Knowledge (XXG)

Mass spectrometry imaging

Source 📝

195:- This has the same sample preparation as MALDI does as this simulates the chemical ionization properties of MALDI. ME-SIMS does not sample nearly as much material. However, if the analyte being tested has a low mass value then it can produce a similar looking spectra to that of a MALDI spectra. ME-SIMS has been so effective that it has been able to detect low mass chemicals at sub cellular levels that was not possible prior to the development of the ME-SIMS technique. The second technique being used is called sample metallization (Meta-SIMS) - This is the process of gold or silver addition to the sample. This forms a layer of gold or silver around the sample and it is normally no more than 1-3 nm thick. Using this technique has resulted in an increase of sensitivity for larger mass samples. The addition of the metallic layer also allows for the conversion of insulating samples to conducting samples, thus charge compensation within SIMS experiments is no longer required. 450:
the distribution of different molecules can be generated. In contrast, MRI with MSI combines the continuous 3D representation of MRI image with detailed structural representation using molecular information from MSI. Even though, MSI itself can generate 3D images, the picture is just part of the reality due to the depth limitation in the analysis, while MRI provides, for example, detailed organ shape with additional anatomical information. This coupled technique can be beneficial for cancer precise diagnosis and neurosurgery.
277:
of the abundance of the selected ions in the surface of the sample in relation with the spatial distribution are generated. This technique is applicable to solid, liquid, frozen and gaseous samples. Moreover, DESI allows analyzing a wide range of organic and biological compounds, as animal and plant tissues and cell culture samples, without complex sample preparation Although, this technique has the poorest resolution among other, it can create high-quality image from a large area scan, as a whole body section scanning. Fn
47:
across the sample. This results in pictures of the spatially resolved distribution of a compound pixel by pixel. Each data set contains a veritable gallery of pictures because any peak in each spectrum can be spatially mapped. Despite the fact that MSI has been generally considered a qualitative method, the signal generated by this technique is proportional to the relative abundance of the analyte. Therefore, quantification is possible, when its challenges are overcome. Although widely used traditional methodologies like
188:; the primary ion beam is emitted across the sample while secondary mass spectra are recorded. SIMS proves to be advantageous in providing the highest image resolution but only over small area of samples. More, this technique is widely regarded as one of the most sensitive forms of mass spectrometry as it can detect elements in concentrations as small as 10-10 atoms per cubic centimeter. 503:
diseases by tracking proteins, lipids, and cell metabolism. For example, identifying biomarkers by MSI can show detailed cancer diagnosis. In addition, low cost imaging for pharmaceuticals studies can be acquired, such as images of molecular signatures that would be indicative of treatment response for a specific drug or the effectiveness of a particular drug delivery method.
207: 88:(MALDI) could be applied to visualize large biomolecules (as proteins and lipids) in cells and tissue to reveal the function of these molecules and how function is changed by diseases like cancer, which led to the widespread use of MSI. Nowadays, different ionization techniques have been used, including SIMS, MALDI and 700:"Imaging Trace Metals in Biological Systems" pp 81–134 in "Metals, Microbes and Minerals: The Biogeochemical Side of Life" (2021) pp xiv + 341. Authors Yu, Jyao; Harankhedkar, Shefali; Nabatilan, Arielle; Fahrni, Christopher; Walter de Gruyter, Berlin. Editors Kroneck, Peter M.H. and Sosa Torres, Martha. 502:
A remarkable ability of MSI is to find out the localization of biomolecules in tissues, even though there are no previous information about them. This feature has made MSI a unique tool for clinical research and pharmacological research. It provides information about biomolecular changes related with
276:
Desorption electrospray Ionization is a less destructive technique, which couples simplicity and rapid analysis of the sample. The sample is sprayed with an electrically charged solvent mist at an angle that causes the ionization and desorption of various molecular species. Then, two-dimensional maps
194:
Developments within SIMS: Some chemical modifications have been made within SIMS to increase the efficiency of the process. There are currently two separate techniques being used to help increase the overall efficiency by increasing the sensitivity of SIMS measurements: matrix-enhanced SIMS (ME-SIMS)
449:
with MRI can be highlighted. Fluorescence staining can give information of the appearance of some proteins present in any process inside a tissue, while MSI may give information about the molecular changes presented in that process. Combining both techniques, multimodal picture or even 3D images of
444:
Combining various MSI techniques can be beneficial, since each particular technique has its own advantage. For example, when information regards both proteins and lipids are necessary in the same tissue section, performing DESI to analyze the lipid, followed by MALDI to obtain information about the
109:
This technique is performed using a focused ionization beam to analyze a specific region of the sample by generating a mass spectrum. The mass spectrum is stored along with the spatial coordination where the measurement took place. Then, a new region is selected and analyzed by moving the sample or
46:
by their molecular masses. After collecting a mass spectrum at one spot, the sample is moved to reach another region, and so on, until the entire sample is scanned. By choosing a peak in the resulting spectra that corresponds to the compound of interest, the MS data is used to map its distribution
518:
The main advantage of MSI for studying the molecules location and distribution within the tissue is that this analysis can provide either greater selectivity, more information or more accuracy than others. Moreover, this tool requires less investment of time and resources for similar results. The
122:
detector is used to measure the spatial origin of the ions generated at the sample surface by the ion optics of the instruments. The resolution of the spatial information will depend on the magnification of the microscope, the quality of the ions optics and the sensitivity of the detector. A new
479:
There are many free software packages available for visualization and mining of imaging mass spectrometry data. Converters from Thermo Fisher format, Analyze format, GRD format and Bruker format to imzML format were developed by the Computis project. Some software modules are also available for
131:
The ionization techniques available for MSI are suited to different applications. Some of the criteria for choosing the ionization method are the sample preparation requirement and the parameters of the measurement, as resolution, mass range and sensitivity. Based on that, the most common used
110:
the ionization beam. These steps are repeated until the entire sample has been scanned. By coupling all individual mass spectra, a distribution map of intensities as a function of x and y locations can be plotted. As a result, reconstructed molecular images of the sample are obtained.
