Knowledge (XXG)

Matthias rules

Source đź“ť

55: 163:
Sn) which had the highest known transition temperature of about 18 K. Later Matthias would try to come up with general empirical properties to find superconducting alloys. In the same year he published a first version of his famous guidelines which came to be known, as the "Mathias rules". Matthias
147:
to start a systematic experimental investigation in the 1950s, looking for superconductors in different elements and compounds. For this reason, they developed a technique based on the Meissner effect.
198:
in 1970 for "For their joint experimental investigations of superconductivity which have challenged theoretical understanding and opened up the technology of high field superconductors."
42:
who discovered hundreds of superconductors using these principles in the 1950s and 1960s. Deviations from these rules have been found since the end of the 1970s with the discovery of
164:
was able to show in 1962 that some deviations from his rules where due to impurities or defects in the materials. Using his rules, Matthias and collaborators found in 1965 that
175:
Matthias published a first outline his rules in 1957. A successful microscopic theory of superconductivity would no come up until the same year, with the development of the
1510: 1243: 1180: 603:
Superconducting Materials for High Energy Colliders: Proceedings of the 38th Workshop of the INFN Eloisatron Project, Erice, Italy, 19-25 October 1999
195: 337:
In 1976, Mattias added the criterion to include "elements which will not react at all with molybdenum alone form superconducting compounds with Mo
594: 1643: 1022: 911: 815: 610: 449: 1218: 1602: 1340: 1450: 370: 250:
The Matthias rules are a set of guidelines to find low temperature superconductors but were never provided in list form by Matthias.
231: 1538: 936: 708: 212:. Matthias postulated an additional criterion in 1976 at the Rochester Conference on superconductivity to include these materials. 1259: 369:
It has been argued that all of Matthias' rules have been shown to not be completely valid. Specially the rules are not valid for
1455: 1173: 439: 300: 1238: 412: 1208: 477: 1579: 1431: 1375: 1350: 43: 1481: 1410: 216: 79: 1638: 1426: 1345: 1213: 961: 402: 1633: 1533: 1528: 1166: 626:
Arrhenius, G.; Corenzwit, E.; Fitzgerald, R.; Hull, G. W.; Luo, H. L.; Matthias, B. T.; Zachariasen, W. H. (1968).
1233: 1486: 67: 129:
discovered that superconductors expelled applied magnetic fields, a phenomenon that has come to be known as the
1269: 838:"Superconductivity in the Presence of Strong Pauli Paramagnetism: Ce$ {\mathrm{Cu}}_{2}$ $ {\mathrm{Si}}_{2}$ " 1320: 1612: 1471: 1403: 285: 1523: 1496: 1476: 1398: 188: 92: 165: 1393: 315:. Rule 6 is not an official rule and is often added to indicate skepticism of the theories of the time. 54: 1597: 20: 690: 1553: 1119: 1056: 970: 849: 836:
Steglich, F.; Aarts, J.; Bredl, C. D.; Lieke, W.; Meschede, D.; Franz, W.; Schäfer, H. (1979-12-17).
