 1521: 1516: 1512: 1508: 1504: 1500: 1496: 1489: 1482: 1479: 1474: 1470: 1465: 1460: 1456: 1452: 1448: 1444: 1439: 1434: 1430: 1426: 1422: 1415: 1413: 1409: 1404: 1400: 1396: 1392: 1388: 1384: 1379: 1374: 1370: 1366: 1359: 1356: 1344: 1343: 1336: 1333: 1328: 1323: 1319: 1315: 1308: 1306: 1302: 1297: 1291: 1288: 1284: 1280: 1276: 1272: 1269:(3): 1028–9, 1268: 1264: 1257: 1254: 1249: 1243: 1239: 1238: 1230: 1227: 1221: 1216: 1212: 1208: 1207: 1203: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1175: 1171: 1169: 1155: 1135: 1113: 1109: 1088: 1068: 1042: 1037: 1027: 1023: 1020: 998: 990: 986: 982: 973: 969: 965: 959: 956: 947: 934: 928: 925: 922: 916: 913: 906: 902: 895: 891: 887: 882: 878: 871: 866: 862: 848: 847:expressed as 844: 842: 841:Sensitec GmbH 838: 834: 830: 826: 821: 819: 815: 809: 795: 792: 789: 769: 761: 744: 740: 719: 716: 713: 691: 688: 681: 672: 656: 647: 634: 631: 626: 622: 613: 609: 605: 600: 596: 589: 584: 580: 576: 570: 564: 556: 542: 539: 536: 533: 530: 520: 518: 514: 513:magnetization 506: 501: 494: 492: 490: 486: 482: 478: 474: 470: 469:semiconductor 465: 463: 441: 436: 426: 423: 419: 411: 404: 401: 396: 385: 376: 368: 365: 359: 356: 352: 347: 343: 327: 315: 311: 307: 300: 293: 290: 281: 272: 264: 261: 255: 252: 248: 243: 231: 230: 229: 209: 205: 197: 190: 181: 177: 174: 162: 161: 160: 159:is given by: 158: 153: 151: 150:Lorentz force 142: 140: 138: 134: 130: 122: 118: 117:Lorentz force 112: 105: 87: 84: 77: 75: 73: 68: 64: 60: 55: 53: 49: 45: 41: 37: 33: 29: 25: 24:ferromagnetic 21: 1812: 1808: 1795: 1752: 1746: 1703: 1699: 1693: 1668: 1664: 1658: 1616: 1613:New J. Phys. 1612: 1605: 1572: 1569:Phys. Rev. B 1568: 1558: 1533: 1529: 1523: 1498: 1494: 1481: 1428: 1424: 1371:(6): 60002. 1368: 1364: 1358: 1347:, retrieved 1341: 1335: 1317: 1313: 1290: 1266: 1262: 1256: 1236: 1229: 948: 849: 845: 822: 810: 648: 557: 521: 512: 510: 480: 472: 466: 461: 459: 227: 156: 154: 146: 126: 120: 81: 56: 19: 18: 1893:Spintronics 1320:: 546–550, 1211:Hall effect 818:barber pole 671:resistivity 129:Albert Fert 50:(CMR), and 1867:Categories 1665:J. Phys. C 1438:2212.03700 1378:1502.00502 1222:References 63:semimetals 1762:1305.3517 1738:100002412 1713:1111.4864 1651:119291699 1626:0802.3344 1597:245189642 1204:Footnotes 1156:σ 1136:ζ 1114:σ 1110:ρ 1047:↑ 1043:ρ 1032:↓ 1028:ρ 1021:α 957:γ 926:− 923:α 917:γ 907:⊥ 903:ρ 896:⊥ 892:ρ 888:− 883:∥ 879:ρ 867:ρ 863:ρ 860:Δ 829:Honeywell 814:permalloy 796:θ 790:ψ 770:ρ 745:∘ 714:φ 692:⊥ 686:∥ 682:ρ 657:ρ 635:φ 632:⁡ 614:⊥ 610:ρ 606:− 601:∥ 597:ρ 585:⊥ 581:ρ 571:φ 565:ρ 543:θ 540:− 537:ψ 531:φ 505:Permalloy 437:∥ 427:μ 412:× 405:μ 397:⊥ 366:μ 353:μ 328:⋅ 312:μ 301:× 294:μ 262:μ 249:μ 198:× 178:μ 127:In 2007, 78:Discovery 1847:12689027 1787:35733115 1473:37859834 1464:10582618 1403:14917438 1172:See also 1061:, where 1855:1485882 1827:Bibcode 1767:Bibcode 1718:Bibcode 1673:Bibcode 1631:Bibcode 1577:Bibcode 1538:Bibcode 1503:Bibcode 1443:Bibcode 1383:Bibcode 1271:Bibcode 825:compass 46:(TMR), 42:(GMR), 1853:  1845:  1785:  1736:  1649:  1595:  1471:  1461:  1431:(10). 