Knowledge

Matching (graph theory)

Source đź“ť

343: 290: 853: 2588:. Edge dominating set (decision version) is discussed under the dominating set problem, which is the problem GT2 in Appendix A1.1. Minimum maximal matching (decision version) is the problem GT10 in Appendix A1.1. 1866:
edges in polynomial time. Therefore, the problem of finding a minimum maximal matching is essentially equal to the problem of finding a minimum edge dominating set. Both of these two optimization problems are known to be
974: 2572: 1185: 2144:
In the online setting, nodes on one side of the bipartite graph arrive one at a time and must either be immediately matched to the other side of the graph or discarded. This is a natural generalization of the
480:
of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c) shows a near-perfect matching. If every vertex is unmatched by some near-perfect matching, then the graph is called
336:
is the size of a maximum matching. Every maximum matching is maximal, but not every maximal matching is a maximum matching. The following figure shows examples of maximum matchings in the same three graphs.
2604:. Minimum edge dominating set (optimisation version) is the problem GT3 in Appendix B (page 370). Minimum maximal matching (optimisation version) is the problem GT10 in Appendix B (page 374). See also 1531: 858:
In particular, this shows that any maximal matching is a 2-approximation of a maximum matching and also a 2-approximation of a minimum maximal matching. This inequality is tight: for example, if
2368: 701: 1441: 179: 2863: 2076: 465: 1753: 2308:, a partition of the vertices of a bipartite graph into subsets such that each edge belongs to a perfect matching if and only if its endpoints belong to the same subset 1917:
of an arbitrary 0–1 matrix (another #P-complete problem) is the same as computing the number of perfect matchings in the bipartite graph having the given matrix as its
1813: 1697: 411: 3112: 1027: 330: 2114: 3247: 2031: 2475:
Keivan Hassani Monfared and Sudipta Mallik, Theorem 3.6, Spectral characterization of matchings in graphs, Linear Algebra and its Applications 496 (2016) 407–419,
1214: 1989:
One of the basic problems in matching theory is to find in a given graph all edges that may be extended to a maximum matching in the graph (such edges are called
1257: 1341: 1321: 1301: 1281: 1234: 1114: 1094: 1071: 1051: 994: 909: 885: 172: 300:(also known as maximum-cardinality matching) is a matching that contains the largest possible number of edges. There may be many maximum matchings. The 1921:. However, there exists a fully polynomial time randomized approximation scheme for counting the number of bipartite matchings. A remarkable theorem of 712: 2229: 2149:
and has applications to online ad auctions. The best online algorithm, for the unweighted maximization case with a random arrival model, attains a
2150: 914: 165: 1638:
the optimization problem is to find a maximum-weight matching; a dual problem is to find a minimum-weight matching. This problem is often called
1122: 3202: 2305: 2974:
Mahdian, Mohammad; Yan, Qiqi (2011). "Online bipartite matching with random arrivals: an approach based on strongly factor-revealing LPs".
61:. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a 2165: 1960: − 1)!!. The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are given by the 3237: 2274: 2418:
Cameron, Kathie (1989), "Induced matchings", Special issue for First Montreal Conference on Combinatorics and Computer Science, 1987,
3242: 3097: 3054: 2958: 2582: 476:
is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an
3232: 2735: 2492:
Fredman, Michael L.; Tarjan, Robert Endre (1987), "Fibonacci heaps and their uses in improved network optimization algorithms",
1816: 1540:
is the number of vertices in the graph. Each type has its uses; for more information see the article on matching polynomials.
2598:
Ausiello, Giorgio; Crescenzi, Pierluigi; Gambosi, Giorgio; Kann, Viggo; Marchetti-Spaccamela, Alberto; Protasi, Marco (2003),
496:
is a path that begins with an unmatched vertex and whose edges belong alternately to the matching and not to the matching. An
1961: 127: 1652:
solves the assignment problem and it was one of the beginnings of combinatorial optimization algorithms. It uses a modified
864:
is a path with 3 edges and 4 vertices, the size of a minimum maximal matching is 1 and the size of a maximum matching is 2.