1612:
A. Römpp; T. Schramm; A. Hester; I. Klinkert; J.P. Both; R.M.A. Heeren; M. Stoeckli; B. Spengler (2011). "Chapter imzML: Imaging Mass Spectrometry Markup Language: A Common Data Format for Mass Spectrometry Imaging in Data Mining in Proteomics: From Standards to Applications".
233:
is recorded. Although MALDI has the benefit of being able to record the spatial distribution of larger molecules, it comes at the cost of lower resolution than the SIMS technique. The limit for the lateral resolution for most of the modern instruments using MALDI is 20
224:
can be used as a mass spectrometry imaging technique for relatively large molecules. It has recently been shown that the most effective type of matrix to use is an ionic matrix for MALDI imaging of tissue. In this version of the technique the sample, typically a thin
55:
achieve the same goal as MSI, they are limited in their abilities to analyze multiple samples at once, and can prove to be lacking if researchers do not have prior knowledge of the samples being studied. Most common ionization technologies in the field of MSI are
1766:
Gamboa-Becerra, Roberto; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Winkler, Robert (2015-07-01). "MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum)".
210:
Mouse kidney: (a) MALDI spectra from the tissue. (b) H&E stained tissue. N-glycans at m/z = 1996.7 (c) is located in the cortex and medulla while m/z = 2158.7 (d) is in the cortex, (e) An overlay image of these two masses, (f) untreated control
179:
and collecting and analyzing ejected secondary ions. There are many different sources for a primary ion beam. However, the primary ion beam must contain ions that are at the higher end of the energy scale. Some common sources are: Cs,
100:
The MSI is based on the spatial distribution of the sample. Therefore, the operation principle depends on the technique that is used to obtain the spatial information. The two techniques used in MSI are: microprobe and microscope.
483:
For processing .imzML files with the free statistical and graphics language R, a collection of R scripts is available, which permits parallel-processing of large files on a local computer, a remote cluster or on the Amazon cloud.
445:
peptide, and finalize applying a stain (haematoxylin and eosin) for medical diagnosis of the structural characteristic of the tissue. On the other side of MSI with other imaging techniques, fluorescence staining with MSI and
1556:
Schramm, Thorsten; Hester, Zoë; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M. A.; Brunelle, Alain; Laprévote, Olivier; Desbenoit, Nicolas; Robbe, Marie-France; Stoeckli, Markus; Spengler, Bernhard (2012-08-30).
1283:
Angelo, Michael; Bendall, Sean C; Finck, Rachel; Hale, Matthew B; Hitzman, Chuck; Borowsky, Alexander D; Levenson, Richard M; Lowe, John B; Liu, Scot D; Zhao, Shuchun; Natkunam, Yasodha; Nolan, Garry P (2014).
2051:
Inglese, Paolo; Strittmatter, Nicole; Doria, Luisa; Mroz, Anna; Speller, Abigail; Poynter, Liam; Dannhorn, Andreas; Kudo, Hiromi; Mirnezami, Reza; Goldin, Robert D.; Nicholson, Jeremy K. (2018-01-09).
1959:
Addie, Ruben D.; Balluff, Benjamin; Bovée, Judith V. M. G.; Morreau, Hans; McDonnell, Liam A. (2015-07-07). "Current State and Future Challenges of Mass Spectrometry Imaging for Clinical Research".
1916:
Swales, John G.; Hamm, Gregory; Clench, Malcolm R.; Goodwin, Richard J.A. (March 2019). "Mass spectrometry imaging and its application in pharmaceutical research and development: A concise review".
979:
Addie, Ruben D.; Balluff, Benjamin; Bovée, Judith V. M. G.; Morreau, Hans; McDonnell, Liam A. (2015). "Current State and Future Challenges of Mass Spectrometry Imaging for Clinical Research".
1513:
Nilsson, Anna; Goodwin, Richard J. A.; Shariatgorji, Mohammadreza; Vallianatou, Theodosia; Webborn, Peter J. H.; Andrén, Per E. (2015-02-03). "Mass Spectrometry Imaging in Drug Development".
1628:
Klinkert, I.; Chughtai, K.; Ellis, S. R.; Heeren, R. M. A. (2014). "Methods for Full Resolution Data Exploration and Visualization for Large 2D and 3D Mass Spectrometry Imaging Datasets".