1401:  1349:25 Jun 1244:  1101:, and 839:, and 649:where 485:teslas 445:  213:  1851:S2CID 1817:arXiv 1805:(PDF) 1783:S2CID 1757:arXiv 1734:S2CID 1708:arXiv 1647:S2CID 1621:arXiv 1593:S2CID 1491:(PDF) 1433:arXiv 1399:S2CID 1373:arXiv 949:with 467:In a 1843:PMID 1469:PMID 1351:2014 1242:ISBN 1013:and 732:and 131:and 1835:doi 1775:doi 1726:doi 1681:doi 1639:doi 1585:doi 1573:104 1567:". 1546:doi 1511:doi 1459:PMC 1451:doi 1391:doi 1365:EPL 1322:doi 1279:doi 820:'. 623:cos 487:). 74:). 72:TMR 67:EMR 1869:: 1849:, 1841:, 1833:, 1825:, 1813:90 1811:, 1807:, 1781:. 1773:. 1765:. 1732:. 1724:. 1716:. 1704:81 1702:. 1679:. 1667:. 1645:, 1637:, 1629:, 1617:10 1615:, 1591:. 1583:. 1571:. 1544:. 1534:90 1532:. 1509:. 1499:11 1497:. 1493:. 1467:. 1457:. 1449:. 1441:. 1429:10 1427:. 1423:. 1411:^ 1397:. 1389:. 1381:. 1369:81 1367:. 1316:, 1304:^ 1277:, 1267:37 1265:, 1081:, 843:. 835:, 831:, 741:90 473:ÎĽB 139:. 1837:: 1829:: 1819:: 1789:. 1777:: 1769:: 1759:: 1740:. 1728:: 1720:: 1710:: 1687:. 1683:: 1675:: 1669:3 1641:: 1633:: 1623:: 1599:. 1587:: 1579:: 1565:2 1552:. 1548:: 1540:: 1517:. 1513:: 1505:: 1475:. 1453:: 1445:: 1435:: 1405:. 1393:: 1385:: 1375:: 1324:: 1318:8 1298:. 1281:: 1273:: 1250:. 1217:. 1089:H 1069:A 1038:/ 1024:= 999:2 995:) 991:H 987:/ 983:A 980:( 977:) 974:4 970:/ 966:3 963:( 960:= 935:, 932:) 929:1 920:( 914:= 872:= 793:, 720:0 717:= 689:, 627:2 619:) 593:( 590:+ 577:= 574:) 568:( 534:= 481:B 462:B 442:, 432:E 424:+ 420:) 415:B 409:E 402:+ 392:E 386:( 377:2 373:) 369:B 363:( 360:+ 357:1 348:= 344:) 339:B 335:) 331:E 325:B 321:( 316:2 308:+ 304:B 298:E 291:+ 287:E 282:( 273:2 269:) 265:B 259:( 256:+ 253:1 244:= 240:v 210:, 206:) 201:B 195:v 191:+ 187:E 182:( 175:= 171:v 157:v 123:. 106:.

Index

ferromagnetic
electrical resistance
magnetic field
Shubnikov–de Haas oscillations
giant magnetoresistance
tunnel magnetoresistance
colossal magnetoresistance
extraordinary magnetoresistance
William Thomson
semimetals
EMR
TMR
William Thomson (Lord Kelvin)
giant magnetoresistance

Lorentz force
Albert Fert
Peter GrĂĽnberg
giant magnetoresistance
Lorentz force
semiconductor
semiconductor mobility
teslas
Indium antimonide

Permalloy
spin-orbit interaction
resistivity

permalloy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