Knowledge

Synthetic diamond

Source 📝

324:, he spent about 40 years (1882–1922) and a considerable part of his fortune trying to reproduce the experiments of Moissan and Hannay, but also adapted processes of his own. Parsons was known for his painstakingly accurate approach and methodical record keeping; all his resulting samples were preserved for further analysis by an independent party. He wrote a number of articles—some of the earliest on HPHT diamond—in which he claimed to have produced small diamonds. However, in 1928, he authorized Dr. C. H. Desch to publish an article in which he stated his belief that no synthetic diamonds (including those of Moissan and others) had been produced up to that date. He suggested that most diamonds that had been produced up to that point were likely synthetic 614: 763:. The diamond yield is about 10% of the initial graphite weight. The estimated cost of diamond produced by this method is comparable to that of the HPHT method but the crystalline perfection of the product is significantly worse for the ultrasonic synthesis. This technique requires relatively simple equipment and procedures, and has been reported by two research groups, but had no industrial use as of 2008. Numerous process parameters, such as preparation of the initial graphite powder, the choice of ultrasonic power, synthesis time and the solvent, were not optimized, leaving a window for potential improvement of the efficiency and reduction of the cost of the ultrasonic synthesis. 1288:. The revised guides were substantially contrary to what had been advocated in 2016 by De Beers. The new guidelines remove the word "natural" from the definition of "diamond", thus including lab-grown diamonds within the scope of the definition of "diamond". The revised guide further states that "If a marketer uses 'synthetic' to imply that a competitor's lab-grown diamond is not an actual diamond, ... this would be deceptive." In July 2019, the third party diamond certification lab GIA (Gemological Institute of America) dropped the word 'synthetic' from its certification process and report for lab-grown diamonds, according to the FTC revision. 602:-shaped volume. The cubic press was created shortly thereafter to increase the volume to which pressure could be applied. A cubic press is typically smaller than a belt press and can more rapidly achieve the pressure and temperature necessary to create synthetic diamond. However, cubic presses cannot be easily scaled up to larger volumes: the pressurized volume can be increased by using larger anvils, but this also increases the amount of force needed on the anvils to achieve the same pressure. An alternative is to decrease the surface area to volume ratio of the pressurized volume, by using more anvils to converge upon a higher-order 716: 337: 33: 971: 657:
industrial applications, the flexibility and simplicity of CVD setups explain the popularity of CVD growth in laboratory research. The advantages of CVD diamond growth include the ability to grow diamond over large areas and on various substrates, and the fine control over the chemical impurities and thus properties of the diamond produced. Unlike HPHT, CVD process does not require high pressures, as the growth typically occurs at pressures under 27 kPa (3.9 psi).
649: 732:
immersed in water, the chamber cools rapidly after the explosion, suppressing conversion of newly produced diamond into more stable graphite. In a variation of this technique, a metal tube filled with graphite powder is placed in the detonation chamber. The explosion heats and compresses the graphite to an extent sufficient for its conversion into diamond. The product is always rich in graphite and other non-diamond carbon forms, and requires prolonged boiling in hot
1198: 259: 571: 630:(e.g., tungsten carbide or VK10 hard alloy). The outer octahedral cavity is pressed by 8 steel outer anvils. After mounting, the whole assembly is locked in a disc-type barrel with a diameter about 1 m (3 ft 3 in). The barrel is filled with oil, which pressurizes upon heating, and the oil pressure is transferred to the central cell. The synthesis capsule is heated up by a coaxial graphite heater, and the temperature is measured with a 1210:
economic scale. Indeed, by 2023, synthetic diamonds' share had increased to 17% of the overall diamond market. They are available in yellow, pink, green, orange, blue and, to a lesser extent, colorless (or white). The yellow color comes from nitrogen impurities in the manufacturing process, while the blue color comes from boron. Other colors, such as pink or green, are achievable after synthesis using irradiation. Several companies also offer
533:(CVD). William G. Eversole reportedly achieved vapor deposition of diamond over diamond substrate in 1953, but it was not reported until 1962. Diamond film deposition was independently reproduced by Angus and coworkers in 1968 and by Deryagin and Fedoseev in 1970. Whereas Eversole and Angus used large, expensive, single-crystal diamonds as substrates, Deryagin and Fedoseev succeeded in making diamond films on non-diamond materials ( 470: 804:). Large, clear and transparent single-crystal diamonds are typically used as gemstones. Polycrystalline diamond (PCD) consists of numerous small grains, which are easily seen by the naked eye through strong light absorption and scattering; it is unsuitable for gems and is used for industrial applications such as mining and cutting tools. Polycrystalline diamond is often described by the average size (or 1147:(at room temperature). Diamond is also distinguished from most other semiconductors by the lack of a stable native oxide. This makes it difficult to fabricate surface MOS devices, but it does create the potential for UV radiation to gain access to the active semiconductor without absorption in a surface layer. Because of these properties, it is employed in applications such as the 541:
relative lack of universal knowledge for identifying large quantities of melee efficiently, not all dealers have made an effort to test diamond melee to correctly identify whether it is of natural or synthetic origin. However, international laboratories are now beginning to tackle the issue head-on, with significant improvements in synthetic melee identification being made.
270:, played a significant role. His groundbreaking discovery that a diamond's crystal lattice is similar to carbon's crystal structure paved the way for initial attempts to produce diamonds. After it was discovered that diamond was pure carbon in 1797, many attempts were made to convert various cheap forms of carbon into diamond. The earliest successes were reported by 1380:, in which this physicist states that he has, on his part, succeeded in making carbon crystallize by methods different from those of Mr. Gannal, and that a sealed packet which he deposited with the Secretary in 1824 contains the details of his initial procedures. Mr. Arago announced that he knew another person who had arrived at similar results, and 1059:. Those synthetic polycrystalline diamond windows are shaped as disks of large diameters (about 10 cm for gyrotrons) and small thicknesses (to reduce absorption) and can only be produced with the CVD technique. Single crystal slabs of dimensions of length up to approximately 10 mm are becoming increasingly important in several areas of 155: 478:
seeds. The container was heated and the pressure was raised to about 5.5 GPa (800,000 psi). The crystals grow as they flow from the center to the ends of the tube, and extending the length of the process produces larger crystals. Initially, a week-long growth process produced gem-quality stones of around 5 mm (0.20 in) (1
451:", which both dissolved carbon and accelerated its conversion into diamond. The largest diamond he produced was 0.15 mm (0.0059 in) across; it was too small and visually imperfect for jewelry, but usable in industrial abrasives. Hall's co-workers were able to replicate his work, and the discovery was published in the major journal 1031:. Efficient heat dissipation prolongs the lifetime of those electronic devices, and the devices' high replacement costs justify the use of efficient, though relatively expensive, diamond heat sinks. In semiconductor technology, synthetic diamond heat spreaders prevent silicon and other semiconducting devices from overheating. 792:(luster), and chemical stability (combined with marketing), make it a popular gemstone. High thermal conductivity is also important for technical applications. Whereas high optical dispersion is an intrinsic property of all diamonds, their other properties vary depending on how the diamond was created. 1209:
are grown by HPHT or CVD methods, and represented approximately 2% of the gem-quality diamond market as of 2013. However, there are indications that the market share of synthetic jewelry-quality diamonds may grow as advances in technology allow for larger higher-quality synthetic production on a more
661:
optimizing the substrate temperature (about 800 °C (1,470 °F)) during the growth through a series of test runs. Moreover, optimizing the gas mixture composition and flow rates is paramount to ensure uniform and high-quality diamond growth. The gases always include a carbon source, typically
660:
The CVD growth involves substrate preparation, feeding varying amounts of gases into a chamber and energizing them. The substrate preparation includes choosing an appropriate material and its crystallographic orientation; cleaning it, often with a diamond powder to abrade a non-diamond substrate; and
589:
The original GE invention by Tracy Hall uses the belt press wherein the upper and lower anvils supply the pressure load to a cylindrical inner cell. This internal pressure is confined radially by a belt of pre-stressed steel bands. The anvils also serve as electrodes providing electric current to the
477:
Synthetic gem-quality diamond crystals were first produced in 1970 by GE, then reported in 1971. The first successes used a pyrophyllite tube seeded at each end with thin pieces of diamond. The graphite feed material was placed in the center and the metal solvent (nickel) between the graphite and the
656:
Chemical vapor deposition is a method by which diamond can be grown from a hydrocarbon gas mixture. Since the early 1980s, this method has been the subject of intensive worldwide research. Whereas the mass production of high-quality diamond crystals make the HPHT process the more suitable choice for
360:
Due to questions on the patent process and the reasonable belief that no other serious diamond synthesis research occurred globally, the board of ASEA opted against publicity and patent applications. Thus the announcement of the ASEA results occurred shortly after the GE press conference of February
1273:
Around 2016, the price of synthetic diamond gemstones (e.g., 1 carat stones) began dropping "precipitously" by roughly 30% in one year, becoming clearly lower than that of mined diamonds. As of 2017, synthetic diamonds sold as jewelry were typically selling for 15–20% less than natural equivalents;
1217:
Gem-quality diamonds grown in a lab can be chemically, physically and optically identical to naturally occurring ones. The mined diamond industry has undertaken legal, marketing and distribution countermeasures to try to protect its market from the emerging presence of synthetic diamonds. Synthetic
831:
direction (along the longest diagonal of the cubic diamond lattice). Nanocrystalline diamond produced through CVD diamond growth can have a hardness ranging from 30% to 75% of that of single crystal diamond, and the hardness can be controlled for specific applications. Some synthetic single-crystal
956:
mounted in a fine copper tip. One thermistor functions as a heating device while the other measures the temperature of the copper tip: if the stone being tested is a diamond, it will conduct the tip's thermal energy rapidly enough to produce a measurable temperature drop. This test takes about 2–3
731:
10 in) in diameter) can be formed by detonating certain carbon-containing explosives in a metal chamber. These are called "detonation nanodiamonds". During the explosion, the pressure and temperature in the chamber become high enough to convert the carbon of the explosives into diamond. Being
625:
is claimed to be the most compact, efficient, and economical of all the diamond-producing presses. In the center of a BARS device, there is a ceramic cylindrical "synthesis capsule" of about 2 cm (0.12 cu in) in size. The cell is placed into a cube of pressure-transmitting material,
521:
Diamond Research Laboratory has grown stones of up to 25 carats (5.0 g) for research purposes. Stable HPHT conditions were kept for six weeks to grow high-quality diamonds of this size. For economic reasons, the growth of most synthetic diamonds is terminated when they reach a mass of 1 carat
352:(Allmänna Svenska Elektriska Aktiebolaget), Sweden's major electrical equipment manufacturing company. Starting in 1942, ASEA employed a team of five scientists and engineers as part of a top-secret diamond-making project code-named QUINTUS. The team used a bulky split-sphere apparatus designed by 1127:
Synthetic diamond transistors have been produced in the laboratory. They remain functional at much higher temperatures than silicon devices, and are resistant to chemical and radiation damage. While no diamond transistors have yet been successfully integrated into commercial electronics, they are
771:
In 2024, scientists announced a method that utilizes injecting methane and hydrogen gases onto a liquid metal alloy of gallium, iron, nickel and silicon (77.25/11.00/11.00/0.25 ratio) at approximately 1,025 °C to crystallize diamond at 1 atmosphere of pressure. The crystallization is a ‘seedless’
427:
container, the finished grit being squeezed out of the container into a gasket. The team recorded diamond synthesis on one occasion, but the experiment could not be reproduced because of uncertain synthesis conditions, and the diamond was later shown to have been a natural diamond used as a seed.
1182:
reactions that cannot ordinarily be studied and in some cases degrade redox-reactive organic contaminants in water supplies. Because diamond is mechanically and chemically stable, it can be used as an electrode under conditions that would destroy traditional materials. As an electrode, synthetic
850:
Every diamond contains atoms other than carbon in concentrations detectable by analytical techniques. Those atoms can aggregate into macroscopic phases called inclusions. Impurities are generally avoided, but can be introduced intentionally as a way to control certain properties of the diamond.
1269:
According to a report from the Gem & Jewellery Export Promotional Council, synthetic diamonds accounted for 0.28% of diamond produced for use as gemstones in 2014. In April 2022, CNN Business reported that engagement rings featuring a synthetic or a lab grown diamond jumped 63% compared to
540:
From 2013, reports emerged of a rise in undisclosed synthetic melee diamonds (small round diamonds typically used to frame a central diamond or embellish a band) being found in set jewelry and within diamond parcels sold in the trade. Due to the relatively low cost of diamond melee, as well as
549:
There are several methods used to produce synthetic diamonds. The original method uses high pressure and high temperature (HPHT) and is still widely used because of its relatively low cost. The process involves large presses that can weigh hundreds of tons to produce a pressure of 5 GPa
1009:
onto the tool. This is typically referred to in industry as polycrystalline diamond (PCD). PCD-tipped tools can be found in mining and cutting applications. For the past fifteen years, work has been done to coat metallic tools with CVD diamond, and though the work shows promise, it has not
828:, the hardest known material on this scale. Diamond is also the hardest known natural material for its resistance to indentation. The hardness of synthetic diamond depends on its purity, crystalline perfection and orientation: hardness is higher for flawless, pure crystals oriented to the 158:
Synthetic diamonds, which have a different shade due to the different content of nitrogen impurities. Yellow diamonds are obtained with a higher nitrogen content in the carbon lattice, and transparent diamonds come only from pure carbon. The smallest yellow diamond size is around 0.3
582:) press. Diamond seeds are placed at the bottom of the press. The internal part of the press is heated above 1,400 °C (2,550 °F) and melts the solvent metal. The molten metal dissolves the high purity carbon source, which is then transported to the small diamond seeds and 2958:
Galimov, É. M.; Kudin, A. M.; Skorobogatskii, V. N.; Plotnichenko, V. G.; Bondarev, O. L.; Zarubin, B. G.; Strazdovskii, V. V.; Aronin, A. S.; Fisenko, A. V.; Bykov, I. V.; Barinov, A. Yu. (2004). "Experimental Corroboration of the Synthesis of Diamond in the Cavitation Process".
998:. These are by far the largest industrial applications of synthetic diamond. While natural diamond is also used for these purposes, synthetic HPHT diamond is more popular, mostly because of better reproducibility of its mechanical properties. Diamond is not suitable for machining 1018:
Most materials with high thermal conductivity are also electrically conductive, such as metals. In contrast, pure synthetic diamond has high thermal conductivity, but negligible electrical conductivity. This combination is invaluable for electronics where diamond is used as a
457:. He was the first person to grow a synthetic diamond with a reproducible, verifiable and well-documented process. He left GE in 1955, and three years later developed a new apparatus for the synthesis of diamond—a tetrahedral press with four anvils—to avoid violating a 700:
windows of the growth chamber or from the silicon substrate. Therefore, silica windows are either avoided or moved away from the substrate. Boron-containing species in the chamber, even at very low trace levels, also make it unsuitable for the growth of pure diamond.