480:
viewing mass spectrometry images in imzML format: Biomap (Novartis, free), Datacube Explorer (AMOLF, free), EasyMSI (CEA), Mirion (JLU), MSiReader (NCSU, free) and SpectralAnalysis.
471:
format. Several imaging MS software tools support it. The advantage of this format is the flexibility to exchange data between different instruments and data analysis software.
1440:
Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM (2006). "New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry".
123:
region still needs to be scanned, but the number of positions drastically reduces. The limitation of this mode is the finite depth of vision present with all microscopes.
1197:
Bodzon-Kulakowska, Anna; Suder, Piotr (2016-01-01). "Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques".
428: 386: 344: 252: 679:
by way of comparison, 1 cc of Carbon (diamond) contains about 1.8 x 10 atoms. 10 to 10 corresponds to 6 parts per trillion (ppt) to 60 parts per billion (ppb).
153: 221: 133: 85: 519:
table below shows a comparison of advantages and disadvantages of some available techniques, including MSI, correlated with drug distribution analysis.
565:
Ex vivo; requires antibodies, which vary in sensitivity and specificity; difficulties assigning; detection threshold; lack of standard scoring system
490:
SPUTNIK is an R package containing various filters to remove peaks characterized by an uncorrelated spatial distribution with the sample location or
145: 1373:
Powers, Thomas W.; Neely, Benjamin A.; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A.; Mehta, Anand S.; Haab, Brian B.; Drake, Richard R. (2014).
1118:(2013). "Chapter 2. Technologies for Detecting Metals in Single Cells. Section 2.1, Secondary Ion Mass Specctrometry". In Banci, Lucia (ed.). 1155: 1135: 92:, as well as other technologies. Still, MALDI is the current dominant technology with regard to clinical and biological applications of MSI. 1375:"MALDI Imaging Mass Spectrometry Profiling of N-Glycans in Formalin-Fixed Paraffin Embedded Clinical Tissue Blocks and Tissue Microarrays" 191:
Multiplexed ion beam imaging (MIBI) is a SIMS method that uses metal isotope labeled antibodies to label compounds in biological samples.
2053:"Network analysis of mass spectrometry imaging data from colorectal cancer identifies key metabolites common to metastatic development" 141: 89: 57: 688:
the sensitivity varies by element (or molecule) as well as by nature of the surface being analyzed and conditions of the analysis.
1810:
Bemis, Kyle D.; Harry, April; Eberlin, Livia S.; Ferreira, Christina; van de Ven, Stephanie M.; Mallick, Parag; Stolowitz, Mark;
1341:
Delcorte A, Befahy S, Poleunis C, Troosters M, Bertrand P. "Improvements of metal adhesion to silicon films: a ToF-SIMS study".
198:
Subcellular (50 nm) resolution is enabled by NanoSIMS allowing for absolute quantitative analysis at the organelle level.
164: 137: 77: 65: 1248:
Chabala J, Soni K, Li J, Gavlirov K, Levi-Setti R (1995). "High resolution chemical imaging with scanning ion probe SIMS".
491: 2109: 446: 1665:"MSiReader: An Open-Source Interface to View and Analyze High Resolving Power MS Imaging Files on Matlab Platform" 119: 1475:
Patel, Ekta (1 January 2015). "MALDI-MS imaging for the study of tissue pharmacodynamics and toxicodynamics".
506:
Ion colocalization has been studied as a way to infer local interactions between biomolecules. Similarly to
1725: 2076: 2004:"MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice" 1559:"imzML--a common data format for the flexible exchange and processing of mass spectrometry imaging data" 1346: 811:
Rohner T, Staab D, Stoeckli M (2005). "MALDI mass spectrometric imaging of biological tissue sections".
80:(SIMS) to study semiconductor surfaces by Castaing and Slodzian. However, it was the pioneering work of 510:, correlation has been used to quantify the similarity between ion images and generate network models. 1676: 1637: 1386: 1257: 1206: 1028: 870: 52: 701: 185: 1869:"SPUTNIK: An R package for filtering of spatially related peaks in mass spectrometry imaging data" 487:
Another free statistical package for processing imzML and Analyze 7.5 data in R exists, Cardinal.
2064: 1941: 1792: 1594: 1080:
Amstalden Van Hove E, Smith D, Heeren R (2010). "A concise review of mass spectrometry imaging".
921:"Future technology insight: mass spectrometry imaging as a tool in drug research and development" 836: 1867:
Inglese, Paolo; Correia, Gonçalo; Takats, Zoltan; Nicholson, Jeremy K.; Glen, Robert C. (2018).
1170: 1162: 2033: 2025: 1984: 1976: 1933: 1898: 1849: 1784: 1748: 1702: 1586: 1578: 1538: 1530: 1492: 1457: 1422: 1404: 1323: 1305: 1230: 1222: 1166: 1158: 1151: 1141: 1131: 1115: 1097: 1062: 1054: 996: 958: 940: 896: 828: 793: 751: 27: 2056: 2015: 1968: 1925: 1888: 1880: 1839: 1831: 1776: 1740: 1692: 1684: 1645: 1570: 1522: 1484: 1449: 1412: 1394: 1313: 1297: 1265: 1214: 1123: 1089: 1044: 1036: 988: 948: 932: 886: 878: 820: 785: 741: 733: 261: 226: 81: 919:
Cobice, D F; Goodwin, R J A; Andren, P E; Nilsson, A; Mackay, C L; Andrew, R (2015-07-01).