742: 556: 509: 262: 230:
Matthias held the record of highest critical temperature superconductor found until the discovery of
201:
One of the first deviations of Matthias' rules was found with the discovery of superconductivity in
292: 152: 63: 1584: 1335: 1295: 1145: 1088: 986: 875: 312: 770: 1360: 1189: 1137: 1080: 1072: 1018: 932: 907: 811: 704: 671: 653: 606: 572: 525: 445: 408: 327: 258: 239: 140: 136: 126: 88: 84: 39: 35: 1569: 1543: 1315: 1290: 1223: 1127: 1064: 978: 865: 857: 803: 750: 696: 661: 643: 564: 517: 323: 319: 122: 1592: 545:"Empirical Relation between Superconductivity and the Number of Valence Electrons per Atom" 156: 1325: 130: 115: 1132: 1123: 1107: 1060: 974: 853: 795: 746: 560: 513: 106:
In subsequent decades, superconductivity was found in several other materials; In 1913,
1330: 1274: 1264: 837: 308: 220: 59: 700: 666: 627: 1627: 1149: 990: 879: 235: 100: 71: 1365: 1355: 1310: 1305: 1092: 497: 180: 144: 96: 1012: 901: 807: 544: 390:
How Fluids Unmix: Discoveries by the School of Van der Waals and Kamerlingh Onnes
1491: 1300: 861: 695:, Progress in Low Temperature Physics, vol. 2, Elsevier, pp. 138–150, 331: 326:, preferably odd numbers 3, 5, and 7 and high electron density or high electron 318:
Other equivalent principles as stated by Matthias, indicate to work mainly with
184: 155:, Matthias broke the record in 1954, with the discovery of superconductivity in 1203: 1044: 202: 176: 1141: 1076: 755: 730: 657: 576: 529: 70:
that a ductile alloy of niobium and zirconium will remain superconducting at
521: 279: 224: 215:
Another violation of Matthias rules appeared in 1979, with the discovery of
1084: 1014:
High Temperature Superconductivity: The Road to Higher Critical Temperature
675: 648: 568: 1518: 496:
Matthias, B. T.; Geballe, T. H.; Geller, S.; Corenzwit, E. (1954-09-15).
358: 209: 1068: 982: 205: 111: 27: 870: 354: 272: 1158: 1574: 1548: 304: 53: 34:
refers to a historical set of empirical guidelines on how to find
1607: 107: 1162: 903:
Applied Superconductivity: Handbook on Devices and Applications
729:
Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. (December 1957).
404:
Freezing physics, Heike Kamerlingh Onnes and the quest for cold
58:
Bernd T. Matthias (left) points to the element niobium on the
373:, alternative rules for these materials have been suggested. 227:
was expected to play a role, contrary to the Matthias rules.
307:. Rule 4, rules out material that are in close vicinity to 392:. (Edita—the Publishing House of the Royal, 2002, 318 pp) 952:
Bednorz, J. G.; MĂĽller, K. A. (1986). "Possible high
428:. (Oxford University Press, 1st edition, 2009, p. 20) 1562: 1509: 1464: 1440: 1419: 1383: 1374: 1283: 1252: 1196: 689:Matthias, B. T. (1957-01-01), Gorter, C. J. (ed.), 253:A popular summarized version of these rules reads: 172:Sn) with a record critical temperature above 20 K. 794:Matthias, Bernd T. (1976), Douglass, D. H. (ed.), 692:Chapter V Superconductivity in the Periodic System 99:, who had developed new techniques to reach near- 636:Proceedings of the National Academy of Sciences 1174: 959:superconductivity in the Ba-La-Cu-O system". 