851:
Growth processes of synthetic diamond, using solvent-catalysts, generally lead to formation of a number of impurity-related complex centers, involving transition metal atoms (such as nickel, cobalt or iron), which affect the electronic properties of the material.
597:
The second type of press design is the cubic press. A cubic press has six anvils which provide pressure simultaneously onto all faces of a cube-shaped volume. The first multi-anvil press design was a tetrahedral press, using four anvils to converge upon a
294:. The molten iron was then rapidly cooled by immersion in water. The contraction generated by the cooling supposedly produced the high pressure required to transform graphite into diamond. Moissan published his work in a series of articles in the 1890s. 356:
and Anders Kämpe. Pressure was maintained within the device at an estimated 8.4 GPa (1,220,000 psi) and a temperature of 2,400 °C (4,350 °F) for an hour. A few small diamonds were produced, but not of gem quality or size.
118:
Numerous claims of diamond synthesis were reported between 1879 and 1928; most of these attempts were carefully analyzed but none was confirmed. In the 1940s, systematic research of diamond creation began in the United States, Sweden and the
512:
under short-wavelength ultraviolet light, but were inert under long-wave UV. Among natural diamonds, only the rarer blue gems exhibit these properties. Unlike natural diamonds, all the GE stones showed strong yellow fluorescence under
894:
to more than 2000 W/mK, depending on the defects, grain boundary structures. As the growth of diamond in CVD, the grains grow with the film thickness, leading to a gradient thermal conductivity along the film thickness direction.
1248:
In May 2015, a record was set for an HPHT colorless diamond at 10.02 carats. The faceted jewel was cut from a 32.2-carat stone that was grown in about 300 hours. By 2022, gem-quality diamonds of 16–20 carats were being produced.
1075:. Both the CVD and HPHT processes are also used to create designer optically transparent diamond anvils as a tool for measuring electric and magnetic properties of materials at ultra high pressures using a diamond anvil cell. 4725:
Ueda, K.; Kasu, M.; Yamauchi, Y.; Makimoto, T.; Schwitters, M.; Twitchen, D. J.; Scarsbrook, G. A.; Coe, S. E. (July 1, 2006). "Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz".
4942:
Benmoussa, A; Soltani, A; Haenen, K; Kroth, U; Mortet, V; Barkad, H A; Bolsee, D; Hermans, C; Richter, M; De Jaeger, J C; Hochedez, J F (2008). "New developments on diamond photodetector for VUV Solar Observations".
245:
and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special
4880:
Bucciolini, M.; Borchi, E; Bruzzi, M; Casati, M; Cirrone, P; Cuttone, G; Deangelis, C; Lovik, I; Onori, S; Raffaele, L.; Sciortino, S. (2005). "Diamond dosimetry: Outcomes of the CANDIDO and CONRADINFN projects".
990:. As the hardest known naturally occurring material, diamond can be used to polish, cut, or wear away any material, including other diamonds. Common industrial applications of this ability include diamond-tipped 951:
Diamond's thermal conductivity is made use of by jewelers and gemologists who may employ an electronic thermal probe to separate diamonds from their imitations. These probes consist of a pair of battery-powered
4816:
Railkar, T. A.; Kang, W. P.; Windischmann, Henry; Malshe, A. P.; Naseem, H. A.; Davidson, J. L.; Brown, W. D. (2000). "A critical review of chemical vapor-deposited (CVD) diamond for electronic applications".
1123:
of diamond (5.5 eV) gives it excellent dielectric properties. Combined with the high mechanical stability of diamond, those properties are being used in prototype high-power switches for power stations.
5209: 431:
Hall achieved the first commercially successful synthesis of diamond on December 16, 1954, and this was announced on February 15, 1955. His breakthrough came when he used a press with a hardened steel
3524:
Gong, Yan; Luo, Da; Choe, Myeonggi; Kim, Yongchul; Ram, Babu; Zafari, Mohammad; Seong, Won Kyung; Bakharev, Pavel; Wang, Meihui; Park, In Kee; Lee, Seulyi; Shin, Tae Joo; Lee, Zonghoon; Lee, Geunsik;
482:
or 0.2 g), and the process conditions had to be as stable as possible. The graphite feed was soon replaced by diamond grit because that allowed much better control of the shape of the final crystal.
4363:
Mildren, Richard P.; Sabella, Alexander; Kitzler, Ondrej; Spence, David J.; McKay, Aaron M. (2013). "Ch. 8 Diamond Raman Laser Design and Performance". In Mildren, Rich P.; Rabeau, James R. (eds.).
3157:
Pal'Yanov, N.; Sokol, A.G.; Borzdov, M.; Khokhryakov, A.F. (2002). "Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study".
2538:
Burns, R. C.; Cvetkovic, V.; Dodge, C. N.; Evans, D. J. F.; Rooney, Marie-Line T.; Spear, P. M.; Welbourn, C. M. (1990). "Growth-sector dependence of optical features in large synthetic diamonds".
696:
During the growth, the chamber materials are etched off by the plasma and can incorporate into the growing diamond. In particular, CVD diamond is often contaminated by silicon originating from the
435:"belt" strained to its elastic limit wrapped around the sample, producing pressures above 10 GPa (1,500,000 psi) and temperatures above 2,000 °C (3,630 °F). The press used a 4171:
Coelho, R.T.; Yamada, S.; Aspinwall, D.K.; Wise, M.L.H. (1995). "The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminum-based alloys including MMC".
578:
In the HPHT method, there are three main press designs used to supply the pressure and temperature necessary to produce synthetic diamond: the belt press, the cubic press and the split-sphere (
5748: 313:
replicated Moissan's and Ruff's experiments, producing a synthetic diamond. Despite the claims of Moissan, Ruff, and Hershey, other experimenters were unable to reproduce their synthesis.
5802:
16 C.F.R. Part 23: Guides for the Jewelry, Precious Metals, and Pewter Industries: Federal Trade Commission Letter Declining to Amend the Guides with Respect to Use of the Term "Cultured"
3282:
State-of-the-Art Program on Compound Semiconductors XXXIX and Nitride and Wide Bandgap Semiconductors for Sensors, Photonics and Electronics IV: proceedings of the Electrochemical Society
1067:. Recent advances in the HPHT and CVD synthesis techniques have improved the purity and crystallographic structure perfection of single-crystalline diamond enough to replace silicon as a 5178: 1429: 5527: 4629:
Isberg, J.; Hammersberg, J; Johansson, E; Wikström, T; Twitchen, DJ; Whitehead, AJ; Coe, SE; Scarsbrook, GA (2002). "High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond".
4020:
Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y.; Li, Chao; Yates, Luke; Foley, Brian M.; Goorsky, Mark; Cola, Baratunde A.; Faili, Firooz; Graham, Samuel (February 7, 2018).
594:
pressure, rather than steel belts, to confine the internal pressure. Belt presses are still used today, but they are built on a much larger scale than those of the original design.
1002:
at high speeds, as carbon is soluble in iron at the high temperatures created by high-speed machining, leading to greatly increased wear on diamond tools compared to alternatives.
5823: 3982:
Catledge, S. A.; Vohra, Yogesh K. (1999). "Effect of nitrogen addition on the microstructure and mechanical properties of diamond films grown using high-methane concentrations".
5718: 3461:
Khachatryan, A.Kh.; Aloyan, S.G.; May, P.W.; Sargsyan, R.; Khachatryan, V.A.; Baghdasaryan, V.S. (2008). "Graphite-to-diamond transformation induced by ultrasonic cavitation".
2259: 5560: 400:
interrupted the project. It was resumed in 1951 at the Schenectady Laboratories of GE, and a high-pressure diamond group was formed with Francis P. Bundy and H. M. Strong.
1241:-inscribed serial numbers on all of its gemstones. The company web site shows an example of the lettering of one of its laser inscriptions, which includes both the words " 3130:
Loshak, M. G. & Alexandrova, L. I. (2001). "Rise in the efficiency of the use of cemented carbides as a matrix of diamond-containing studs of rock destruction tool".
4680:
Russell, S. A. O.; Sharabi, S.; Tallaire, A.; Moran, D. A. J. (October 1, 2012). "Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz".
3350: 1475: 665:, and hydrogen with a typical ratio of 1:99. Hydrogen is essential because it selectively etches off non-diamond carbon. The gases are ionized into chemically active 3758:
Yan, Chih-Shiue; Mao, Ho-Kwang; Li, Wei; Qian, Jiang; Zhao, Yusheng; Hemley, Russell J. (2005). "Ultrahard diamond single crystals from chemical vapor deposition".
2785: 88:(imitations of diamond made of superficially similar non-diamond materials), synthetic diamonds are composed of the same material as naturally formed diamonds—pure 5692: 4022:"Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance" 776:
methods. Injection of methane and hydrogen results in a diamond nucleus after around 15 minutes and eventually a continuous diamond film after around 150 minutes.
5777: 501:
produced blue ones. Removing nitrogen also slowed the growth process and reduced the crystalline quality, so the process was normally run with nitrogen present.
4233:
Sakamoto, M.; Endriz, J. G. & Scifres, D. R. (1992). "120 W CW output power from monolithic AlGaAs (800 nm) laser diode array mounted on diamond heatsink".
5345: 1724:
Royère, C. (1999). "The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?".
1230:
wavelengths. The DiamondView tester from De Beers uses UV fluorescence to detect trace impurities of nitrogen, nickel or other metals in HPHT or CVD diamonds.
788:
is considered to be the most important quality of a diamond. Purity and high crystalline perfection make diamonds transparent and clear, whereas its hardness,
5201: 2837: 370: 5594: 3793:
Larico, R.; Justo, J. F.; Machado, W. V. M.; Assali, L. V. C. (2009). "Electronic properties and hyperfine fields of nickel-related complexes in diamond".
5466: 4470: 3236:
Barjon, J.; Rzepka, E.; Jomard, F.; Laroche, J.-M.; Ballutaud, D.; Kociniewski, T.; Chevallier, J. (2005). "Silicon incorporation in CVD diamond layers".
5496: 504:
Although the GE stones and natural diamonds were chemically identical, their physical properties were not the same. The colorless stones produced strong
120: 5658: 3957: 2755: 982:
Most industrial applications of synthetic diamond have long been associated with their hardness; this property makes diamond the ideal material for
80:
that is produced in a controlled technological process (in contrast to naturally formed diamond, which is created through geological processes and
4397: 4198:
Ahmed, W.; Sein, H.; Ali, N.; Gracio, J.; Woodwards, R. (2003). "Diamond films grown on cemented WC-Co dental burs using an improved CVD method".
3846:
Assali, L. V. C.; Machado, W. V. M.; Justo, J. F. (2011). "3d transition metal impurities in diamond: electronic properties and chemical trends".
1452: 5744: 5411: 902:
within the crystal. The thermal conductivity of pure diamond is the highest of any known solid. Single crystals of synthetic diamond enriched in
211:
are used at high-energy research facilities and are available commercially. Due to its unique combination of thermal and chemical stability, low
1396:
gave a reading of the minutes of experiments made on November 26, 1828 on the powder presented as artificial diamond by Mr. Cagniard de Latour."
5174: 2588:
Abbaschian, Reza; Zhu, Henry; Clarke, Carter (2005). "High pressure-high temperature growth of diamond crystals using split sphere apparatus".
1934: 928:
of any material, 30 W/cm·K at room temperature, 7.5 times higher than that of copper. Natural diamond's conductivity is reduced by 1.1% by the
1419: 5904: 5883: 5862: 5519: 4792: 4347: 4295: 4155: 4079:
Wei, Lanhua; Kuo, P.; Thomas, R.; Anthony, T.; Banholzer, W. (1993). "Thermal conductivity of isotopically modified single crystal diamond".
3695: 3594: 3290: 3208: 3063: 2199: 2049: 1928: 1901: 1874: 392:
companies to further develop diamond synthesis. They were able to heat carbon to about 3,000 °C (5,430 °F) under a pressure of 3.5
5023:
Nebel, C.E.; Uetsuka, H.; Rezek, B.; Shin, D.; Tokuda, N.; Nakamura, T. (2007). "Inhomogeneous DNA bonding to polycrystalline CVD diamond".
3214: 1115:, which reaches 4500 cm/(V·s) for electrons in single-crystal CVD diamond. High mobility is favorable for high-frequency operation and 3497: 3079:
Hall, H. T. (1958). "Ultrahigh-Pressure Research: At ultrahigh pressures new and sometimes unexpected chemical and physical events occur".
1767: 1661: 1642: 1605: 4771:
Isberg, J.; Gabrysch, M.; Tajani, A. & Twitchen, D.J. (2006). "High-field Electrical Transport in Single Crystal CVD Diamond Diodes".
1266:
for synthetic diamonds has been increasing, albeit from a small base, as customers look for stones that are ethically sound and cheaper.
1178:, which would interact with DNA thereby changing electrical conductivity of the diamond film. In addition, diamonds can be used to detect 5310:
Collins, A.T.; Connor, A.; Ly, C-H.; Shareef, A.; Spear, P.M. (2005). "High-temperature annealing of optical centers in type-I diamond".
3701: 3626: 3600: 3296: 2055: 1550: 5653: 5152: 4380: 1623: 845: 5815: 1796: 305:
claimed in 1917 to have produced diamonds up to 7 mm (0.28 in) in diameter, but later retracted his statement. In 1926, Dr.
5714: 1284:
approved a substantial revision to its Jewelry Guides, with changes that impose new rules on how the trade can describe diamonds and
2815: 2245: 756: 5549: 1956: 1501: 1277:
In May 2018, De Beers announced that it would introduce a new jewelry brand called "Lightbox" that features synthetic diamonds.
1237:
of laboratory-grown diamonds has made public statements about being "committed to disclosure" of the nature of its diamonds, and
1040: 720: 5801: 5447: 1174:
to the surface of polycrystalline diamond films produced through CVD. Such DNA-modified films can be used for detecting various
550:(730,000 psi) at 1,500 °C (2,730 °F). The second method, using chemical vapor deposition (CVD), creates a carbon 5625: 3319: 4863: 4057: 3005: 825: 529:
of hydrocarbon gases at the relatively low temperature of 800 °C (1,470 °F). This low-pressure process is known as
100: 1107:. Making a p–n junction by sequential doping of synthetic diamond with boron and phosphorus produces light-emitting diodes ( 2455: 2395: 2346: 1479: 353: 4121:
Wenckus, J. F. (December 18, 1984) "Method and means of rapidly distinguishing a simulated diamond from natural diamond"
2777: 554:
over a substrate onto which the carbon atoms deposit to form diamond. Other methods include explosive formation (forming
5684: 4728: 4682: 493:
were common, especially "plate-like" ones from the nickel. Removing all nitrogen from the process by adding aluminum or
3426:
Dolmatov, V. Yu. (2006). "Development of a rational technology for synthesis of high-quality detonation nanodiamonds".