464: 2089: 1721: 1359: 413: 371: 329: 237: 1680: 1641: 1390: 1261: 1210: 1032: 874: 1893: 1868: 1844: 1820:: an R package for statistical analysis of mass spectrometry-based imaging experiments" 1815: 1697: 1664: 1417: 1374: 1318: 1285: 953: 920: 746: 721: 507: 265: 48: 2103: 1945: 1269: 773: 523:
Comparison of advantages and disadvantages of techniques assessing drug distribution
230: 216: 61: 2068: 1884: 1835: 1796: 1598: 840: 16:
Mass spectrometry technique that can visualize the spatial distribution of molecules
2052: 551:
Ex vivo; requires radio-labelled drug; does not distinguish drug from metabolites.
1972: 1744: 1399: 1093: 992: 1574: 1127: 1019:
McDonnell, Liam A.; Heeren, Ron M.A. (2007-07-01). "Imaging mass spectrometry".
2020: 2003: 1929: 1649: 789: 1811: 1780: 1688: 824: 172: 35: 2029: 1980: 1937: 1582: 1534: 1408: 1309: 1226: 1058: 944: 797: 720:
Monroe E, Annangudi S, Hatcher N, Gutstein H, Rubakhin S, Sweedler J (2008).
1558: 590:
In vivo possible; good resolution; can be coupled to CT X-ray, gamma camera
168: 149: 31: 2037: 1988: 1902: 1853: 1788: 1752: 1706: 1590: 1542: 1496: 1461: 1426: 1327: 1234: 1145: 1101: 1066: 1000: 962: 900: 832: 755: 737: 206: 176: 774:"Subcellular quantitative imaging of metabolites at the organelle level" 1488: 1122:. Metal Ions in Life Sciences. Vol. 12. Springer. pp. 15–40. 43: 39: 1720:
Race, A. M.; Palmer, A. D.; Dexter, A.; Steven, R. T.; Styles, I. B.;
1526: 1453: 1218: 1049: 1040: 936: 891: 882: 467:
was proposed to exchange data in a standardized XML file based on the
1663:
Robichaud, G.; Garrard, K. P.; Barry, J. A.; Muddiman, D. C. (2013).
254:
m. MALDI experiments commonly use either an Nd:YAG (355 nm) or N
1301: 593:
Expensive; short-lived isotopes; need cyclotron to produce isotopes
2060: 440:
Combination of various MSI techniques and other imaging techniques
205: 144:
which are described below. Still, other minor techniques used are
184:, O, Ar and Ga. SIMS imaging is performed in a manner similar to 579:
Not quantitative; poor resolution; autofluorescent interference
468: 861:
McDonnell LA, Heeren RM (2007). "Imaging mass spectrometry".
1250:
International Journal of Mass Spectrometry and Ion Processes
658:
Semi-quantitative; ion-suppression effects; complex analysis
459:
Standard data format for mass spectrometry imaging datasets
613:
Not quantitative; poor selectivity; high background noise
630:
Not quantitative; poor reproducibility; high background
562:
Short processing time; easy interpretation; inexpensive
154:
nanospray desorption electrospray ionization (nano-DESI)
30:
to visualize the spatial distribution of molecules, as
651:
Multiplex; label-free imaging; good spatial resolution
1669:
Journal of the American Society for Mass Spectrometry
1286:"Multiplexed ion beam imaging of human breast tumors" 416: 374: 332: 287:
Comparison of typical parameters among MSI techniques
240: 1615:
Methods in Molecular Biology, Humana Press, New York
548:
Very high spatial resolution; reliable quantitation
84:
and colleagues in the late 1990s, demonstrating how
422: 380: 338: 246: 150:aser-ablation-inductively coupled plasma (LA-ICP) 76:More than 50 years ago, MSI was introduced using 856: 854: 852: 850: 722:"SIMS and MADLI MS Imaging of the spinal cord" 268:in tissue have been studied by MALDI imaging. 229:section, is moved in two dimensions while the 146:laser ablation electrospray ionization (LAESI) 2002:Aichler, Michaela; Walch, Axel (April 2015). 