802:, Boston, MA: Springer US, pp. 635–642, 8: 438:Rogalla, Horst; Kes, Peter H. (2011-11-11). 426:Superconductivity: A Very Short Introduction 361:" due to deviations in molydenum compounds. 1380: 1181: 1167: 1159: 268:High density of electronic states is good. 1131: 869: 800:Superconductivity in d- and f-Band Metals 754: 665: 647: 196:Oliver E. Buckley Condensed Matter Prize 1108:"A second life of the Matthias's rules" 381: 1045:"Superconductivity gets an iron boost" 1112:Superconductor Science and Technology 1038: 1036: 1034: 1006: 1004: 1002: 1000: 927:Saunders, P. J.; Ford, G. A. (2005). 895: 893: 891: 889: 796:"Some Surprises in Superconductivity" 16:Physical laws about superconductivity 7: 588: 586: 476:Geballe, T. H.; Hulm, J. K. (1996). 471: 469: 467: 465: 463: 461: 14: 299:Rule 2, rules out materials near 66:looks on. After reporting to the 1011:Uchida, Shin-ichi (2014-11-20). 479:Bernd Theodor Matthias 1918–1990 371:high-temperature superconductors 232:high-temperature superconductors 929:The Rise of the Superconductors 595:"Possible mechanisms of high T 543:Matthias, B. T. (1955-01-01). 498:"Superconductivity of Nb 3 Sn" 485:. National Academy of Science. 441:100 Years of Superconductivity 87:was first discovered in solid 44:unconventional superconductors 1: 1133:10.1088/0953-2048/29/8/080502 931:. Boca Raton, FL: CRC Press. 731:"Theory of Superconductivity" 701:10.1016/s0079-6417(08)60104-3 601:. In Cifarelli, Luisa (ed.). 322:; with the average number of 217:heavy fermion superconductors 194:Geballe and Matthias won the 1644:Obsolete theories in physics 808:10.1007/978-1-4615-8795-8_39 80:History of superconductivity 38:. These rules were authored 900:Seidel, Paul (2015-01-22). 862:10.1103/PhysRevLett.43.1892 234:were discovered in 1986 by 1660: 1511:Technological applications 301:metal-insulator transition 77: 18: 1253:Characteristic parameters 906:. John Wiley & Sons. 628:"SUPERCONDUCTIVITY OF NB 388:Sengers, Johanna Levelt: 68:American Physical Society 1270:London penetration depth 1106:Conder, K (2016-08-01). 962:Zeitschrift fĂĽr Physik B 756:10.1103/PhysRev.108.1175 444:. Taylor & Francis. 19:Not to be confused with 1563:List of superconductors 1441:By critical temperature 1043:Mazin, Igor I. (2010). 842:Physical Review Letters 522:10.1103/PhysRev.95.1435 401:van Delft, Dirk (2007) 632:(AL, GE) ABOVE 20.5°K" 365:Failure and extensions 189:John Robert Schrieffer 151:In collaboration with 93:Heike Kamerlingh Onnes 75: 1209:Bean's critical state 649:10.1073/pnas.61.2.621 593:Grimaldi, C. (2001). 569:10.1103/PhysRev.97.74 114:at 10 K, and in 1941 78:Further information: 57: 1384:By magnetic response 605:. World Scientific. 407:, Edita, Amsterdam, 1336:persistent currents 1321:Little–Parks effect 1124:2016SuScT..29h0502C 1069:10.1038/nature08914 1061:2010Natur.464..183M 975:1986ZPhyB..64..189B 854:1979PhRvL..43.1892S 747:1957PhRv..108.1175B 561:1955PhRv...97...74M 514:1954PhRv...95.1435M 424:Blundell, Stephen: 153:Theodore H. Geballe 143:were encouraged by 64:John Eugene Kunzler 1639:History of physics 1296:Andreev reflection 1291:Abrikosov vortices 983:10.1007/BF01303701 599:superconductivity" 313:antiferromagnetism 110:at 7 K, in 1930's 76: 21:Matthiessen's rule 1634:Superconductivity 1621: 1620: 1539:quantum computing 1505: 1504: 1361:superdiamagnetism 1190:Superconductivity 1055:(7286): 183–186. 