5972: 5770: 3318:
Iakoubovskii, K.; Baidakova, M.V.; Wouters, B.H.; Stesmans, A.; Adriaenssens, G.J.; Vul', A.Ya.; Grobet, P.J. (2000).
1377: 1152: 458: 5914: 1987:"Further Comments on Attempts by H. Moissan, J. B. Hannay and Sir Charles Parsons to Make Diamonds in the Laboratory" 1353:, and into the product of his experiments, which have presented properties similar to those of particles of diamond." 1166:
Conductive CVD diamond is a useful electrode under many circumstances. Photochemical methods have been developed for
123:, which culminated in the first reproducible synthesis in 1953. Further research activity yielded the discoveries of 5962: 3899:
Ekimov, E. A.; Sidorov, V. A.; Bauer, E. D.; Mel'Nik, N. N.; Curro, N. J.; Thompson, J. D.; Stishov, S. M. (2004).
1598: 2847: 2649:
Angus, John C.; Will, Herbert A.; Stanko, Wayne S. (1968). "Growth of Diamond Seed Crystals by Vapor Deposition".
419:
for his work in 1946. Bundy and Strong made the first improvements, then more were made by Hall. The GE team used
5586: 1270:
previous year, while the number of engagement rings sold with a natural diamond declined 25% in the same period.
921: 773: 643: 583: 530: 136: 5379: 5353: 5058:
Gandini, D. (2000). "Oxidation of carbonylic acids at boron-doped diamond electrodes for wastewater treatment".
5463: 4521: 4466: 1839: 1281: 1005:
The usual form of diamond in cutting tools is micron-sized grains dispersed in a metal matrix (usually cobalt)
987: 863: 317: 216: 5484: 5232: 5101:
Michaud, P.-A. (2000). "Preparation of peroxodisulfuric acid using Boron-Doped Diamond thin film electrodes".
1393: 5648: 1119:
made from diamond have already demonstrated promising high-frequency performance above 50 GHz. The wide
3900: 1381: 1116: 1088: 855: 271: 196: 4578:
Koizumi, S.; Watanabe, K; Hasegawa, M; Kanda, H (2001). "Ultraviolet Emission from a Diamond pn Junction".
336: 5274: 4417: 3649: 1132: 1111:) producing UV light of 235 nm. Another useful property of synthetic diamond for electronics is high 710: 555: 416: 144: 139:, respectively). These two processes still dominate synthetic diamond production. A third method in which 5771:"DPA Petition on Proposed Revisions to the Guides for the Jewelry, Precious Metals and Pewter Industries" 4986:
Panizza, M. & Cerisola, G. (2005). "Application of diamond electrodes to electrochemical processes".
2751: 1183:
diamond can be used in waste water treatment of organic effluents and the production of strong oxidants.
1309: 1223: 898:
Unlike most electrical insulators, pure diamond is an excellent conductor of heat because of the strong
891: 389: 5402: 4443: 163:
The properties of synthetic diamonds depend on the manufacturing process. Some have properties such as
3723:
Sumiya, H. (2005). "Super-hard diamond indenter prepared from high-purity synthetic diamond crystal".
2296:
Bovenkerk, H. P.; Bundy, F. P.; Chrenko, R. M.; Codella, P. J.; Strong, H. M.; Wentorf, R. H. (1993).
1256:
has led to human rights abuses in Africa and other diamond mining countries. The 2006 Hollywood movie
5319: 5266: 5067: 5032: 4952: 4890: 4826: 4737: 4691: 4638: 4587: 4552: 4505: 4409: 4242: 4207: 4088: 3991: 3925: 3865: 3812: 3767: 3732: 3641: 3537: 3470: 3384: 3334: 3245: 3168: 3088: 2968: 2929: 2883: 2705: 2658: 2597: 2547: 2470: 2410: 2361: 2309: 2151: 2102: 1998: 1258: 1104: 1100: 1043:. These properties make diamond superior to any other existing window material used for transmitting 925: 866:), allowing it to be used in electronic applications. Nitrogen impurities hinder movement of lattice 859: 344:
The first known (but initially not reported) diamond synthesis was achieved on February 16, 1953, in
287: 247: 220: 200: 168: 4422: 4396:
Khounsary, Ali M.; Smither, Robert K.; Davey, Steve; Purohit, Ankor (1992). Khounsary, Ali M (ed.).
3654: 2696:
Deryagin, B. V.; Fedoseev, D. V. (1970). "Epitaxial Synthesis of Diamond in the Metastable Region".
1918: 1063:
including heatspreaders inside laser cavities, diffractive optics and as the optical gain medium in
286:
crucible in a furnace. Whereas Hannay used a flame-heated tube, Moissan applied his newly developed
147:
synthesis, entered the market in the late 1990s. A fourth method, treating graphite with high-power
5406: 5279: 2842: 1342: 1234: 1136: 1068: 737: 666: 648: 490: 238:. It is estimated that 98% of industrial-grade diamond demand is supplied with synthetic diamonds. 4147: 5292: 5083: 4968: 4920: 4842: 4798: 4753: 4707: 4662: 4611: 4492:
Jackson, D. D.; Aracne-Ruddle, C.; Malba, V.; Weir, S. T.; Catledge, S. A.; Vohra, Y. K. (2003).
4435: 3949: 3915: 3881: 3855: 3828: 3802: 3443: 3408: 3261: 3198: 3104: 2984: 2899: 2721: 2486: 2426: 2327: 2120: 1706: 1698: 1227: 1192: 1128:
promising for use in exceptionally high-power situations and hostile non-oxidizing environments.
875: 789: 408: 306: 112: 5929: 1755: 1658: 1639: 1602: 485:
The first gem-quality stones were always yellow to brown in color because of contamination with
258: 3627:"Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear" 5967: 5941: 5900: 5894: 5879: 5873: 5858: 4788: 4654: 4603: 4376: 4343: 4320: 4291: 4151: 4104: 4049: 4041: 3941: 3691: 3685: 3667: 3590: 3584: 3553: 3400: 3286: 3280: 3204: 3112: 3059: 2251: 2241: 2195: 2045: 2039: 1924: 1897: 1891: 1870: 1733: 1620: 1528: 1373: 1298: 1112: 871: 755:-sized diamond crystals can be synthesized from a suspension of graphite in organic liquid at 401: 310: 267: 212: 172: 800:
Diamond can be one single, continuous crystal or it can be made up of many smaller crystals (
5327: 5284: 5144: 5132: 5110: 5075: 5040: 5003: 4995: 4960: 4898: 4834: 4780: 4745: 4699: 4646: 4595: 4560: 4513: 4427: 4368: 4250: 4215: 4180: 4096: 4033: 3999: 3933: 3873: 3820: 3775: 3740: 3659: 3545: 3478: 3435: 3392: 3342: 3253: 3176: 3159: 3139: 3096: 2976: 2937: 2891: 2713: 2666: 2605: 2555: 2478: 2418: 2369: 2317: 2183: 2159: 2110: 2006: 1831: 1790: 1690: 1540: 1350: 1314: 1285: 1211: 1096: 772:
process, which further separates it from conventional high-pressure and high-temperature or
627: 551: 452: 420: 397: 385: 381: 374: 219:, synthetic diamond is becoming the most popular material for optical windows in high-power 208: 143:-sized diamond grains are created in a detonation of carbon-containing explosives, known as 85: 4784: 3055: 3048: 2191: 5470: 5451: 4867: 3525: 2874:
Werner, M; Locher, R (1998). "Growth and application of undoped and doped diamond films".
1866: 1665: 1646: 1627: 1609: 1263: 1197: 970: 579: 525:
In the 1950s, research started in the Soviet Union and the US on the growth of diamond by
509: 298: 250:
devices and techniques have been developed to distinguish synthetic and natural diamonds.
2807: 816:, usually referred to as "nanocrystalline" and "microcrystalline" diamond, respectively. 537:
and metals), which led to massive research on inexpensive diamond coatings in the 1980s.
187:. Electronic applications of synthetic diamond are being developed, including high-power 151:, has been demonstrated in the laboratory, but as of 2008 had no commercial application. 36:
Lab-grown diamonds of various colors grown by the high-pressure-and-temperature technique
5323: 5270: 5071: 5036: 4964: 4956: 4894: 4830: 4741: 4695: 4642: 4591: 4556: 4509: 4413: 4246: 4211: 4137: 4092: 3995: 3929: 3869: 3816: 3771: 3736: 3645: 3541: 3474: 3388: 3338: 3249: 3172: 3092: 2972: 2933: 2887: 2709: 2662: 2601: 2551: 2474: 2414: 2365: 2313: 2155: 2106: 2002: 740:
is used primarily in polishing applications. It is mainly produced in China, Russia and
5454:
for Gemesis diamond, International Gemological Institute, 2007. Retrieved May 27, 2015.
1253: 736:(about 1 day at 250 °C (482 °F)) to dissolve them. The recovered nanodiamond 622: 603: 412: 291: 5288: 4219: 3663: 3346: 3180: 3143: 2895: 1960: 570: 5956: 5444: 5403:"DeBeers Pleads to Price-Fixing: Firm Pays $ 10 million, Can Fully Reenter U.S." 5296: 4802: 4494:"Magnetic susceptibility measurements at high pressure using designer diamond anvils" 4439: 4184: 3885: 3832: 3625:
Blank, V.; Popov, M.; Pivovarov, G.; Lvova, N.; Gogolinsky, K.; Reshetov, V. (1998).
2988: 2903: 2725: 2559: 1893:
The Book of Diamonds: Their Curious Lore, Properties, Tests and Synthetic Manufacture
1751: 1710: 1144: 1084: 1048: 1020: 999: 975: 899: 690: 682: 393: 321: 275: 192: 5087: 4999: 4972: 4846: 4757: 4711: 4666: 4615: 3447: 3265: 2717: 2490: 1274:
the relative price was expected to decline further as production economics improve.
5617: 4311:"The diamond window for a milli-wave zone high power electromagnetic wave output". 3953: 3502: 3412: 2454:
Bovenkerk, H. P.; Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H. (1959).
2430: 2331: 1424: 1219: 983: 833: 829: 678: 674: 631: 607: 505: 479: 436: 325: 266:
In the early stages of diamond synthesis, the founding figure of modern chemistry,
175:
that are superior to those of most naturally formed diamonds. Synthetic diamond is
104: 92: 5044: 4860: 4564: 3482: 3396: 3375:
Decarli, P.; Jamieson, J. (June 1961). "Formation of Diamond by Explosive Shock".
3050:
Multianvil cells and high-pressure experimental methods, in Treatise of Geophysics
3009: 2941: 2609: 2184: 5930:"First Diamond Synthesis: 50 Years Later, A Murky Picture Of Who Deserves Credit" 5852: 3100: 2920:
Osawa, E (2007). "Recent progress and perspectives in single-digit nanodiamond".
4143: 4100: 2494: 2434: 2377: 2090: 1678: 1384:
announced that Mr. Gannal had spoken to him eight years ago about his attempts."
1303: 1175: 1156: 1072: 1064: 1024: 867: 805: 801: 785: 733: 715: 599: 204: 17: 5745:"Orwell's '1984', De Beers' Lobbying, & the New FTC Lab Diamond Guidelines" 4902: 3877: 3824: 3549: 1039:
Diamond is hard, chemically inert, and has high thermal conductivity and a low
5148: 5079: 4838: 4543:
Denisenko, A.; Kohn, E. (2005). "Diamond power devices. Concepts and limits".
4372: 4273: 4123: 3498:"Forget Billions of Years: Scientists Have Grown Diamonds in Just 150 Minutes" 3439: 2636: 1346: 1159:
solar observations). A diamond VUV detector recently was used in the European
1092: 1028: 953: 813: 760: 591: 559: 148: 5945: 4703: 4324: 4045: 2255: 1835: 1047:
and microwave radiation. Therefore, synthetic diamond is starting to replace
423:
anvils within a hydraulic press to squeeze the carbonaceous sample held in a
4749: 4650: 4599: 991: 930: 879: 809: 670: 526: 424: 345: 302: 184: 140: 96: 5202:"Global Rough Diamond Production Estimated to Hit Over 135M Carats in 2015" 4658: 4607: 4108: 4053: 4037: 3945: 3779: 3557: 3404: 3257: 3116: 2115: 1737: 1694: 1545: 290:, in which an electric arc was struck between carbon rods inside blocks of 32: 4254: 2235: 626:
such as pyrophyllite ceramics, which is pressed by inner anvils made from
5375: 4021: 3920: 3528:(April 24, 2024). "Growth of diamond in liquid metal at 1 atm pressure". 1206: 1167: 1120: 1056: 1044: 1006: 995: 744:, and started reaching the market in bulk quantities by the early 2000s. 518: 494: 486: 448: 279: 262:
Moissan trying to create synthetic diamonds using an electric arc furnace
242: 235: 180: 164: 5008: 3937: 1453:"Introducing the Largest Lab Grown Diamond in the World: Pride of India" 497:
produced colorless "white" stones, and removing the nitrogen and adding
469: 135:, named for their production method (high-pressure high-temperature and 5518:
Murphy, Hannah; Biesheuvel, Thomas; Elmquist, Sonja (August 27, 2015).
3108: 1242: 1140: 741: 662: 610:. However, such a press would be complex and difficult to manufacture. 534: 176: 81: 77: 5331: 5114: 4517: 4431: 3744: 2980: 2670: 2482: 2373: 1702: 1333:
As early as 1828, investigators claimed to have synthesized diamonds:
369: 154: 5257:
Walker, J. (1979). "Optical absorption and luminescence in diamond".
4271:. (August 2, 2005) "Diamond-silicon hybrid integrated heat spreader" 4003: 2422: 2322: 2297: 2164: 2139: 2124: 2011: 1986: 1060: 752: 697: 444: 440: 283: 188: 89: 4493: 4288:
Materials for infrared windows and domes: properties and performance
1819: 320:. A prominent scientist and engineer known for his invention of the 103:. As of 2023 the heaviest synthetic diamond ever made weighs 30.18 4398:"Diamond Monochromator for High Heat Flux Synchrotron X-ray Beams" 3860: 3807: 1238: 1196: 1179: 1148: 969: 948:
naturally present, which acts as an inhomogeneity in the lattice.
714: 686: 647: 612: 569: 514: 498: 468: 432: 368: 335: 257: 153: 2394:
Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H. (1955).