281:Comparative between the ionization techniques 167:(SIMS) is used to analyze solid surfaces and 8: 610:Label-free; sub-cellular spatial resolution 1726:"SpectralAnalysis: software for the masses" 222:Matrix-assisted laser desorption ionization 86:matrix-assisted laser desorption/ionization 64:, secondary ion mass spectrometry imaging ( 1918:International Journal of Mass Spectrometry 1630:International Journal of Mass Spectrometry 2019: 1892: 1843: 1696: 1416: 1398: 1317: 1048: 952: 890: 745: 415: 373: 331: 239: 90:desorption electrospray ionization (DESI) 521: 323:Elemental ions, small molecules, lipids 284: 712: 672: 2085: 2074: 1769:Analytical and Bioanalytical Chemistry 1355: 1344: 514:Advantages, challenges and limitations 1508: 1506: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 1178: 7: 1014: 1012: 1010: 974: 972: 914: 912: 910: 813:Mechanisms of Ageing and Development 767: 765: 627:Label-free imaging; high resolution 508:colocalization in microscopy imaging 258:(337 nm) laser for ionization. 584:Positron emission tomography (PET) 175:the surface with a focused primary 1617:. Vol. 696. pp. 205–224. 576:In vivo possible; reasonable cost 407:Small molecules, lipids, peptides 14: 545:Where and how much radioactivity 68:) and Nanoscale SIMS (NanoSIMS). 772:Siuzdak, Gary (September 2023). 447:magnetic resonance imaging (MRI) 925:British Journal of Pharmacology 165:Secondary ion mass spectrometry 78:secondary ion mass spectrometry 1: 1885:10.1093/bioinformatics/bty622 1836:10.1093/bioinformatics/btv146 702:DOI 10.1515/9783110589771-004 1973:10.1021/acs.analchem.5b00416 1745:10.1021/acs.analchem.6b01643 1400:10.1371/journal.pone.0106255 1270:10.1016/0168-1176(94)04119-R 1094:10.1016/j.chroma.2010.01.033 993:10.1021/acs.analchem.5b00416 1575:10.1016/j.jprot.2012.07.026 1128:10.1007/978-94-007-5561-1_2 1082:Journal of Chromatography A 2126: 2021:10.1038/labinvest.2014.156 1930:10.1016/j.ijms.2018.02.007 1650:10.1016/j.ijms.2013.12.012 790:10.1038/s42255-023-00882-z 365:Lipids, peptide, proteins 214: 1781:10.1007/s00216-015-8744-9 1689:10.1007/s13361-013-0607-z 1199:Mass Spectrometry Reviews 1021:Mass Spectrometry Reviews 863:Mass Spectrometry Reviews 825:10.1016/j.mad.2004.09.032 587:Where, what and activity 160:SIMS and NanoSIMS imaging 26:) is a technique used in 20:Mass spectrometry imaging 2008:Laboratory Investigation 1120:Metallomics and the Cell 118:In this technique, a 2D 620:force microscopy (AFM) 618:Electrochemical atomic 2084:Cite journal requires 1354:Cite journal requires 738:10.1002/pmic.200800127 424: 382: 340: 248: 212: 132:ionization method are 1563:Journal of Proteomics 1116:Penner-Hahn, James E. 598:Coherent anti-Stokes 556:Immunohistochemistry 425: 383: 341: 249: 209: 127:Ion source dependence 1961:Analytical Chemistry 1733:Analytical Chemistry 1515:Analytical Chemistry 981:Analytical Chemistry 423:{\displaystyle \mu } 414: 381:{\displaystyle \mu } 372: 339:{\displaystyle \mu } 330: 247:{\displaystyle \mu } 238: 53:immunohistochemistry 1681:2013JASMS..24..718R 1642:2014IJMSp.362...40K 1391:2014PLoSO...9j6255P 1262:1995IJMSI.143..191C 1211:2016MSRv...35..147B 1033:2007MSRv...26..606M 875:2007MSRv...26..606M 524: 304:Spatial Resolution 298:Type of Ionization 289: 186:electron microscopy 96:Operation principle 1489:10.4155/bio.14.280 603:microscopy (CARS) 531:Question answered 522: 492:spatial randomness 420: 378: 336: 295:Ionization Source 285: 244: 213: 120:position-sensitive 2110:Mass spectrometry 1967:(13): 6426–6433. 1830:(14): 2418–2420. 1775:(19): 5673–5684. 1739:(19): 9451–9458. 1569:(16): 5106–5110. 1527:10.1021/ac504734s 1454:10.1021/pr060346u 1219:10.1002/mas.21468 1156:978-94-007-5561-1 1137:978-94-007-5560-4 1088:(25): 3946–3954. 1041:10.1002/mas.20124 987:(13): 6426–6433. 937:10.1111/bph.13135 931:(13): 3266–3283. 883:10.1002/mas.20124 778:Nature Metabolism 732:(18): 3746–3754. 