1024:978-4-431-55300-7 913:978-3-527-67066-6 848:(25): 1892–1896. 817:978-1-4615-8797-2 771:"Prize Recipient" 612:978-981-02-4319-7 451:978-1-4398-4948-4 324:valence electrons 320:d-electron metals 166:niobium–germanium 141:John Kenneth Hulm 137:Bernd T. Matthias 127:Robert Ochsenfeld 85:Superconductivity 40:Bernd T. Matthias 1651: 1570:bilayer graphene 1544:Rutherford cable 1456:room temperature 1451:high temperature 1381: 1341:proximity effect 1316:Josephson effect 1260:coherence length 1183: 1176: 1169: 1160: 1154: 1153: 1135: 1103: 1097: 1096: 1040: 1029: 1028: 1008: 995: 994: 955: 949: 943: 942: 924: 918: 917: 897: 884: 883: 873: 833: 827: 826: 825: 824: 791: 785: 784: 782: 781: 767: 761: 760: 758: 741:(5): 1175–1204. 726: 720: 719: 718: 717: 686: 680: 679: 669: 651: 623: 617: 616: 590: 581: 580: 540: 534: 533: 493: 487: 486: 484: 473: 456: 455: 435: 429: 422: 416: 399: 393: 386: 328:density of state 123:Walther Meissner 1659: 1658: 1654: 1653: 1652: 1650: 1649: 1648: 1624: 1623: 1622: 1617: 1588: 1558: 1501: 1460: 1447:low temperature 1436: 1415: 1370: 1326:Meissner effect 1279: 1275:Silsbee current 1248: 1214:Ginzburg–Landau 1192: 1187: 1157: 1105: 1104: 1100: 1042: 1041: 1032: 1025: 1010: 1009: 998: 958: 953: 951: 950: 946: 939: 926: 925: 921: 914: 899: 898: 887: 835: 834: 830: 822: 820: 818: 793: 792: 788: 779: 777: 769: 768: 764: 735:Physical Review 728: 727: 723: 715: 713: 711: 688: 687: 683: 631: 625: 624: 620: 613: 598: 592: 591: 584: 549:Physical Review 542: 541: 537: 502:Physical Review 495: 494: 490: 482: 475: 474: 459: 452: 437: 436: 432: 423: 419: 400: 396: 387: 383: 379: 367: 352: 348: 344: 340: 291:Stay away from 284:Stay away from 278:Stay away from 271:Stay away from 248: 171: 162: 131:Meissner effect 116:niobium nitride 82: 52: 36:superconductors 24: 17: 12: 11: 5: 1657: 1655: 1647: 1646: 1641: 1636: 1626: 1625: 1619: 1618: 1616: 1615: 1610: 1605: 1600: 1595: 1590: 1586: 1582: 1577: 1572: 1566: 1564: 1560: 1559: 1557: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1524:electromagnets 1521: 1515: 1513: 1507: 1506: 1503: 1502: 1500: 1499: 1494: 1489: 1484: 1479: 1474: 1468: 1466: 1465:By composition 1462: 1461: 1459: 1458: 1453: 1448: 1444: 1442: 1438: 1437: 1435: 1434: 1432:unconventional 1429: 1423: 1421: 1420:By explanation 1417: 1416: 1414: 1413: 1408: 1407: 1406: 1401: 1396: 1387: 1385: 1378: 1376:Classification 1372: 1371: 1369: 1368: 1363: 1358: 1353: 1348: 1343: 1338: 1333: 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1287: 1285: 1281: 1280: 1278: 1277: 1272: 1267: 1265:critical field 1262: 1256: 1254: 1250: 1249: 1247: 1246: 1241: 1236: 1234:Mattis–Bardeen 1231: 1226: 1221: 1219:Kohn–Luttinger 1216: 1211: 1206: 1200: 1198: 1194: 1193: 1188: 1186: 1185: 1178: 1171: 1163: 1156: 1155: 1098: 1030: 1023: 996: 969:(2): 189–193. 