1201:
Colorless gem cut from diamond grown by chemical vapor deposition
5854:
The diamond formula: diamond synthesis-a gemological perspective
1420:"Lab-grown diamonds: girl's best friend or cut-price sparklers?" 1389:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1369:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1341:, November 3, 1828: "There was given a reading of a letter from 1338:
Procès-verbaux des séances de l'Académie (Académie des sciences)
1160: 613: 349: 108: 1245:
created" and the serial number prefix "LG" (laboratory grown).
316:
The most definitive replication attempts were performed by Sir
5688: 4870:, Vanderbilt University Research News. Retrieved May 27, 2015. 2215:
Liander, H. & Lundblad, E. (1955). "Artificial diamonds".
1171: 1108: 297:
Many other scientists tried to replicate his experiments. Sir
1071:
and window material in high-power radiation sources, such as
5473:. Jckonline.com (May 27, 2015). Retrieved September 1, 2015. 5175:"How High Quality Synthetic Diamonds Will Impact the Market" 2240:. Jan-Erik Pettersson. Stockholm: Sveriges Tekniska Museum. 890:
The thermal conductivity of CVD diamond ranges from tens of
3320:"Structure and defects of detonation synthesis nanodiamond" 1957:"Science: Dr. J. Willard Hershey and the Synthetic Diamond" 396:(510,000 psi) for a few seconds. Soon thereafter, the 5520:"Want to Make a Diamond in Just 10 Weeks? Use a Microwave" 2237:
Daedalus 1988 : Sveriges Tekniska Museums Årsbok 1988
1795:. London and New York's Harper Brothers. pp. 140 ff. 1345:, who communicated some investigations into the action of 808:) of the crystals that make it up. Grain sizes range from 282:
at up to 3,500 °C (6,330 °F) with iron inside a
2091:"Some notes on carbon at high temperatures and pressures" 2041:
50 years progress in crystal growth: a reprint collection
1533:
Philosophical Transactions of the Royal Society of London
5816:"How GIA Is Changing Its Reports for Lab-Grown Diamonds" 5483:
Wang, Wuyi; Persaud, Stephanie; Myagkaya, Elina (2022).
2634:
Eversole, W. G. (April 17, 1962) "Synthesis of diamond"
439:
container in which graphite was dissolved within molten
4916: 4819:
Critical Reviews in Solid State and Materials Sciences
4173:
International Journal of Machine Tools and Manufacture
1756:"Nouvelles expériences sur la reproduction du diamant" 4861:"Designing diamond circuits for extreme environments" 3197:
Koizumi, S.; Nebel, C. E. & Nesladek, M. (2008).
1095:. Since these elements contain one more or one fewer 473:
A scalpel with single-crystal synthetic diamond blade
5875:
Gems: their sources, descriptions and identification
5618:"Why Lab Created Diamonds are a Poor Value Purchase" 5559:. The Gem & Jewellery Export Promotion Council. 3008:. International Diamond Laboratories. Archived from 2778:"Industry worries about undisclosed synthetic melee" 1502:"Lab Grown Diamonds: A Miracle of Modern Technology" 590:
compressed cell. A variation of the belt press uses
5233:"How 2023 became the year of the lab-grown diamond" 4467:"Diamonds for Modern Synchrotron Radiation Sources" 1638:Academy of Sciences], November 10, 1828, volume 9, 1155:and BOLD (Blind to the Optical Light Detectors for 5485:"New Record Size for CVD Laboratory-Grown Diamond" 3047: 2140:"The Problem of Artificial Production of Diamonds" 1824:Zeitschrift für Anorganische und Allgemeine Chemie 1657:Academy of Sciences], December 1, 1828, volume 9, 5738: 5736: 5717:. U.S. Federal Trade Commission. July 24, 2018. 5715:"FTC Approves Final Revisions to Jewelry Guides" 5378:. Associated Press via NBC News. July 13, 2004. 4465:Heartwig, J.; et al. (September 13, 2006). 832:diamonds and HPHT nanocrystalline diamonds (see 5804:, U.S. Federal Trade Commission, July 21, 2008. 5685:"De Beers admits defeat over man-made diamonds" 1923:. Heathside Press, New York. pp. 127–132. 1476:"The state of 2013 global rough diamond supply" 3687:Properties, Growth and Applications of Diamond 1099:than carbon, they turn synthetic diamond into 1010:significantly replaced traditional PCD tools. 994:and saws, and the use of diamond powder as an 5678: 5676: 5376:"De Beers pleads guilty in price fixing case" 4775:. Diamond and Other New Carbon Materials IV. 4015: 4013: 3054:. Vol. 2. Elsevier, Amsterdam. pp.  2953: 2951: 2449: 2447: 836:) are harder than any known natural diamond. 652:Free-standing single-crystal CVD diamond disc 461:secrecy order on the GE patent applications. 8: 3285:. The Electrochemical Society. p. 363. 3132:Int. J. Refractory Metals and Hard Materials 1679:"On the Artificial Formation of the Diamond" 1387: 1367: 1336: 5893:Spear, K. E. & Dismukes, J. P. (1994). 5550:"Synthetic Diamonds – Promoting Fair Trade" 5126: 5124: 4469:. European Synchrotron Radiation Facility. 2752:"Melee Diamonds: Tiny Diamonds, Big Impact" 1980: 1978: 522:(200 mg) to 1.5 carats (300 mg). 380:In 1941, an agreement was made between the 241:Both CVD and HPHT diamonds can be cut into 1896:. Kessinger Publishing. pp. 123–130. 1356:"Artificial production of real diamonds", 1083:Synthetic diamond has potential uses as a 447:or iron. Those metals acted as a "solvent- 5401:Pressler, Margaret Webb (July 14, 2004). 5278: 5007: 4421: 3919: 3859: 3806: 3684:Neves, A. J. & Nazaré, M. H. (2001). 3653: 2321: 2177: 2175: 2163: 2114: 2010: 1544: 757:atmospheric pressure and room temperature 5464:Company Grows 10 Carat Synthetic Diamond 5346:"Memorial Diamonds Deliver Eternal Life" 4340:Introduction to the physics of gyrotrons 3620: 3618: 3192: 3190: 3000: 2998: 2915: 2913: 2533: 2531: 215:and high optical transparency in a wide 183:, in cutting and polishing tools and in 31: 5530:from the original on September 30, 2018 5103:Electrochemical and Solid-State Letters 3200:Physics and Applications of CVD Diamond 2838:"Swiss lab introduces melee identifier" 2583: 2581: 2190:. Cambridge University Press. pp.  1770:from the original on September 11, 2017 1410: 1326: 278:in 1893. Their method involved heating 27:Diamond created by controlled processes 5783:from the original on February 22, 2017 5776:. De Beers Technologies UK. May 2016. 5751:from the original on November 27, 2018 5628:from the original on November 20, 2018 5414:from the original on November 12, 2012 5133:"The Many Facets of Man-Made Diamonds" 4917:"Blind to the Optical Light Detectors" 4026:ACS Applied Materials & Interfaces 3356:from the original on December 22, 2015 3041: 3039: 2869: 2867: 2865: 1621:Artificial production of real diamonds 784:Traditionally, the absence of crystal 407:The Schenectady group improved on the 373:A belt press produced in the 1980s by 125:high pressure high temperature diamond 5721:from the original on January 12, 2019 5695:from the original on November 9, 2020 5661:from the original on January 13, 2017 5499:from the original on February 8, 2023 5181:from the original on November 3, 2013 5155:from the original on October 28, 2008 4524:from the original on October 20, 2020 2291: 2289: 1937:from the original on November 5, 2012 1842:from the original on October 25, 2020 1799:from the original on November 5, 2012 1582: 1580: 1131:Synthetic diamond is already used as 1051:as the output window of high-power CO 858:, but diamond with boron added is an 824:The hardness of diamond is 10 on the 586:, forming a large synthetic diamond. 404:and others joined the project later. 340:First synthetic diamonds by ASEA 1953 115:ever found weighs 3167 ct (633.4 g). 7: 5382:from the original on January 1, 2015 5200:Zimnisky, Paul (February 10, 2015). 5131:Yarnell, Amanda (February 2, 2004). 4945:Semiconductor Science and Technology 4785:10.4028/www.scientific.net/AST.48.73 3428:Russian Journal of Applied Chemistry 1432:from the original on October 1, 2022 727:Diamond nanocrystals (5 nm (2.0 5917:. In Daedalus 1988. ISBN 9176160181 5616:Fried, Michael (January 20, 2017). 5585:Kavilanz, Parija (April 27, 2022). 5212:from the original on March 22, 2015 5060:Journal of Applied Electrochemistry 4473:from the original on March 24, 2015 4139:Turning And Mechanical Manipulation 4060:from the original on March 20, 2022 3704:from the original on March 20, 2022 3603:from the original on March 20, 2022 3299:from the original on March 20, 2022 3217:from the original on March 20, 2022 3203:. Wiley VCH. pp. 50, 200–240. 3046:Ito, E. (2007). G. Schubert (ed.). 2262:from the original on March 20, 2022 2058:from the original on March 20, 2022 1553:from the original on April 25, 2016 1478:. Resource Investor. Archived from 1474:Zimnisky, Paul (January 22, 2013). 1451:Suman Tagadiya (February 4, 2023). 846:Crystallographic defects in diamond 767:Crystallization inside liquid metal 5826:from the original on July 11, 2021 5647:Zimnisky, Paul (January 9, 2017). 5566:from the original on July 13, 2014 4923:from the original on June 21, 2009 4859:Salisbury, David (August 4, 2011) 4773:Advances in Science and Technology 2846:. National Jeweler. Archived from 2784:. jckonline.com. January 2, 2014. 2758:from the original on June 12, 2018 1959:. McPherson Museum. Archived from 1726:Annales Pharmaceutiques Françaises 878:, thereby increasing hardness and 25: 5814:Graff, Michelle (April 4, 2019). 5683:Kottasová, Ivana (May 29, 2018). 5231:Pearl, Diana (October 26, 2023). 4883:Nuclear Instruments and Methods A 3963:from the original on June 7, 2011 2818:from the original on May 18, 2015 2788:from the original on May 18, 2015 2234:Sveriges Tekniska Museum (1988). 1418:Fisher, Alice (October 1, 2022). 1364:(278): 300–301 (December 6, 1828) 1262:helped to publicize the problem. 1218:diamonds can be distinguished by 854:For instance, pure diamond is an 203:. Synthetic diamond detectors of 5597:from the original on May 5, 2022 4919:. Royal Observatory of Belgium. 4290:. SPIE Press. pp. 303–334. 2095:Proceedings of the Royal Society 1820:"Über die Bildung von Diamanten" 1041:coefficient of thermal expansion 276:Ferdinand Frédéric Henri Moissan 101:chemical and physical properties 5934:Chemical & Engineering News 5445:Laboratory Grown Diamond Report 5352:. June 23, 2009. Archived from 5137:Chemical & Engineering News 5000:10.1016/j.electacta.2005.04.023 2718:10.1070/RC1970v039n09ABEH002022 2347:"Ultra-high pressure apparatus" 1091:with impurities like boron and 566:High pressure, high temperature 5743:Payne, Jason (July 25, 2018). 4404:. High Heat Flux Engineering. 4365:Optical Engineering of Diamond 3901:"Superconductivity in diamond" 3496:David Nield (April 25, 2024). 1601:], November 3, 1828, volume 9, 1529:"On the nature of the diamond" 1306:inspired by Hannay and Moissan 1214:grown using cremated remains. 