664: 663: 600:Raman scattering 437: 436: 28:mass spectrometry 2117: 2094: 2093: 2087: 2082: 2080: 2072: 2048: 2042: 2041: 2023: 1999: 1993: 1992: 1956: 1950: 1949: 1913: 1907: 1906: 1896: 1864: 1858: 1857: 1847: 1807: 1801: 1800: 1763: 1757: 1756: 1730: 1717: 1711: 1710: 1700: 1660: 1654: 1653: 1625: 1619: 1618: 1609: 1603: 1602: 1553: 1547: 1546: 1521:(3): 1437–1455. 1510: 1501: 1500: 1472: 1466: 1465: 1448:(11): 2889–900. 1437: 1431: 1430: 1420: 1402: 1370: 1364: 1363: 1357: 1352: 1350: 1342: 1338: 1332: 1331: 1321: 1280: 1274: 1273: 1245: 1239: 1238: 1194: 1173: 1150:electronic-book 1149: 1112: 1106: 1105: 1077: 1071: 1070: 1052: 1016: 1005: 1004: 976: 967: 966: 956: 916: 905: 904: 894: 858: 845: 844: 808: 802: 801: 784:(9): 1446–1448. 769: 760: 759: 749: 717: 689: 686: 680: 677: 542:Autoradiography 525: 429: 427: 426: 421: 387: 385: 384: 379: 345: 343: 342: 337: 290: 262:Pharmacodynamics 253: 251: 250: 245: 82:Richard Caprioli 2125: 2124: 2120: 2119: 2118: 2116: 2115: 2114: 2100: 2099: 2098: 2097: 2083: 2073: 2050: 2049: 2045: 2001: 2000: 1996: 1958: 1957: 1953: 1915: 1914: 1910: 1866: 1865: 1861: 1809: 1808: 1804: 1765: 1764: 1760: 1728: 1719: 1718: 1714: 1662: 1661: 1657: 1627: 1626: 1622: 1611: 1610: 1606: 1555: 1554: 1550: 1512: 1511: 1504: 1474: 1473: 1469: 1442:J. Proteome Res 1439: 1438: 1434: 1372: 1371: 1367: 1353: 1343: 1340: 1339: 1335: 1302:10.1038/nm.3488 1290:Nature Medicine 1282: 1281: 1277: 1247: 1246: 1242: 1196: 1195: 1176: 1138: 1114: 1113: 1109: 1079: 1078: 1074: 1018: 1017: 1008: 978: 977: 970: 918: 917: 908: 860: 859: 848: 810: 809: 805: 771: 770: 763: 719: 718: 714: 709: 698: 696:Further reading 693: 692: 687: 683: 678: 674: 669: 624:Where and what 607:Where and what 516: 500: 477: 461: 456: 454:Data processing 442: 412: 411: 370: 369: 328: 327: 283: 274: 257: 236: 235: 219: 204: 183: 162: 129: 116: 107: 98: 74: 17: 12: 11: 5: 2123: 2121: 2113: 2112: 2102: 2101: 2096: 2095: 2086:|journal= 2061:10.1101/230052 2043: 2014:(4): 422–431. 1994: 1951: 1908: 1879:(1): 178–180. 1873:Bioinformatics 1859: 1824:Bioinformatics 1814:(2015-03-15). 1802: 1758: 1712: 1675:(5): 718–721. 1655: 1620: 1604: 1548: 1502: 1467: 1432: 1385:(9): e106255. 1365: 1356:|journal= 1333: 1296:(4): 436–442. 1275: 1240: 1205:(1): 147–169. 1174: 1136: 1107: 1072: 1027:(4): 606–643. 1006: 968: 906: 846: 819:(1): 177–185. 803: 761: 711: 710: 708: 705: 697: 694: 691: 690: 681: 671: 670: 668: 665: 662: 661: 654: 647: 644:Where and what 640: 632: 631: 628: 625: 622: 615: 614: 611: 608: 605: 595: 594: 591: 588: 585: 581: 580: 577: 574: 571: 567: 566: 563: 560: 557: 553: 552: 549: 546: 543: 539: 538: 537:Disadvantages 535: 532: 529: 515: 512: 499: 496: 476: 473: 460: 457: 455: 452: 441: 438: 435: 434: 431: 419: 408: 405: 402: 401:Solvent Spray 399: 393: 392: 389: 377: 366: 363: 360: 359:UV laser beam 357: 351: 350: 347: 335: 324: 321: 318: 315: 309: 308: 305: 302: 299: 296: 293: 282: 279: 273: 270: 266:toxicodynamics 255: 243: 215:Main article: 203: 200: 181: 161: 158: 128: 125: 115: 112: 106: 103: 97: 94: 73: 70: 49:radiochemistry 15: 13: 10: 9: 6: 4: 3: 2: 2122: 2111: 2108: 2107: 2105: 2091: 2078: 2070: 2066: 2062: 2058: 2054: 2047: 2044: 2039: 2035: 2031: 2027: 2022: 2017: 2013: 2009: 2005: 1998: 1995: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1955: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1912: 1909: 1904: 1900: 1895: 1890: 1886: 1882: 1878: 1874: 1870: 1863: 1860: 1855: 1851: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1819: 1813: 1806: 1803: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1770: 1762: 1759: 1754: 1750: 1746: 1742: 1738: 1734: 1727: 1723: 1716: 1713: 1708: 1704: 1699: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1659: 1656: 1651: 1647: 1643: 1639: 1635: 1631: 1624: 1621: 1616: 1608: 1605: 1600: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1552: 1549: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1509: 1507: 1503: 1498: 1494: 1490: 1486: 1483:(1): 91–101. 