956: 944: 937: 919: 912: 885: 828: 816: 786: 762: 721: 709: 681: 642:(2): 621–628. 629: 618: 611: 596: 582: 535: 488: 457: 450: 430: 417: 394: 380: 378: 375: 366: 363: 350: 346: 342: 338: 309:ferromagnetism 297: 296: 289: 282: 276: 269: 266: 263:cubic symmetry 247: 244: 240:K. Alex MĂĽller 221:Frank Steglich 169: 160: 103:temperatures. 60:periodic table 51: 48: 32:Matthias rules 15: 13: 10: 9: 6: 4: 3: 2: 1656: 1645: 1642: 1640: 1637: 1635: 1632: 1631: 1629: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1567: 1565: 1561: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1517: 1516: 1514: 1512: 1508: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1482:heavy fermion 1480: 1478: 1475: 1473: 1470: 1469: 1467: 1463: 1457: 1454: 1452: 1449: 1446: 1445: 1443: 1439: 1433: 1430: 1428: 1425: 1424: 1422: 1418: 1412: 1411:ferromagnetic 1409: 1405: 1402: 1400: 1397: 1395: 1392: 1391: 1389: 1388: 1386: 1382: 1379: 1377: 1373: 1367: 1364: 1362: 1359: 1357: 1356:supercurrents 1354: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1288: 1286: 1282: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1257: 1255: 1251: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1201: 1199: 1195: 1191: 1184: 1179: 1177: 1172: 1170: 1165: 1164: 1161: 1151: 1147: 1143: 1139: 1134: 1129: 1125: 1121: 1118:(8): 080502. 1117: 1113: 1109: 1102: 1099: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1050: 1046: 1039: 1037: 1035: 1031: 1026: 1020: 1016: 1015: 1007: 1005: 1003: 1001: 997: 992: 988: 984: 980: 976: 972: 968: 964: 963: 948: 945: 940: 938:0-7484-0772-3 934: 930: 923: 920: 915: 909: 905: 904: 896: 894: 892: 890: 886: 881: 877: 872: 867: 863: 859: 855: 851: 847: 843: 839: 832: 829: 819: 813: 809: 805: 801: 797: 790: 787: 776: 772: 766: 763: 757: 752: 748: 744: 740: 736: 732: 725: 722: 712: 710:9780444533081 706: 702: 698: 694: 693: 685: 682: 677: 673: 668: 663: 659: 655: 650: 645: 641: 637: 633: 622: 619: 614: 608: 604: 600: 589: 587: 583: 578: 574: 570: 566: 562: 558: 554: 550: 546: 539: 536: 531: 527: 523: 519: 515: 511: 507: 503: 499: 492: 489: 481: 480: 472: 470: 468: 466: 464: 462: 458: 453: 447: 443: 442: 434: 431: 427: 421: 418: 414: 410: 406: 405: 398: 395: 391: 385: 382: 376: 374: 372: 364: 362: 360: 356: 335: 333: 329: 325: 321: 316: 314: 310: 306: 302: 294: 290: 287: 283: 281: 277: 274: 270: 267: 264: 260: 256: 255: 254: 251: 245: 243: 241: 237: 236:Georg Bednorz 233: 228: 226: 222: 218: 213: 211: 207: 204: 199: 197: 192: 190: 186: 182: 178: 173: 167: 158: 154: 149: 146: 142: 138: 134: 132: 128: 124: 119: 117: 113: 109: 104: 102: 101:absolute zero 98: 94: 90: 86: 81: 73: 72:liquid helium 69: 65: 61: 56: 49: 47: 45: 41: 37: 33: 29: 22: 1492:oxypnictides 1427:conventional 1366:superstripes 1311:flux pumping 1306:flux pinning 1301:Cooper pairs 1228: 1115: 1111: 1101: 1052: 1048: 1017:. Springer. 1013: 966: 960: 947: 928: 922: 902: 845: 841: 831: 821:, retrieved 799: 789: 778:. Retrieved 774: 765: 738: 734: 724: 714:, retrieved 691: 684: 639: 635: 621: 602: 555:(1): 74–76. 