1205:Synthetic diamonds for use as 1027:, laser arrays and high-power 826:Mohs scale of mineral hardness 1: 5915:Om konsten att göra diamanter 5432: 5045:10.1016/j.diamond.2007.02.015 5025:Diamond and Related Materials 4965:10.1088/0268-1242/23/3/035026 4565:10.1016/j.diamond.2004.12.043 4545:Diamond and Related Materials 4220:10.1016/S0925-9635(03)00074-8 4200:Diamond and Related Materials 3664:10.1016/S0925-9635(97)00232-X 3634:Diamond and Related Materials 3483:10.1016/j.diamond.2008.01.112 3397:10.1126/science.133.3467.1821 3347:10.1016/S0925-9635(99)00354-4 3327:Diamond and Related Materials 3181:10.1016/S0024-4937(01)00079-2 3144:10.1016/S0263-4368(00)00039-1 2942:10.1016/j.diamond.2007.08.008 2922:Diamond and Related Materials 2610:10.1016/j.diamond.2005.09.007 2522: 2298:"Errors in diamond synthesis" 2280: 2025: 5872:O'Donoghue, Michael (2006). 4729:IEEE Electron Device Letters 4683:IEEE Electron Device Letters 4185:10.1016/0890-6955(95)93044-7 3586:Handbook of Electrochemistry 3101:10.1126/science.128.3322.445 3030: 2572: 2560:10.1016/0022-0248(90)90126-6 2510: 2076: 1917:Hershey, J. Willard (1940). 1890:Hershey, J. Willard (2004). 1349:placed in contact with pure 874:) and put the lattice under 669:in the growth chamber using 99:3D form—and share identical 5289:10.1088/0034-4885/42/10/001 4367:. Wiley. pp. 239–276. 4101:10.1103/PhysRevLett.70.3764 2896:10.1088/0034-4885/61/12/002 1664:September 11, 2017, at the 1645:September 11, 2017, at the 1608:September 11, 2017, at the 1153:Stanford Linear Accelerator 966:Machining and cutting tools 723:) of detonation nanodiamond 459:U.S. Department of Commerce 5989: 5312:Journal of Applied Physics 4903:10.1016/j.nima.2005.06.030 4866:November 18, 2011, at the 4342:. JHU Press. p. 229. 4338:Nusinovich, G. S. (2004). 3984:Journal of Applied Physics 3878:10.1103/PhysRevB.84.155205 3825:10.1103/PhysRevB.79.115202 3583:Zoski, Cynthia G. (2007). 3570: 3550:10.1038/s41586-024-07339-7 2808:"Diamond Melee definition" 2738: 2683: 2622: 1586: 1571: 1527:Tennant, Smithson (1797). 1190: 1133:radiation detection device 843: 708: 641: 617:Schematic of a BARS system 545:Manufacturing technologies 5878:. Butterworth-Heinemann. 5857:. Butterworth-Heinemann. 5450:October 21, 2012, at the 5149:10.1021/cen-v082n005.p026 4839:10.1080/10408430008951119 4373:10.1002/9783527648603.ch8 3690:. IET. pp. 142–147. 3589:. Elsevier. p. 136. 3440:10.1134/S1070427206120019 3279:Kopf, R. F., ed. (2003). 2540:Journal of Crystal Growth 2044:. Elsevier. p. 194. 2038:Feigelson, R. S. (2004). 1789:Crookes, William (1909). 1376:communicated a note from 1302:(1895): a short story by 922:isotopically pure diamond 840:Impurities and inclusions 774:chemical vapor deposition 644:Chemical vapor deposition 638:Chemical vapor deposition 574:Schematic of a belt press 531:chemical vapor deposition 301:claimed success in 1909. 137:chemical vapor deposition 5649:"A New Diamond Industry" 5177:. Kitco. July 12, 2013. 4704:10.1109/LED.2012.2210020 4500:(Submitted manuscript). 4136:Holtzapffel, C. (1856). 2698:Russian Chemical Reviews 2456:"Preparation of diamond" 1836:10.1002/zaac.19170990109 1282:Federal Trade Commission 1117:field-effect transistors 705:Detonation of explosives 318:Charles Algernon Parsons 197:field-effect transistors 113:heaviest natural diamond 42:laboratory-grown diamond 5913:Lundblad, Erik (1988). 5851:Barnard, A. S. (2000). 5318:(8): 083517–083517–10. 5080:10.1023/A:1026526729357 4750:10.1109/LED.2006.876325 4651:10.1126/science.1074374 4600:10.1126/science.1060258 3760:Physica Status Solidi A 3238:Physica Status Solidi A 2812:Encyclopædia Britannica 1280:In July 2018, the U.S. 862:(and, in some cases, a 562:of graphite solutions. 556:detonation nanodiamonds 272:James Ballantyne Hannay 5524:Bloomberg Businessweek 4286:Harris, D. C. (1999). 4038:10.1021/acsami.7b16812 3780:10.1002/pssa.200409033 3731:(2): 026112–026112–3. 3258:10.1002/pssa.200561920 2116:10.1098/rspa.1907.0062 2089:Parson, C. A. (1907). 1695:10.1098/rspl.1879.0144 1677:Hannay, J. B. (1879). 1626:June 29, 2014, at the 1546:10.1098/rstl.1797.0005 1388: 1378:Mr. Cagniard de Latour 1372:, November 10, 1828: " 1368: 1337: 1202: 979: 724: 711:Detonation nanodiamond 653: 618: 575: 474: 417:Nobel Prize in Physics 377: 341: 263: 160: 37: 5469:June 1, 2015, at the 4446:on September 17, 2008 4274:U.S. patent 6,924,170 4124:U.S. patent 4,488,821 2850:on September 10, 2015 2637:U.S. patent 3,030,188 2182:Hazen, R. M. (1999). 2138:Desch, C. H. (1928). 1985:Lonsdale, K. (1962). 1392:, December 1, 1828: " 1310:Synthetic alexandrite 1200: 973: 748:Ultrasound cavitation 719:Electron micrograph ( 718: 651: 642:Further information: 616: 573: 472: 372: 339: 261: 209:high-energy particles 201:light-emitting diodes 157: 35: 4267:Ravi, Kramadhati V. 2596:(11–12): 1916–1919. 2345:Hall, H. T. (1960). 1689:(200–205): 450–461. 1105:n-type semiconductor 1087:, because it can be 926:thermal conductivity 886:Thermal conductivity 870:(defects within the 860:electrical conductor 856:electrical insulator 288:electric arc furnace 169:thermal conductivity 5820:Nationaljeweler.com 5407:The Washington Post 5356:on October 17, 2012 5324:2005JAP....97h3517C 5271:1979RPPh...42.1605W 5072:1988JApEl..18..410W 5037:2007DRM....16.1648N 4988:Electrochimica Acta 4957:2008SeScT..23c5026B 4895:2005NIMPA.552..189B 4831:2000CRSSM..25..163R 4742:2006IEDL...27..570U 4696:2012IEDL...33.1471R 4643:2002Sci...297.1670I 4637:(5587): 1670–1672. 4592:2001Sci...292.1899K 4586:(5523): 1899–1901. 4557:2005DRM....14..491D 4510:2003RScI...74.2467J 4414:1993SPIE.1739..628K 4255:10.1049/el:19920123 4247:1992ElL....28..197S 4235:Electronics Letters 4212:2003DRM....12.1300A 4093:1993PhRvL..70.3764W 3996:1999JAP....86..698C 3938:10.1038/nature02449 3930:2004Natur.428..542E 3870:2011PhRvB..84o5205A 3817:2009PhRvB..79k5202L 3772:2004PSSAR.201R..25Y 3737:2005RScI...76b6112S 3646:1998DRM.....7..427B 3542:2024Natur.629..348G 3475:2008DRM....17..931K 3389:1961Sci...133.1821D 3383:(3467): 1821–1822. 3339:2000DRM.....9..861I 3250:2005PSSAR.202.2177B 3173:2002Litho..60..145P 3093:1958Sci...128..445H 2973:2004DokPh..49..150G 2934:2007DRM....16.2018O 2888:1998RPPh...61.1665W 2710:1970RuCRv..39..783D 2663:1968JAP....39.2915A 2602:2005DRM....14.1916A 2552:1990JCrGr.104..257B 2500:on January 8, 2014. 2475:1959Natur.184.1094B 2469:(4693): 1094–1098. 2440:on January 8, 2014. 2415:1955Natur.176...51B 2396:"Man-made diamonds" 2383:on January 8, 2014. 2366:1960RScI...31..125H 2314:1993Natur.365...19B 2156:1928Natur.121..799C 2107:1907RSPSA..79..532P 2003:1962Natur.196..104L 1963:on January 12, 2016 1861:Nassau, K. (1980). 1599:Academy of Sciences 1482:on January 28, 2013 1358:Mechanics' Magazine 1069:diffraction grating 924:, have the highest 465:Further development 5973:1953 introductions 5654:The Mining Journal 4498:Rev. Sci. Instrum. 3571:Spear and Dismukes 3463:Diam. Relat. Mater 2754:. April 11, 2017. 2739:Spear and Dismukes 2684:Spear and Dismukes 2623:Spear and Dismukes 2590:Diam. Relat. Mater 2186:The diamond makers 1869:. pp. 12–25. 1683:Proc. R. Soc. Lond 1587:Spear and Dismukes 1572:Spear and Dismukes 1226:, ultraviolet, or 1203: 1193:Diamond (gemstone) 980: 876:compressive stress 790:optical dispersion 725: 693:, or other means. 654: 619: 576: 475: 378: 365:GE diamond project 354:Baltzar von Platen 342: 307:J. Willard Hershey 264: 161: 82:obtained by mining 54:laboratory-created 38: 5963:Synthetic diamond 5928:Schulz, William. 5906:978-0-471-53589-8 5896:Synthetic diamond 5885:978-0-7506-5856-0 5864:978-0-7506-4244-6 5489:Gems and Gemology 5332:10.1063/1.1866501 5265:(10): 1605–1659. 5115:10.1149/1.1390963 5066:(12): 1345–1350. 4794:978-3-03813-096-3 4690:(10): 1471–1473. 4518:10.1063/1.1544084 4432:10.1117/12.140532 4349:978-0-8018-7921-0 4297:978-0-8194-3482-1 4157:978-1-879335-39-4 4087:(24): 3764–3767. 3914:(6982): 542–545. 3745:10.1063/1.1850654 3725:Rev. Sci. Instrum 3697:978-0-85296-785-0 3673:on July 21, 2011. 3596:978-0-444-51958-0 3536:(8011): 348–354. 3434:(12): 1913–1918. 3292:978-1-56677-391-1 3244:(11): 2177–2181. 3210:978-3-527-40801-6 3087:(3322): 445–449. 3065:978-0-8129-2275-2 2981:10.1134/1.1710678 2928:(12): 2018–2022. 2882:(12): 1665–1710. 2671:10.1063/1.1656693 2483:10.1038/1841094a0 2374:10.1063/1.1716907 2354:Rev. Sci. Instrum 2201:978-0-521-65474-6 2150:(3055): 799–800. 2051:978-0-444-51650-3 1997:(4850): 104–106. 1930:978-0-486-41816-2 1903:978-1-4179-7715-4 1876:978-0-8019-6773-3 1818:Ruff, O. (1917). 1589:, pp. 23, 512–513 1299:The Diamond Maker 1286:diamond simulants 1212:memorial diamonds 1014:Thermal conductor 872:crystal structure 759:using ultrasonic 415:, who received a 311:McPherson College 268:Antoine Lavoisier 213:thermal expansion 195:, high-frequency 173:electron mobility 86:diamond simulants 50:lab-grown diamond 48:), also called a 16:(Redirected from 5980: 5949: 5910: 5889: 5868: 5836: 5835: 5833: 5831: 5811: 5805: 5799: 5793: 5792: 5790: 5788: 5782: 5775: 5767: 5761: 5760: 5758: 5756: 5740: 5731: 5730: 5728: 5726: 5711: 5705: 5704: 5702: 5700: 5680: 5671: 5670: 5668: 5666: 5644: 5638: 5637: 5635: 5633: 5613: 5607: 5606: 5604: 5602: 5582: 5576: 5575: 5573: 5571: 5565: 5554: 5546: 5540: 5539: 5537: 5535: 5515: 5509: 5508: 5506: 5504: 5480: 5474: 5461: 5455: 5442: 5436: 5430: 5424: 5423: 5421: 5419: 5398: 5392: 5391: 5389: 5387: 5372: 5366: 5365: 5363: 5361: 5342: 5336: 5335: 5307: 5301: 5300: 5282: 5254: 5248: 5247: 5245: 5243: 5228: 5222: 5221: 5219: 5217: 5206:Kitco Commentary 5197: 5191: 5190: 5188: 5186: 5171: 5165: 5164: 5162: 5160: 5128: 5119: 5118: 5098: 5092: 5091: 5055: 5049: 5048: 5031:(8): 1648–1651. 5020: 5014: 5013: 5011: 4983: 4977: 4976: 4939: 4933: 4932: 4930: 4928: 4913: 4907: 4906: 4889:(1–2): 189–196. 4877: 4871: 4857: 4851: 4850: 4813: 4807: 4806: 4768: 4762: 4761: 4722: 4716: 4715: 4677: 4671: 4670: 4626: 4620: 4619: 4575: 4569: 4568: 4551:(3–7): 491–498. 4540: 4534: 4533: 4531: 4529: 4489: 4483: 4482: 4480: 4478: 4462: 4456: 4455: 4453: 4451: 4442:. Archived from 4425: 4393: 4387: 4386: 4360: 4354: 4353: 4335: 4329: 4328: 4308: 4302: 4301: 4283: 4277: 4276: 4265: 4259: 4258: 4230: 4224: 4223: 4206:(8): 1300–1306. 4195: 4189: 4188: 4168: 4162: 4161: 4133: 4127: 4126: 4119: 4113: 4112: 4076: 4070: 4069: 4067: 4065: 4032:(5): 4808–4815. 4017: 4008: 4007: 4004:10.1063/1.370787 3979: 3973: 3972: 3970: 3968: 3962: 3923: 3921:cond-mat/0404156 3905: 3896: 3890: 3889: 3863: 3843: 3837: 3836: 3810: 3790: 3784: 3783: 3755: 3749: 3748: 3720: 3714: 3713: 3711: 3709: 3681: 3675: 3674: 3672: 3666:. Archived from 3657: 3640:(2–5): 427–431. 