1482: 1478: 1471: 1468: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1433: 1428: 1424: 1419: 1414: 1410: 1406: 1401: 1396: 1392: 1388: 1384: 1380: 1376: 1369: 1366: 1361: 1348: 1337: 1334: 1329: 1325: 1320: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1279: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1241: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1193: 1191: 1189: 1187: 1185: 1183: 1181: 1179: 1175: 1172: 1168: 1164: 1160: 1157: 1153: 1147: 1143: 1139: 1133: 1129: 1125: 1121: 1117: 1111: 1108: 1103: 1099: 1095: 1091: 1087: 1083: 1076: 1073: 1068: 1064: 1060: 1056: 1051: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1015: 1013: 1011: 1007: 1002: 998: 994: 990: 986: 982: 975: 973: 969: 964: 960: 955: 950: 946: 942: 938: 934: 930: 926: 922: 915: 913: 911: 907: 902: 898: 893: 888: 884: 880: 876: 872: 869:(4): 606–43. 868: 864: 857: 855: 853: 851: 847: 842: 838: 834: 830: 826: 822: 818: 814: 807: 804: 799: 795: 791: 787: 783: 779: 775: 768: 766: 762: 757: 753: 748: 743: 739: 735: 731: 727: 723: 716: 713: 706: 704: 703: 695: 685: 682: 676: 673: 666: 660: 659: 655: 653: 652: 648: 646: 645: 641: 639: 638: 634: 633: 629: 626: 623: 621: 617: 616: 612: 609: 606: 604: 601: 597: 596: 592: 589: 586: 583: 582: 578: 575: 572: 570:Fluorescence 569: 568: 564: 561: 558: 555: 554: 550: 547: 544: 541: 540: 536: 533: 530: 527: 526: 520: 513: 511: 509: 504: 497: 495: 493: 488: 485: 481: 474: 472: 470: 466: 458: 453: 451: 448: 439: 432: 417: 409: 406: 403: 400: 398: 395: 394: 391:0-100 000 Da 390: 375: 367: 364: 361: 358: 356: 353: 352: 348: 333: 325: 322: 319: 316: 314: 311: 310: 306: 303: 300: 297: 294: 292: 291: 288: 280: 278: 271: 269: 267: 263: 259: 241: 232: 231:mass spectrum 228: 223: 218: 217:MALDI imaging 208: 202:MALDI imaging 201: 199: 196: 192: 189: 187: 178: 174: 170: 166: 159: 157: 155: 151: 147: 143: 139: 135: 126: 124: 121: 113: 111: 104: 102: 95: 93: 91: 87: 83: 79: 71: 69: 67: 63: 62:MALDI imaging 59: 54: 50: 45: 41: 37: 33: 29: 25: 21: 2077:cite journal 2046: 2011: 2007: 1997: 1964: 1960: 1954: 1921: 1917: 1911: 1876: 1872: 1862: 1827: 1823: 1817: 1805: 1772: 1768: 1761: 1736: 1732: 1715: 1672: 1668: 1658: 1633: 1629: 1623: 1614: 1607: 1566: 1562: 1551: 1518: 1514: 1480: 1476: 1470: 1445: 1441: 1435: 1382: 1378: 1368: 1347:cite journal 1336: 1293: 1289: 1278: 1253: 1249: 1243: 1202: 1198: 1119: 1110: 1085: 1081: 1075: 1024: 1020: 984: 980: 928: 924: 866: 862: 816: 812: 806: 781: 777: 729: 725: 715: 699: 684: 675: 657: 656: 650: 649: 643: 642: 636: 635: 619: 602: 599: 528:Methodology 517: 505: 501: 498:Applications 489: 486: 482: 478: 462: 443: 396: 354: 312: 286: 275: 272:DESI imaging 260: 220: 197: 193: 190: 163: 130: 117: 108: 99: 75: 66:SIMS imaging 58:DESI imaging 23: 19: 18: 1812:Vitek, Olga 1477:Bioanalysis 1256:: 191–212. 1165:electronic- 534:Advantages 307:Mass Range 36:metabolites 2055:: 230052. 1924:: 99–112. 1050:1874/26394 892:1874/26394 726:Proteomics 707:References 433:0-2000 Da 349:0-1000 Da 173:sputtering 169:thin films 114:Microscope 105:Microprobe 32:biomarkers 2030:1530-0307 1981:0003-2700 1946:102892898 1938:1387-3806 1722:Bunch, J. 1636:: 40–47. 1583:1876-7737 1535:0003-2700 1409:1932-6203 1310:1078-8956 1227:1098-2787 1171:1868-0402 1163:1559-0836 1059:1098-2787 945:1476-5381 798:2522-5812 418:μ 376:μ 334:μ 301:Analytes 242:μ 2104:Category 2069:90409488 2038:25621874 1989:25803124 1903:30010780 1854:25777525 1818:Cardinal 1797:22813369 1789:26007697 1753:27558772 1724:(2016). 