552: 548: 538: 505: 501: 491: 478: 440: 433: 425: 420: 403: 397: 389: 384: 368: 336: 317: 298: 265:is the best. 252: 249: 229: 214: 200: 193: 181:John Bardeen 174: 150: 145:Enrico Fermi 135: 120: 105: 97:Gilles Holst 83: 74:temperature. 31: 25: 1351:SU(2) color 1331:Homes's law 775:www.aps.org 508:(6): 1435. 332:Fermi level 246:Description 185:Leon Cooper 157:niobium–tin 91:in 1911 by 1628:Categories 1487:iron-based 1346:reentrance 871:1887/81461 823:2023-08-10 780:2023-08-09 716:2023-08-09 413:9069845199 377:References 286:insulators 203:molybdenum 177:BCS theory 1284:Phenomena 1150:123619400 1142:0953-2048 1077:0028-0836 991:118314311 880:123497750 658:0027-8424 577:0031-899X 530:0031-899X 293:theorists 280:magnetism 261:is good, 225:magnetism 210:selenides 121:In 1933, 118:at 16 K. 1519:cryotron 1477:cuprates 1472:covalent 1229:Matthias 1197:Theories 1085:20220835 676:16591705 259:symmetry 1613:more... 1497:organic 1120:Bibcode 1093:4391681 1057:Bibcode 971:Bibcode 850:Bibcode 743:Bibcode 557:Bibcode 510:Bibcode 330:at the 206:sulfide 112:niobium 89:mercury 50:History 28:physics 1390:Types 1224:London 1148:  1140:  1091:  1083:  1075:  1049:Nature 1021:  989:  935:  910:  878:  814:  707:  674:  667:225205 664:  656:  609:  575:  528:  448:  411:  345:and Mo 305:oxides 273:oxygen 223:where 187:, and 62:while 30:, the 1603:TBCCO 1575:BSCCO 1554:wires 1549:SQUID 1146:S2CID 1089:S2CID 987:S2CID 876:S2CID 483:(PDF) 303:like 257:High 1608:YBCO 1598:NbTi 1593:NbSn 1580:LBCO 1138:ISSN 1081:PMID 1073:ISSN 1019:ISBN 933:ISBN 908:ISBN 812:ISBN 705:ISBN 672:PMID 654:ISSN 607:ISBN 573:ISSN 526:ISSN 446:ISBN 409:ISBN 238:and 208:and 139:and 125:and 108:lead 95:and 1585:MgB 1534:NMR 1529:MRI 1404:1.5 1244:WHH 1239:RVB 1204:BCS 1128:doi 1065:doi 1053:464 979:doi 866:hdl 858:doi 804:doi 751:doi 739:108 697:doi 662:PMC 644:doi 565:doi 518:doi 357:or 311:or 219:by 179:by 168:(Nb 159:(Nb 133:. 26:In 1630:: 1399:II 1144:. 1136:. 1126:. 1116:29 1114:. 1110:. 1087:. 1079:. 1071:. 1063:. 1051:. 1047:. 1033:^ 999:^ 985:. 977:. 967:64 965:. 888:^ 874:. 864:. 856:. 846:43 844:. 840:. 810:, 798:, 773:. 749:. 737:. 733:. 703:, 670:. 660:. 652:. 640:61 638:. 634:. 585:^ 571:. 563:. 553:97 551:. 547:. 524:. 516:. 506:95 504:. 500:. 460:^ 359:Se 353:, 349:Se 334:. 242:. 191:. 183:, 46:. 1587:2 1394:I 1182:e 1175:t 1168:v 1152:. 1130:: 1122:: 1095:. 1067:: 1059:: 1027:. 993:. 981:: 973:: 957:c 954:T 941:. 916:. 882:. 868:: 860:: 852:: 806:: 783:. 759:. 753:: 745:: 699:: 678:. 646:: 630:3 615:. 597:C 579:. 567:: 559:: 532:. 520:: 512:: 454:. 415:. 355:S 351:4 347:3 343:4 341:S 339:3 295:! 288:. 275:. 170:3 161:3 23:.

Index

Matthiessen's rule
physics
superconductors
Bernd T. Matthias
unconventional superconductors

periodic table
John Eugene Kunzler
American Physical Society
liquid helium
History of superconductivity
Superconductivity
mercury
Heike Kamerlingh Onnes
Gilles Holst
absolute zero
lead
niobium
niobium nitride
Walther Meissner
Robert Ochsenfeld
Meissner effect
Bernd T. Matthias
John Kenneth Hulm
Enrico Fermi
Theodore H. Geballe
niobium–tin
niobium–germanium
BCS theory
John Bardeen

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