3631: 3622: 3613: 3612: 3610: 3608: 3580: 3574: 3568: 3562: 3561: 3526:Ruoff, Rodney S. 3521: 3515: 3514: 3512: 3510: 3493: 3487: 3486: 3458: 3452: 3451: 3423: 3417: 3416: 3372: 3366: 3365: 3363: 3361: 3355: 3333:(3–6): 861–865. 3324: 3315: 3309: 3308: 3306: 3304: 3276: 3270: 3269: 3233: 3227: 3226: 3224: 3222: 3194: 3185: 3184: 3167:(3–4): 145–159. 3154: 3148: 3147: 3127: 3121: 3120: 3076: 3070: 3069: 3053: 3043: 3034: 3028: 3022: 3021: 3019: 3017: 3006:"HPHT synthesis" 3002: 2993: 2992: 2955: 2946: 2945: 2917: 2908: 2907: 2871: 2860: 2859: 2857: 2855: 2843:National Jeweler 2834: 2828: 2827: 2825: 2823: 2804: 2798: 2797: 2795: 2793: 2774: 2768: 2767: 2765: 2763: 2748: 2742: 2736: 2730: 2729: 2693: 2687: 2681: 2675: 2674: 2646: 2640: 2639: 2632: 2626: 2620: 2614: 2613: 2585: 2576: 2570: 2564: 2563: 2535: 2526: 2520: 2514: 2508: 2502: 2501: 2499: 2493:. Archived from 2460: 2451: 2442: 2441: 2439: 2433:. Archived from 2423:10.1038/176051a0 2400: 2391: 2385: 2384: 2382: 2376:. Archived from 2351: 2342: 2336: 2335: 2325: 2323:10.1038/365019a0 2293: 2284: 2278: 2272: 2271: 2269: 2267: 2231: 2225: 2224: 2212: 2206: 2205: 2189: 2179: 2170: 2169: 2167: 2165:10.1038/121799a0 2135: 2129: 2128: 2118: 2101:(533): 532–535. 2086: 2080: 2074: 2068: 2067: 2065: 2063: 2035: 2029: 2023: 2017: 2016: 2014: 2012:10.1038/196104a0 1982: 1973: 1972: 1970: 1968: 1953: 1947: 1946: 1944: 1942: 1920:Book of Diamonds 1914: 1908: 1907: 1887: 1881: 1880: 1863:Gems made by Man 1858: 1852: 1851: 1849: 1847: 1815: 1809: 1808: 1806: 1804: 1786: 1780: 1779: 1777: 1775: 1748: 1742: 1741: 1721: 1715: 1714: 1674: 1668: 1655: 1649: 1636: 1630: 1618: 1612: 1596: 1590: 1584: 1575: 1569: 1563: 1562: 1560: 1558: 1548: 1524: 1518: 1517: 1515: 1513: 1508:. April 13, 2023 1498: 1492: 1491: 1489: 1487: 1471: 1465: 1464: 1462: 1460: 1448: 1442: 1441: 1439: 1437: 1415: 1399: 1391: 1371: 1351:carbon disulfide 1340: 1331: 1315:List of diamonds 1151:detector at the 1113:carrier mobility 1097:valence electron 1035:Optical material 947: 945: 944: 937: 936: 919: 918: 917: 910: 909: 900:covalent bonding 730: 628:cemented carbide 421:tungsten carbide 398:Second World War 382:General Electric 231: 230: 229: 74:cultured diamond 21: 18:Man-made diamond 5988: 5987: 5983: 5982: 5981: 5979: 5978: 5977: 5953: 5952: 5927: 5924: 5907: 5892: 5886: 5871: 5865: 5850: 5847: 5841: 5839: 5829: 5827: 5813: 5812: 5808: 5800: 5796: 5786: 5784: 5780: 5773: 5769: 5768: 5764: 5754: 5752: 5742: 5741: 5734: 5724: 5722: 5713: 5712: 5708: 5698: 5696: 5682: 5681: 5674: 5664: 5662: 5646: 5645: 5641: 5631: 5629: 5622:The Diamond Pro 5615: 5614: 5610: 5600: 5598: 5584: 5583: 5579: 5569: 5567: 5563: 5552: 5548: 5547: 5543: 5533: 5531: 5517: 5516: 5512: 5502: 5500: 5482: 5481: 5477: 5471:Wayback Machine 5462: 5458: 5452:Wayback Machine 5443: 5439: 5431: 5427: 5417: 5415: 5400: 5399: 5395: 5385: 5383: 5374: 5373: 5369: 5359: 5357: 5344: 5343: 5339: 5309: 5308: 5304: 5259:Rep. Prog. Phys 5256: 5255: 5251: 5241: 5239: 5230: 5229: 5225: 5215: 5213: 5199: 5198: 5194: 5184: 5182: 5173: 5172: 5168: 5158: 5156: 5130: 5129: 5122: 5100: 5099: 5095: 5057: 5056: 5052: 5022: 5021: 5017: 4985: 4984: 4980: 4941: 4940: 4936: 4926: 4924: 4915: 4914: 4910: 4879: 4878: 4874: 4868:Wayback Machine 4858: 4854: 4815: 4814: 4810: 4795: 4770: 4769: 4765: 4724: 4723: 4719: 4679: 4678: 4674: 4628: 4627: 4623: 4577: 4576: 4572: 4542: 4541: 4537: 4527: 4525: 4491: 4490: 4486: 4476: 4474: 4464: 4463: 4459: 4449: 4447: 4423:10.1.1.261.1970 4395: 4394: 4390: 4383: 4382:978-352764860-3 4362: 4361: 4357: 4350: 4337: 4336: 4332: 4310: 4309: 4305: 4298: 4285: 4284: 4280: 4272: 4266: 4262: 4232: 4231: 4227: 4197: 4196: 4192: 4170: 4169: 4165: 4158: 4135: 4134: 4130: 4122: 4120: 4116: 4081:Phys. Rev. Lett 4078: 4077: 4073: 4063: 4061: 4019: 4018: 4011: 3981: 3980: 3976: 3966: 3964: 3960: 3903: 3898: 3897: 3893: 3845: 3844: 3840: 3792: 3791: 3787: 3757: 3756: 3752: 3722: 3721: 3717: 3707: 3705: 3698: 3683: 3682: 3678: 3670: 3655:10.1.1.520.7265 3629: 3624: 3623: 3616: 3606: 3604: 3597: 3582: 3581: 3577: 3569: 3565: 3523: 3522: 3518: 3508: 3506: 3495: 3494: 3490: 3460: 3459: 3455: 3425: 3424: 3420: 3374: 3373: 3369: 3359: 3357: 3353: 3322: 3317: 3316: 3312: 3302: 3300: 3293: 3278: 3277: 3273: 3235: 3234: 3230: 3220: 3218: 3211: 3196: 3195: 3188: 3156: 3155: 3151: 3129: 3128: 3124: 3078: 3077: 3073: 3066: 3045: 3044: 3037: 3029: 3025: 3015: 3013: 3004: 3003: 2996: 2961:Doklady Physics 2957: 2956: 2949: 2919: 2918: 2911: 2876:Rep. Prog. Phys 2873: 2872: 2863: 2853: 2851: 2836: 2835: 2831: 2821: 2819: 2806: 2805: 2801: 2791: 2789: 2776: 2775: 2771: 2761: 2759: 2750: 2749: 2745: 2737: 2733: 2695: 2694: 2690: 2682: 2678: 2648: 2647: 2643: 2635: 2633: 2629: 2621: 2617: 2587: 2586: 2579: 2571: 2567: 2537: 2536: 2529: 2521: 2517: 2509: 2505: 2497: 2458: 2453: 2452: 2445: 2437: 2409:(4471): 51–55. 2398: 2393: 2392: 2388: 2380: 2349: 2344: 2343: 2339: 2295: 2294: 2287: 2279: 2275: 2265: 2263: 2248: 2233: 2232: 2228: 2214: 2213: 2209: 2202: 2181: 2180: 2173: 2137: 2136: 2132: 2088: 2087: 2083: 2075: 2071: 2061: 2059: 2052: 2037: 2036: 2032: 2024: 2020: 1984: 1983: 1976: 1966: 1964: 1955: 1954: 1950: 1940: 1938: 1931: 1916: 1915: 1911: 1904: 1889: 1888: 1884: 1877: 1867:Chilton Book Co 1860: 1859: 1855: 1845: 1843: 1817: 1816: 1812: 1802: 1800: 1788: 1787: 1783: 1773: 1771: 1750: 1749: 1745: 1723: 1722: 1718: 1676: 1675: 1671: 1666:Wayback Machine 1656: 1652: 1647:Wayback Machine 1637: 1633: 1628:Wayback Machine 1619: 1615: 1610:Wayback Machine 1597: 1593: 1585: 1578: 1570: 1566: 1556: 1554: 1526: 1525: 1521: 1511: 1509: 1500: 1499: 1495: 1485: 1483: 1473: 1472: 1468: 1458: 1456: 1450: 1449: 1445: 1435: 1433: 1417: 1416: 1412: 1408: 1403: 1402: 1332: 1328: 1323: 1294: 1264:Consumer demand 1195: 1189: 1139:and has a wide 1081: 1054: 1037: 1023:for high-power 1016: 974:Diamonds in an 968: 963: 943: 941: 940: 939: 935: 933: 932: 931: 929: 916: 914: 913: 912: 908: 906: 905: 904: 903: 888: 848: 842: 822: 812:to hundreds of 798: 782: 769: 750: 728: 713: 707: 646: 640: 568: 547: 510:phosphorescence 467: 367: 334: 299:William Crookes 274:in 1879 and by 256: 228: 225: 224: 223: 221: 62:artisan-created 28: 23: 22: 15: 12: 11: 5: 5986: 5984: 5976: 5975: 5970: 5965: 5955: 5954: 5951: 5950: 5923: 5922:External links 5920: 5919: 5918: 5911: 5905: 5899:. Wiley-IEEE. 5890: 5884: 5869: 5863: 5846: 5843: 5838: 5837: 5806: 5794: 5762: 5732: 5706: 5672: 5639: 5608: 5587:"CNN Business" 5577: 5541: 5510: 5475: 5456: 5437: 5425: 5393: 5367: 5337: 5302: 5280:10.1.1.467.443 5249: 5223: 5192: 5166: 5120: 5093: 5050: 5015: 4994:(2): 191–199. 4978: 4934: 4908: 4872: 4852: 4825:(3): 163–277. 4808: 4793: 4763: 4736:(7): 570–572. 4717: 4672: 4621: 4570: 4535: 4484: 4457: 4388: 4381: 4355: 4348: 4330: 4303: 4296: 4278: 4260: 4241:(2): 197–199. 4225: 4190: 4179:(5): 761–774. 4163: 4156: 4128: 4114: 4071: 4009: 3974: 3891: 3854:(15): 155205. 3838: 3801:(11): 115202. 3785: 3750: 3715: 3696: 3676: 3614: 3595: 3575: 3563: 3516: 3488: 3469:(6): 931–936. 3453: 3418: 3367: 3310: 3291: 3271: 3228: 3209: 3186: 3149: 3122: 3071: 3064: 3035: 3023: 3012:on May 1, 2009 2994: 2967:(3): 150–153. 2947: 2909: 2861: 2829: 2799: 2769: 2743: 2731: 2704:(9): 783–788. 2688: 2676: 2641: 2627: 2615: 2577: 2565: 2546:(2): 257–279. 2527: 2515: 2503: 2443: 2386: 2337: 2285: 2273: 2246: 2226: 2207: 2200: 2171: 2130: 2081: 2069: 2050: 2030: 2018: 1974: 1948: 1929: 1909: 1902: 1882: 1875: 1853: 1810: 1781: 1760:Comptes Rendus 1752:Moissan, Henri 1743: 1716: 1669: 1650: 1631: 1613: 1591: 1576: 1564: 1519: 1493: 1466: 1455:. Diamondrensu 1443: 1409: 1407: 1404: 1401: 1400: 1398: 1397: 1385: 1382:Mr. Gay-Lussac 1365: 1354: 1325: 1324: 1322: 1319: 1318: 1317: 1312: 1307: 1293: 1290: 1254:diamond mining 1191:Main article: 1188: 1185: 1137:radiation hard 1080: 1077: 1052: 1036: 1033: 1015: 1012: 1000:ferrous alloys 967: 964: 962: 959: 942: 934: 915: 907: 887: 884: 864:superconductor 844:Main article: 841: 838: 821: 818: 797: 794: 781: 778: 768: 765: 749: 746: 709:Main article: 706: 703: 639: 636: 623:BARS apparatus 604:platonic solid 567: 564: 546: 543: 466: 463: 413:Percy Bridgman 366: 363: 333: 330: 255: 252: 226: 217:spectral range 207:(UV) light or 193:power stations 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5985: 5974: 5971: 5969: 5966: 5964: 5961: 5960: 5958: 5947: 5943: 5939: 5935: 5931: 5926: 5925: 5921: 5916: 5912: 5908: 5902: 5898: 5897: 5891: 5887: 5881: 5877: 5876: 5870: 5866: 5860: 5856: 5855: 5849: 5848: 5844: 5842: 5825: 5821: 5817: 5810: 5807: 5803: 5798: 5795: 5779: 5772: 5766: 5763: 5750: 5746: 5739: 5737: 5733: 5720: 5716: 5710: 5707: 5694: 5690: 5686: 5679: 5677: 5673: 5660: 5656: 5655: 5650: 5643: 5640: 5627: 5623: 5619: 5612: 5609: 5596: 5592: 5588: 5581: 5578: 5562: 5558: 5551: 5545: 5542: 5529: 5525: 5521: 5514: 5511: 5498: 5494: 5490: 5486: 5479: 5476: 5472: 5468: 5465: 5460: 5457: 5453: 5449: 5446: 5441: 5438: 5434: 5429: 5426: 5413: 5409: 5408: 5404: 5397: 5394: 5381: 5377: 5371: 5368: 5355: 5351: 5347: 5341: 5338: 5333: 5329: 5325: 5321: 5317: 5313: 5306: 5303: 5298: 5294: 5290: 5286: 5281: 5276: 5272: 5268: 5264: 5260: 5253: 5250: 5238: 5234: 5227: 5224: 5211: 5207: 5203: 5196: 5193: 5180: 5176: 5170: 5167: 5154: 5150: 5146: 5142: 5138: 5134: 5127: 5125: 5121: 5116: 5112: 5108: 5104: 5097: 5094: 5089: 5085: 5081: 5077: 5073: 5069: 5065: 5061: 5054: 5051: 5046: 5042: 5038: 5034: 5030: 5026: 5019: 5016: 5010: 5005: 5001: 4997: 4993: 4989: 4982: 4979: 4974: 4970: 4966: 4962: 4958: 4954: 4951:(3): 035026. 