1707:23536269 1599:25970597 1591:22842151 1543:25526173 1497:25558938 1462:17081040 1427:25184632 1379:PLOS ONE 1328:24584119 1235:25962625 1146:23595669 1102:20223463 1067:17471576 1001:25803124 963:25766375 901:17471576 841:30982189 833:15610777 756:18712768 475:Software 317:Ion gun 177:ion beam 44:proteins 40:peptides 1894:6298046 1845:4495298 1698:3693088 1677:Bibcode 1638:Bibcode 1418:4153616 1387:Bibcode 1319:4110905 1258:Bibcode 1207:Bibcode 1029:Bibcode 954:4500365 871:Bibcode 747:2706659 326:<10 211:tissue. 72:History 2067:  2036:  2028:  1987:  1979:  1944:  1936:  1901:  1891:  1852:  1842:  1795:  1787:  1751:  1705:  1695:  1597:  1589:  1581:  1541:  1533:  1495:  1460:  1425:  1415:  1407:  1326:  1316:  1308:  1233:  1225:  1169:  1161:  1154:  1144:  1134:  1100:  1065:  1057:  999:  961:  951:  943:  899:  839:  831:  796:  754:  744:  573:Where 559:Where 227:tissue 2065:S2CID 1942:S2CID 1793:S2CID 1729:(PDF) 1595:S2CID 837:S2CID 667:Notes 465:imzML 404:Soft 362:Soft 355:MALDI 320:Hard 134:MALDI 2090:help 2034:PMID 2026:ISSN 1985:PMID 1977:ISSN 1934:ISSN 1899:PMID 1850:PMID 1785:PMID 1749:PMID 1703:PMID 1587:PMID 1579:ISSN 1539:PMID 1531:ISSN 1493:PMID 1458:PMID 1423:PMID 1405:ISSN 1360:help 1324:PMID 1306:ISSN 1231:PMID 1223:ISSN 1167:ISSN 1159:ISSN 1152:ISBN 1142:PMID 1132:ISBN 1098:PMID 1086:1217 1063:PMID 1055:ISSN 997:PMID 959:PMID 941:ISSN 897:PMID 829:PMID 794:ISSN 752:PMID 469:mzML 463:The 397:DESI 313:SIMS 264:and 152:and 142:DESI 140:AND 138:SIMS 51:and 2057:doi 2016:doi 1969:doi 1926:doi 1922:437 1889:PMC 1881:doi 1840:PMC 1832:doi 1777:doi 1773:407 1741:doi 1693:PMC 1685:doi 1646:doi 1634:362 1571:doi 1523:doi 1485:doi 1450:doi 1413:PMC 1395:doi 1314:PMC 1298:doi 1266:doi 1254:143 1215:doi 1124:doi 1090:doi 1045:hdl 1037:doi 989:doi 949:PMC 933:doi 929:172 887:hdl 879:doi 821:doi 817:126 786:doi 742:PMC 734:doi 637:MSI 410:50 368:20 171:by 148:, l 60:, 42:or 24:MSI 2106:: 2081:: 2079:}} 2075:{{ 2063:. 2032:. 2024:. 2012:95 2010:. 2006:. 1983:. 1975:. 1965:87 1963:. 1940:. 1932:. 1920:. 1897:. 1887:. 1877:35 1875:. 1871:. 1848:. 1838:. 1828:31 1826:. 1822:. 1791:. 1783:. 1771:. 1747:. 1737:88 1735:. 1731:. 1701:. 1691:. 1683:. 1673:24 1671:. 1667:. 1644:. 1632:. 1593:. 1585:. 1577:. 1567:75 1565:. 1561:. 1537:. 1529:. 1519:87 1517:. 1505:^ 1491:. 1479:. 1456:. 1444:. 1421:. 1411:. 1403:. 1393:. 1381:. 1377:. 1351:: 1349:}} 1345:{{ 1322:. 1312:. 1304:. 1294:20 1292:. 1288:. 1264:. 1252:. 1229:. 1221:. 1213:. 1203:35 1201:. 1177:^ 1140:. 1130:. 1096:. 1084:. 1061:. 1053:. 1043:. 1035:. 1025:26 1023:. 1009:^ 995:. 985:87 983:. 971:^ 957:. 947:. 939:. 927:. 923:. 909:^ 895:. 885:. 877:. 867:26 865:. 849:^ 835:. 827:. 815:. 792:. 780:. 776:. 764:^ 750:. 740:. 728:. 724:. 494:. 430:m 388:m 346:m 156:. 136:, 38:, 34:, 2092:) 2088:( 2071:. 2059:: 2040:. 2018:: 1991:. 1971:: 1948:. 1928:: 1905:. 1883:: 1856:. 1834:: 1816:" 1799:. 1779:: 1755:. 1743:: 1709:. 1687:: 1679:: 1652:. 1648:: 1640:: 1601:. 1573:: 1545:. 1525:: 1499:. 1487:: 1481:7 1464:. 1452:: 1446:5 1429:. 1397:: 1389:: 1383:9 1362:) 1358:( 1330:. 1300:: 1272:. 1268:: 1260:: 1237:. 1217:: 1209:: 1148:. 1126:: 1104:. 1092:: 1069:. 1047:: 1039:: 1031:: 1003:. 991:: 965:. 935:: 903:. 889:: 881:: 873:: 843:. 823:: 800:. 788:: 782:5 758:. 736:: 730:8 256:2 182:2 180:O 22:(

Index

mass spectrometry
biomarkers
metabolites
peptides
proteins
radiochemistry
immunohistochemistry
DESI imaging
MALDI imaging
SIMS imaging
secondary ion mass spectrometry
Richard Caprioli
matrix-assisted laser desorption/ionization
desorption electrospray ionization (DESI)
position-sensitive
MALDI
SIMS
DESI
laser ablation electrospray ionization (LAESI)
aser-ablation-inductively coupled plasma (LA-ICP)
nanospray desorption electrospray ionization (nano-DESI)
Secondary ion mass spectrometry
thin films
sputtering
ion beam
electron microscopy

MALDI imaging
Matrix-assisted laser desorption ionization
tissue

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.