4950: 4946: 4938: 4935: 4922: 4918: 4912: 4909: 4904: 4900: 4896: 4892: 4888: 4884: 4876: 4873: 4869: 4865: 4862: 4856: 4853: 4848: 4844: 4840: 4836: 4832: 4828: 4824: 4820: 4812: 4809: 4804: 4800: 4796: 4790: 4786: 4782: 4778: 4774: 4767: 4764: 4759: 4755: 4751: 4747: 4743: 4739: 4735: 4731: 4730: 4721: 4718: 4713: 4709: 4705: 4701: 4697: 4693: 4689: 4685: 4684: 4676: 4673: 4668: 4664: 4660: 4656: 4652: 4648: 4644: 4640: 4636: 4632: 4625: 4622: 4617: 4613: 4609: 4605: 4601: 4597: 4593: 4589: 4585: 4581: 4574: 4571: 4566: 4562: 4558: 4554: 4550: 4546: 4539: 4536: 4523: 4519: 4515: 4511: 4507: 4503: 4499: 4495: 4488: 4485: 4472: 4468: 4461: 4458: 4445: 4441: 4437: 4433: 4429: 4424: 4419: 4415: 4411: 4407: 4403: 4399: 4392: 4389: 4384: 4378: 4374: 4370: 4366: 4359: 4356: 4351: 4345: 4341: 4334: 4331: 4326: 4322: 4318: 4314: 4307: 4304: 4299: 4293: 4289: 4282: 4279: 4275: 4270: 4264: 4261: 4256: 4252: 4248: 4244: 4240: 4236: 4229: 4226: 4221: 4217: 4213: 4209: 4205: 4201: 4194: 4191: 4186: 4182: 4178: 4174: 4167: 4164: 4159: 4153: 4149: 4145: 4141: 4140: 4132: 4129: 4125: 4118: 4115: 4110: 4106: 4102: 4098: 4094: 4090: 4086: 4082: 4075: 4072: 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4031: 4027: 4023: 4016: 4014: 4010: 4005: 4001: 3997: 3993: 3989: 3985: 3978: 3975: 3959: 3955: 3951: 3947: 3943: 3939: 3935: 3931: 3927: 3922: 3917: 3913: 3909: 3902: 3895: 3892: 3887: 3883: 3879: 3875: 3871: 3867: 3862: 3857: 3853: 3849: 3842: 3839: 3834: 3830: 3826: 3822: 3818: 3814: 3809: 3804: 3800: 3796: 3789: 3786: 3781: 3777: 3773: 3769: 3765: 3761: 3754: 3751: 3746: 3742: 3738: 3734: 3730: 3726: 3719: 3716: 3703: 3699: 3693: 3689: 3688: 3680: 3677: 3669: 3665: 3661: 3656: 3651: 3647: 3643: 3639: 3635: 3628: 3621: 3619: 3615: 3602: 3598: 3592: 3588: 3587: 3579: 3576: 3573:, pp. 308–309 3572: 3567: 3564: 3559: 3555: 3551: 3547: 3543: 3539: 3535: 3531: 3527: 3520: 3517: 3505: 3504: 3499: 3492: 3489: 3484: 3480: 3476: 3472: 3468: 3464: 3457: 3454: 3449: 3445: 3441: 3437: 3433: 3429: 3422: 3419: 3414: 3410: 3406: 3402: 3398: 3394: 3390: 3386: 3382: 3378: 3371: 3368: 3352: 3348: 3344: 3340: 3336: 3332: 3328: 3321: 3314: 3311: 3298: 3294: 3288: 3284: 3283: 3275: 3272: 3267: 3263: 3259: 3255: 3251: 3247: 3243: 3239: 3232: 3229: 3216: 3212: 3206: 3202: 3201: 3193: 3191: 3187: 3182: 3178: 3174: 3170: 3166: 3162: 3161: 3153: 3150: 3145: 3141: 3137: 3133: 3126: 3123: 3118: 3114: 3110: 3106: 3102: 3098: 3094: 3090: 3086: 3082: 3075: 3072: 3067: 3061: 3057: 3052: 3051: 3042: 3040: 3036: 3032: 3027: 3024: 3011: 3007: 3001: 2999: 2995: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2954: 2952: 2948: 2943: 2939: 2935: 2931: 2927: 2923: 2916: 2914: 2910: 2905: 2901: 2897: 2893: 2889: 2885: 2881: 2877: 2870: 2868: 2866: 2862: 2849: 2845: 2844: 2839: 2833: 2830: 2817: 2813: 2809: 2803: 2800: 2787: 2783: 2779: 2773: 2770: 2757: 2753: 2747: 2744: 2741:, pp. 265–266 2740: 2735: 2732: 2727: 2723: 2719: 2715: 2711: 2707: 2703: 2699: 2692: 2689: 2685: 2680: 2677: 2672: 2668: 2664: 2660: 2656: 2652: 2651:J. Appl. Phys 2645: 2642: 2638: 2631: 2628: 2624: 2619: 2616: 2611: 2607: 2603: 2599: 2595: 2591: 2584: 2582: 2578: 2574: 2569: 2566: 2561: 2557: 2553: 2549: 2545: 2541: 2534: 2532: 2528: 2524: 2519: 2516: 2512: 2507: 2504: 2496: 2492: 2488: 2484: 2480: 2476: 2472: 2468: 2464: 2457: 2450: 2448: 2444: 2436: 2432: 2428: 2424: 2420: 2416: 2412: 2408: 2404: 2397: 2390: 2387: 2379: 2375: 2371: 2367: 2363: 2359: 2355: 2348: 2341: 2338: 2333: 2329: 2324: 2319: 2315: 2311: 2307: 2303: 2299: 2292: 2290: 2286: 2282: 2277: 2274: 2261: 2257: 2253: 2249: 2247:91-7616-018-1 2243: 2239: 2238: 2230: 2227: 2222: 2218: 2211: 2208: 2203: 2197: 2193: 2188: 2187: 2178: 2176: 2172: 2166: 2161: 2157: 2153: 2149: 2145: 2141: 2134: 2131: 2126: 2122: 2117: 2112: 2108: 2104: 2100: 2096: 2092: 2085: 2082: 2078: 2073: 2070: 2057: 2053: 2047: 2043: 2042: 2034: 2031: 2027: 2022: 2019: 2013: 2008: 2004: 2000: 1996: 1992: 1988: 1981: 1979: 1975: 1962: 1958: 1952: 1949: 1936: 1932: 1926: 1922: 1921: 1913: 1910: 1905: 1899: 1895: 1894: 1886: 1883: 1878: 1872: 1868: 1864: 1857: 1854: 1841: 1837: 1833: 1830:(1): 73–104. 1829: 1825: 1821: 1814: 1811: 1798: 1794: 1793: 1785: 1782: 1769: 1765: 1761: 1757: 1753: 1747: 1744: 1739: 1735: 1732:(2): 116–30. 1731: 1727: 1720: 1717: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1673: 1670: 1667: 1663: 1660: 1654: 1651: 1648: 1644: 1641: 1635: 1632: 1629: 1625: 1622: 1617: 1614: 1611: 1607: 1604: 1600: 1595: 1592: 1588: 1583: 1581: 1577: 1573: 1568: 1565: 1552: 1547: 1542: 1538: 1534: 1530: 1523: 1520: 1507: 1503: 1497: 1494: 1481: 1477: 1470: 1467: 1454: 1447: 1444: 1431: 1427: 1426: 1421: 1414: 1411: 1405: 1395: 1390: 1386: 1383: 1379: 1375: 1370: 1366: 1363: 1359: 1355: 1352: 1348: 1344: 1339: 1335: 1334: 1330: 1327: 1320: 1316: 1313: 1311: 1308: 1305: 1301: 1300: 1296: 1295: 1291: 1289: 1287: 1283: 1278: 1275: 1271: 1267: 1265: 1261: 1260: 1259:Blood Diamond 1255: 1250: 1246: 1244: 1240: 1236: 1231: 1229: 1225: 1221: 1215: 1213: 1208: 1199: 1194: 1186: 1184: 1181: 1177: 1173: 1169: 1164: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1129: 1125: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1085:semiconductor 1078: 1076: 1074: 1070: 1066: 1062: 1058: 1050: 1049:zinc selenide 1046: 1042: 1034: 1032: 1030: 1026: 1022: 1021:heat spreader 1013: 1011: 1008: 1003: 1001: 997: 993: 989: 988:cutting tools 985: 984:machine tools 977: 976:angle grinder 972: 965: 960: 958: 955: 949: 946: 927: 923: 901: 896: 893: 885: 883: 881: 877: 873: 869: 865: 861: 857: 852: 847: 839: 837: 835: 830: 827: 819: 817: 815: 811: 807: 803: 796:Crystallinity 795: 793: 791: 787: 779: 777: 775: 766: 764: 762: 758: 754: 747: 745: 743: 739: 735: 722: 717: 712: 704: 702: 699: 694: 692: 691:electron beam 688: 684: 683:welding torch 680: 679:arc discharge 676: 672: 668: 664: 658: 650: 645: 637: 635: 633: 629: 624: 615: 611: 609: 605: 601: 595: 593: 587: 585: 581: 572: 565: 563: 561: 557: 553: 544: 542: 538: 536: 532: 528: 523: 520: 516: 511: 507: 502: 500: 496: 492: 488: 483: 481: 471: 464: 462: 460: 456: 455: 450: 446: 442: 438: 434: 429: 426: 422: 418: 414: 410: 405: 403: 399: 395: 391: 387: 383: 376: 371: 364: 362: 358: 355: 351: 347: 338: 331: 329: 327: 323: 322:steam turbine 319: 314: 312: 308: 304: 300: 295: 293: 289: 285: 281: 277: 273: 269: 260: 253: 251: 249: 248:spectroscopic 244: 239: 237: 233: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 156: 152: 150: 146: 142: 138: 134: 130: 126: 122: 116: 114: 110: 106: 102: 98: 94: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 34: 30: 19: 5937: 5933: 5895: 5874: 5853: 5845:Bibliography 5840: 5828:. Retrieved 5819: 5809: 5797: 5785:. Retrieved 5765: 5753:. Retrieved 5723:. Retrieved 5709: 5697:. Retrieved 5663:. Retrieved 5652: 5642: 5632:November 19, 5630:. Retrieved 5621: 5611: 5599:. Retrieved 5591:CNN Business 5590: 5580: 5570:February 12, 5568:. Retrieved 5556: 5544: 5532:. Retrieved 5523: 5513: 5501:. Retrieved 5492: 5488: 5478: 5459: 5440: 5428: 5418:November 26, 5416:. Retrieved 5405: 5396: 5384:. Retrieved 5370: 5358:. Retrieved 5354:the original 5349: 5340: 5315: 5311: 5305: 5262: 5258: 5252: 5240:. Retrieved 5236: 5226: 5214:. Retrieved 5205: 5195: 5183:. Retrieved 5169: 5157:. Retrieved 5143:(5): 26–31. 5140: 5136: 5106: 5102: 5096: 5063: 5059: 5053: 5028: 5024: 5018: 5009:11567/244765 4991: 4987: 4981: 4948: 4944: 4937: 4925:. Retrieved 4911: 4886: 4882: 4875: 4855: 4822: 4818: 4811: 4776: 4772: 4766: 4733: 4727: 4720: 4687: 4681: 4675: 4634: 4630: 4624: 4583: 4579: 4573: 4548: 4544: 4538: 4526:. Retrieved 4501: 4497: 4487: 4475:. Retrieved 4460: 4448:. Retrieved 4444:the original 4405: 4401: 4391: 4364: 4358: 4339: 4333: 4319:: 27. 1999. 4316: 4312: 4306: 4287: 4281: 4268: 4263: 4238: 4234: 4228: 4203: 4199: 4193: 4176: 4172: 4166: 4138: 4131: 4117: 4084: 4080: 4074: 4062:. Retrieved 4029: 4025: 3987: 3983: 3977: 3965:. Retrieved 3911: 3907: 3894: 3851: 3848:Phys. Rev. B 3847: 3841: 3798: 3795:Phys. Rev. B 3794: 3788: 3763: 3759: 3753: 3728: 3724: 3718: 3706:. Retrieved 3686: 3679: 3668:the original 3637: 3633: 3605:. Retrieved 3585: 3578: 3566: 3533: 3529: 3519: 3507:. Retrieved 3503:ScienceAlert 3501: 3491: 3466: 3462: 3456: 3431: 3427: 3421: 3380: 3376: 3370: 3358:. Retrieved 3330: 3326: 3313: 3301:. Retrieved 3281: 3274: 3241: 3237: 3231: 3219:. Retrieved 3199: 3164: 3158: 3152: 3135: 3131: 3125: 3084: 3080: 3074: 3049: 3026: 3014:. Retrieved 3010:the original 2964: 2960: 2925: 2921: 2879: 2875: 2852:. Retrieved 2848:the original 2841: 2832: 2820:. Retrieved 2811: 2802: 2790:. Retrieved 2781: 2772: 2760:. Retrieved 2746: 2734: 2701: 2697: 2691: 2679: 2654: 2650: 2644: 2630: 2618: 2593: 2589: 2568: 2543: 2539: 2518: 2506: 2495:the original 2466: 2462: 2435:the original 2406: 2402: 2389: 2378:the original 2357: 2353: 2340: 2308:(6441): 19. 2305: 2301: 2276: 2266:November 20, 2264:. Retrieved 2236: 2229: 2220: 2217:ASEA Journal 2216: 2210: 2185: 2147: 2143: 2133: 2098: 2094: 2084: 2072: 2060:. Retrieved 2040: 2033: 2021: 1994: 1990: 1965:. Retrieved 1961:the original 1951: 1939:. Retrieved 1919: 1912: 1892: 1885: 1862: 1856: 1844:. Retrieved 1827: 1823: 1813: 1801:. Retrieved 1791: 1784: 1772:. Retrieved 1763: 1759: 1746: 1729: 1725: 1719: 1686: 1682: 1672: 1653: 1634: 1616: 1594: 1567: 1557:February 23, 1555:. Retrieved 1536: 1532: 1522: 1510:. Retrieved 1505: 1496: 1484:. Retrieved 1480:the original 1469: 1457:. Retrieved 1446: 1434:. Retrieved 1425:The Guardian 1423: 1413: 1361: 1357: 1329: 1297: 1279: 1276: 1272: 1268: 1257: 1252:Traditional 1251: 1247: 1232: 1220:spectroscopy 1216: 1204: 1176:biomolecules 1165: 1130: 1126: 1082: 1073:synchrotrons 1065:Raman lasers 1038: 1025:laser diodes 1017: 1004: 981: 961:Applications 950: 897: 889: 868:dislocations 853: 849: 834:hyperdiamond 823: 799: 783: 770: 751: 726: 695: 675:hot filament 659: 655: 632:thermocouple 620: 608:dodecahedron 606:, such as a 596: 588: 584:precipitates 577: 548: 539: 524: 506:fluorescence 503: 484: 476: 453: 437:pyrophyllite 430: 411:designed by 406: 379: 359: 343: 315: 296: 265: 240: 162: 132: 128: 124: 121:Soviet Union 117: 93:crystallized 73: 69: 65: 61: 57: 53: 49: 45: 41: 39: 29: 5665:January 14, 4504:(4): 2467. 4408:: 628–642. 4313:New Diamond 4146:. pp.  4144:Holtzapffel 4064:October 16, 2657:(6): 2915. 2625:, pp. 25–26 2513:, pp. 40–43 1967:January 12, 1766:: 320–326. 1539:: 123–127. 1506:klenota.com 1486:February 4, 1394:Mr. Thenard 1304:H. G. Wells 1079:Electronics 1055:lasers and 1029:transistors 954:thermistors 814:micrometers 802:polycrystal 734:nitric acid 600:tetrahedron 394:gigapascals 390:Carborundum 205:ultraviolet 177:widely used 133:CVD diamond 111:), and the 5957:Categories 5787:August 21, 5725:August 17, 5433:O'Donoghue 4528:August 21, 4402:Proc. SPIE 3990:(1): 698. 3766:(4): R25. 2523:O'Donoghue 2360:(2): 125. 2281:O'Donoghue 2026:O'Donoghue 1941:August 15, 1803:August 18, 1436:October 1, 1406:References 1347:phosphorus 1343:Mr. Gannal 1168:covalently 1093:phosphorus 992:drill bits 810:nanometers 806:grain size 780:Properties 761:cavitation 560:sonication 491:Inclusions 402:Tracy Hall 361:15, 1955. 185:heat sinks 149:ultrasound 145:detonation 84:). Unlike 66:artificial 5946:0009-2347 5557:gjepc.org 5360:August 8, 5297:250857323 5275:CiteSeerX 5208:. Kitco. 5185:August 1, 5109:(2): 77. 4803:137379434 4779:: 73–76. 4440:137212507 4418:CiteSeerX 4325:1340-4792 4046:1944-8244 3967:April 24, 3886:118553722 3861:1307.3278 3833:119227072 3808:1208.3207 3650:CiteSeerX 3509:April 25, 2989:120882885 2904:250878100 2782:JCKOnline 2726:250819894 2256:841614801 2079:, pp. 6–7 1774:March 10, 1711:135789069 1659:page 151: 1640:page 140: 1603:page 137: 1512:April 13, 1374:Mr. Arago 1235:one maker 1233:At least 1207:gemstones 1187:Gemstones 1163:program. 1057:gyrotrons 957:seconds. 920:(99.9%), 880:toughness 673:power, a 671:microwave 592:hydraulic 527:pyrolysis 425:catlinite 346:Stockholm 303:Otto Ruff 236:gyrotrons 181:abrasives 141:nanometer 97:isotropic 70:synthetic 5968:Crystals 5830:July 11, 5824:Archived 5778:Archived 5755:July 29, 5749:Archived 5719:Archived 5693:Archived 5659:Archived 5626:Archived 5595:Archived 5561:Archived 5534:July 19, 5528:Archived 5503:June 21, 5497:Archived 5467:Archived 5448:Archived 5435:, p. 115 5412:Archived 5380:Archived 5216:March 7, 5210:Archived 5179:Archived 5159:March 2, 5153:Archived 5088:97692319 4973:93845703 4921:Archived 4864:Archived 4847:96368363 4758:27756719 4712:15626986 4667:27736134 4659:12215638 4616:10675358 4608:11397942 4522:Archived 4471:Archived 4109:10053956 4058:Archived 4054:29328632 3958:Archived 3946:15057827 3702:Archived 3601:Archived 3558:38658760 3448:96810777 3405:17818997 3360:March 4, 3351:Archived 3297:Archived 3266:93807288 3215:Archived 3117:17834381 3033:, p. 150 2816:Archived 2786:Archived 2756:Archived 2575:, p. 166 2525:, p. 320 2491:44669031 2283:, p. 474 2260:Archived 2056:Archived 2028:, p. 473 1935:Archived 1846:June 29, 1840:Archived 1797:Archived 1792:Diamonds 1768:Archived 1754:(1894). 1738:10365467 1662:Archived 1643:Archived 1624:Archived 1606:Archived 1574:, p. 309 1551:Archived 1459:June 11, 1430:Archived 1292:See also 1224:infrared 1170:linking 1135:. It is 1121:band gap 1045:infrared 1007:sintered 996:abrasive 820:Hardness 667:radicals 519:De Beers 495:titanium 487:nitrogen 449:catalyst 433:toroidal 280:charcoal 189:switches 165:hardness 58:man-made 5699:May 30, 5386:May 27, 5350:Reuters 5320:Bibcode 5267:Bibcode 5242:May 23, 5068:Bibcode 5033:Bibcode 4953:Bibcode 4891:Bibcode 4827:Bibcode 4738:Bibcode 4692:Bibcode 4639:Bibcode 4631:Science 4588:Bibcode 4580:Science 4553:Bibcode 4506:Bibcode 4410:Bibcode 4243:Bibcode 4208:Bibcode 4089:Bibcode 3992:Bibcode 3954:4423950 3926:Bibcode 3866:Bibcode 3813:Bibcode 3768:Bibcode 3733:Bibcode 3642:Bibcode 3538:Bibcode 3471:Bibcode 3413:9805441 3385:Bibcode 3377:Science 3335:Bibcode 3246:Bibcode 3169:Bibcode 3138:: 5–9. 3109:1756408 3089:Bibcode 3081:Science 3056:197–230 3031:Barnard 2969:Bibcode 2930:Bibcode 2884:Bibcode 2854:May 10, 2822:May 10, 2792:May 10, 2762:June 9, 2706:Bibcode 2686:, p. 42 2659:Bibcode 2598:Bibcode 2573:Barnard 2548:Bibcode 2511:Barnard 2471:Bibcode 2431:4266566 2411:Bibcode 2362:Bibcode 2332:4348180 2310:Bibcode 2152:Bibcode 2103:Bibcode 2077:Barnard 1999:Bibcode 1243:Gemesis 1222:in the 1143:of 5.5 1141:bandgap 742:Belarus 663:methane 535:silicon 375:KOBELCO 254:History 78:diamond 5944:  5903:  5882:  5861:  5601:May 5, 5295:  5277:  5086:  4971:  4927:May 5, 4845:  4801:  4791:  4756:  4710:  4665:  4657:  4614:  4606:  4477:May 5, 4450:May 5, 4438:  4420:  4379:  4346:  4323:  4294:  4154:  4150:–178. 4107:  4052:  4044:  3952:  3944:  3908:Nature 3884:  3831:  3708:May 3, 3694:  3652:  3607:May 3, 3593:  3556:  3530:Nature 3446:  3411:  3403:  3303:May 3, 3289:  3264:  3221:May 3, 3207:  3160:Lithos 3115:  3107:  3062:  3016:May 5, 2987:  2902:  2724:  2489:  2463:Nature 2429:  2403:Nature 2330:  2302:Nature 2254:  2244:  2198:  2194:–113. 2144:Nature 2123:  2062:May 3, 2048:  1991:Nature 1927:  1900:  1873:  1736:  1709:  1703:113601 1701:  1101:p-type 1061:optics 753:Micron 738:powder 698:silica 558:) and 552:plasma 517:. The 515:X-rays 454:Nature 445:cobalt 441:nickel 409:anvils 386:Norton 384:(GE), 326:spinel 284:carbon 232:lasers 131:) and 95:in an 90:carbon 5940:(5). 5781:(PDF) 5774:(PDF) 5564:(PDF) 5553:(PDF) 5495:(1). 5293:S2CID 5084:S2CID 4969:S2CID 4843:S2CID 4799:S2CID 4754:S2CID 4708:S2CID 4663:S2CID 4612:S2CID 4436:S2CID 4269:et al 3961:(PDF) 3950:S2CID 3916:arXiv 3904:(PDF) 3882:S2CID 3856:arXiv 3829:S2CID 3803:arXiv 3671:(PDF) 3630:(PDF) 3444:S2CID 3409:S2CID 3354:(PDF) 3323:(PDF) 3262:S2CID 3105:JSTOR 2985:S2CID 2900:S2CID 2722:S2CID 2498:(PDF) 2487:S2CID 2459:(PDF) 2438:(PDF) 2427:S2CID 2399:(PDF) 2381:(PDF) 2350:(PDF) 2328:S2CID 2223:: 97. 2125:92683 2121:JSTOR 1707:S2CID 1699:JSTOR 1321:Notes 1239:laser 1228:X-ray 1180:redox 1149:BaBar 1089:doped 978:blade 786:flaws 689:, an 687:laser 677:, an 499:boron 480:carat 107:(6.0 76:, is 72:, or 5942:ISSN 5901:ISBN 5880:ISBN 5859:ISBN 5832:2021 5789:2018 5757:2018 5727:2018 5701:2018 5667:2017 5634:2018 5603:2022 5572:2016 5536:2022 5505:2022 5420:2008 5388:2015 5362:2009 5244:2024 5218:2015 5187:2013 5161:2004 4929:2009 4789:ISBN 4655:PMID 4604:PMID 4530:2018 4479:2009 4452:2009 4406:1739 4377:ISBN 4344:ISBN 4321:ISSN 4292:ISBN 4152:ISBN 4105:PMID 4066:2020 4050:PMID 4042:ISSN 3969:2009 3942:PMID 3710:2021 3692:ISBN 3609:2021 3591:ISBN 3554:PMID 3511:2024 3401:PMID 3362:2013 3305:2021 3287:ISBN 3223:2021 3205:ISBN 3113:PMID 3060:ISBN 3018:2009 2856:2015 2824:2015 2794:2015 2764:2018 2268:2021 2252:OCLC 2242:ISBN 2196:ISBN 2064:2021 2046:ISBN 1969:2016 1943:2009 1925:ISBN 1898:ISBN 1871:ISBN 1848:2019 1805:2011 1776:2014 1734:PMID 1559:2016 1514:2023 1488:2013 1461:2024 1438:2022 1161:LYRA 1109:LEDs 986:and 892:W/mK 685:, a 681:, a 621:The 580:BARS 508:and 388:and 350:ASEA 332:ASEA 292:lime 243:gems 234:and 199:and 171:and 129:HPHT 5689:CNN 5328:doi 5285:doi 5237:CNN 5145:doi 5111:doi 5076:doi 5041:doi 5004:hdl 4996:doi 4961:doi 4899:doi 4887:552 4835:doi 4781:doi 4746:doi 4700:doi 4647:doi 4635:297 4596:doi 4584:292 4561:doi 4514:doi 4428:doi 4369:doi 4251:doi 4216:doi 4181:doi 4148:176 4097:doi 4034:doi 4000:doi 3934:doi 3912:428 3874:doi 3821:doi 3776:doi 3764:201 3741:doi 3660:doi 3546:doi 3534:629 3479:doi 3436:doi 3393:doi 3381:133 3343:doi 3254:doi 3242:202 3177:doi 3140:doi 3097:doi 3085:128 2977:doi 2938:doi 2892:doi 2714:doi 2667:doi 2606:doi 2556:doi 2544:104 2479:doi 2467:184 2419:doi 2407:176 2370:doi 2318:doi 2306:365 2192:100 2160:doi 2148:121 2111:doi 2099:79a 2007:doi 1995:196 1832:doi 1764:118 1691:doi 1541:doi 1172:DNA 1157:VUV 1103:or 721:TEM 348:by 309:of 191:at 179:in 46:LGD 5959:: 5938:82 5936:. 5932:. 5822:. 5818:. 5747:. 5735:^ 5691:. 5687:. 5675:^ 5657:. 5651:. 5624:. 5620:. 5593:. 5589:. 5555:. 5526:. 5522:. 5493:58 5491:. 5487:. 5410:. 5348:. 5326:. 5316:97 5314:. 5291:. 5283:. 5273:. 5263:42 5261:. 5235:. 5204:. 5151:. 5141:82 5139:. 5135:. 5123:^ 5105:. 5082:. 5074:. 5064:20 5062:. 5039:. 5029:16 5027:. 5002:. 4992:51 4990:. 4967:. 4959:. 4949:23 4947:. 4897:. 4885:. 4841:. 4833:. 4823:25 4821:. 4797:. 4787:. 4777:48 4752:. 4744:. 4734:27 4732:. 4706:. 4698:. 4688:33 4686:. 4661:. 4653:. 4645:. 4633:. 4610:. 4602:. 4594:. 4582:. 4559:. 4549:14 4547:. 4520:. 4512:. 4502:74 4496:. 4434:. 4426:. 4416:. 4400:. 4375:. 4317:15 4315:. 4249:. 4239:28 4237:. 4214:. 4204:12 4202:. 4177:35 4175:. 4142:. 4103:. 4095:. 4085:70 4083:. 4056:. 4048:. 4040:. 4030:10 4028:. 4024:. 4012:^ 3998:. 3988:86 3986:. 3956:. 3948:. 3940:. 3932:. 3924:. 3910:. 3906:. 3880:. 3872:. 3864:. 3852:84 3850:. 3827:. 3819:. 3811:. 3799:79 3797:. 3774:. 3762:. 3739:. 3729:76 3727:. 3700:. 3658:. 3648:. 3636:. 3632:. 3617:^ 3599:. 3552:. 3544:. 3532:. 3500:. 3477:. 3467:17 3465:. 3442:. 3432:79 3430:. 3407:. 3399:. 3391:. 3379:. 3349:. 3341:. 3329:. 3325:. 3295:. 3260:. 3252:. 3240:. 3213:. 3189:^ 3175:. 3165:60 3163:. 3136:19 3134:. 3111:. 3103:. 3095:. 3083:. 3058:. 3038:^ 2997:^ 2983:. 2975:. 2965:49 2963:. 2950:^ 2936:. 2926:16 2924:. 2912:^ 2898:. 2890:. 2880:61 2878:. 2864:^ 2840:. 2814:. 2810:. 2780:. 2720:. 2712:. 2702:39 2700:. 2665:. 2655:39 2653:. 2604:. 2594:14 2592:. 2580:^ 2554:. 2542:. 2530:^ 2485:. 2477:. 2465:. 2461:. 2446:^ 2425:. 2417:. 2405:. 2401:. 2368:. 2358:31 2356:. 2352:. 2326:. 2316:. 2304:. 2300:. 2288:^ 2258:. 2250:. 2221:28 2219:. 2174:^ 2158:. 2146:. 2142:. 2119:. 2109:. 2097:. 2093:. 2054:. 2005:. 1993:. 1989:. 1977:^ 1933:. 1865:. 1838:. 1828:99 1826:. 1822:. 1762:. 1758:. 1730:57 1728:. 1705:. 1697:. 1687:30 1685:. 1681:. 1579:^ 1549:. 1537:87 1535:. 1531:. 1504:. 1428:. 1422:. 1362:10 1360:, 1145:eV 882:. 634:. 489:. 443:, 328:. 222:CO 167:, 159:mm 105:ct 68:, 64:, 60:, 56:, 52:, 40:A 5948:. 5909:. 5888:. 5867:. 5834:. 5791:. 5759:. 5729:. 5703:. 5669:. 5636:. 5605:. 5574:. 5538:. 5507:. 5422:. 5390:. 5364:. 5334:. 5330:: 5322:: 5299:. 5287:: 5269:: 5246:. 5220:. 5189:. 5163:. 5147:: 5117:. 5113:: 5107:3 5090:. 5078:: 5070:: 5047:. 5043:: 5035:: 5012:. 5006:: 4998:: 4975:. 4963:: 4955:: 4931:. 4905:. 4901:: 4893:: 4849:. 4837:: 4829:: 4805:. 4783:: 4760:. 4748:: 4740:: 4714:. 4702:: 4694:: 4669:. 4649:: 4641:: 4618:. 4598:: 4590:: 4567:. 4563:: 4555:: 4532:. 4516:: 4508:: 4481:. 4454:. 4430:: 4412:: 4385:. 4371:: 4352:. 4327:. 4300:. 4257:. 4253:: 4245:: 4222:. 4218:: 4210:: 4187:. 4183:: 4160:. 4111:. 4099:: 4091:: 4068:. 4036:: 4006:. 4002:: 3994:: 3971:. 3936:: 3928:: 3918:: 3888:. 3876:: 3868:: 3858:: 3835:. 3823:: 3815:: 3805:: 3782:. 3778:: 3770:: 3747:. 3743:: 3735:: 3712:. 3662:: 3644:: 3638:7 3611:. 3560:. 3548:: 3540:: 3513:. 3485:. 3481:: 3473:: 3450:. 3438:: 3415:. 3395:: 3387:: 3364:. 3345:: 3337:: 3331:9 3307:. 3268:. 3256:: 3248:: 3225:. 3183:. 3179:: 3171:: 3146:. 3142:: 3119:. 3099:: 3091:: 3068:. 3020:. 2991:. 2979:: 2971:: 2944:. 2940:: 2932:: 2906:. 2894:: 2886:: 2858:. 2826:. 2796:. 2766:. 2728:. 2716:: 2708:: 2673:. 2669:: 2661:: 2612:. 2608:: 2600:: 2562:. 2558:: 2550:: 2481:: 2473:: 2421:: 2413:: 2372:: 2364:: 2334:. 2320:: 2312:: 2270:. 2204:. 2168:. 2162:: 2154:: 2127:. 2113:: 2105:: 2066:. 2015:. 2009:: 2001:: 1971:. 1945:. 1906:. 1879:. 1850:. 1834:: 1807:. 1778:. 1740:. 1713:. 1693:: 1561:. 1543:: 1516:. 1490:. 1463:. 1440:. 1053:2 938:C 911:C 729:× 227:2 127:( 109:g 44:( 20:)

Index

Man-made diamond
Six non-faceted diamond crystals of 2–3 mm (0.079–0.118 in) size; they are yellow, green-yellow, green-blue, light-blue, light-blue and dark blue.
diamond
obtained by mining
diamond simulants
carbon
crystallized
isotropic
chemical and physical properties
ct
g
heaviest natural diamond
Soviet Union
chemical vapor deposition
nanometer
detonation
ultrasound

hardness
thermal conductivity
electron mobility
widely used
abrasives
heat sinks
switches
power stations
field-effect transistors
light-emitting diodes
ultraviolet
high-energy particles

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.