1452: 537:
equals the number of vertices. If there is a perfect matching, then both the matching number and the edge cover number are
642: 2895: 2420: 2280: 1577: 1556: 888: 198: 50: 867:
A spectral characterization of the matching number of a graph is given by Hassani Monfared and Mallik as follows: Let
1657: 355:
is a matching that matches all vertices of the graph. That is, a matching is perfect if every vertex of the graph is
3087: 2187: 1562: 2867: 2648: 2646:; Vigoda, Eric (2008). "Accelerating Simulated Annealing for the Permanent and Combinatorial Counting Problems". 2268: 1390: 417:
is used. In the above figure, only part (b) shows a perfect matching. A perfect matching is also a minimum-size
1990: 1984: 2811: 2177: 2036: 2347: 2293: 2255: 2244: 2173: 1914: 1876: 1772: 1624: 1608: 1581: 2770:
Rabin, Michael O.; Vazirani, Vijay V. (1989), "Maximum matchings in general graphs through randomization",
2781: 2657: 2341: 2248: 426: 3038: 1702: 2772: 1074: 482: 58: 3218:
A graph library with Hopcroft–Karp and Push–Relabel-based maximum cardinality matching implementation
2600:
Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties
3075: 2708: 2329: 1604: 534: 356: 134: 2786: 2081:
For bipartite graphs, if a single maximum matching is found, a deterministic algorithm runs in time
3000: 2317: 2299: 1851: 1649: 1358: 1352: 231: 139: 54: 2662: 1835:
maximal matching in polynomial time. However, no polynomial-time algorithm is known for finding a
3165: 3146: 3137: 3042: 2698: 2675: 2513: 2494: 2225: 1918: 1756: 1644: 75: 2383:
Each node is incident to at most one edge in the matching. The edges are said to be independent.
1779: 1663: 362: 3198: 3106: 3093: 3050: 2954: 2752: 2578: 2146: 1003: 151: 98: 86: 2935: 469:. A graph can only contain a perfect matching when the graph has an even number of vertices. 306: 3155: 3141: 3079: 3071: 3016: 2979: 2946: 2904: 2876: 2791: 2744: 2667: 2568: 2564: 2546: 2503: 2429: 2323: 2217: 2126: 2084: 1972: 1953: 1922: 1906: 1902: 1828: 997: 522: 517: 501: 351: 146: 91: 3064: 2727: 2443: 2004: 421:. Thus, the size of a maximum matching is no larger than the size of a minimum edge cover: 3186: 3060: 2923: 2609: 2605: 2439: 2335: 2181: 2130: 1910: 1190: 1030: 62: 3120: 3004: 2712: 2531: 1239: 342: 3191: 3083: 2931: 2927: 2643: 2625: 2168:
states that, in bipartite graphs, the maximum matching is equal in size to the minimum
2138: 2134: 1937: 1760: 1630: 1326: 1306: 1286: 1266: 1219: 1099: 1079: 1056: 1036: 979: 894: 870: 31: 3144:(1987), "Fibonacci heaps and their uses in improved network optimization algorithms", 2190:
provides a characterization of bipartite graphs which have a perfect matching and the
3226: 2795: 2434: 2311: 2191: 1930: 1905:
to compute this quantity, even for bipartite graphs. It is also #P-complete to count
1653: 245:) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is 2394:
Alan Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985, Chapter 5.
1831:. A maximum matching is also a maximal matching, and hence it is possible to find a 413:. Every perfect matching is maximum and hence maximal. In some literature, the term 3169: 2893:
Tassa, Tamir (2012), "Finding all maximally-matchable edges in a bipartite graph",
2517: 2332:, a type of graph that can be used to model alternating path searches for matchings 2320:, the minimum number of edges to delete to prevent a perfect matching from existing 2240: 2169: 1926: 1898: 1892: 1612: 227: 122: 66: 38: 2679: 2344:, a set of vertices (rather than edges) no two of which are adjacent to each other 284:. The following figure shows examples of maximal matchings (red) in three graphs. 3124: 2338:, a matching in which no two elements prefer each other to their matched partners 848:{\displaystyle |A|=|A\cap B|+|A\setminus B|\leq 2|B\cap A|+2|B\setminus A|=2|B|.} 2271:
is about choosing minimum set of classes from given requirements for graduation.
2221: 2213: 1872: 1260: 1117: 103: 17: 2943:
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC 1990)
2613: 533:
In any graph without isolated vertices, the sum of the matching number and the
500:
is an alternating path that starts from and ends on free (unmatched) vertices.
289: 2909: 2880: 1879:
within factor 2 in polynomial time: simply find an arbitrary maximal matching
477: 418: 110: 3092:(second ed.), MIT Press and McGraw–Hill, Chapter 26, pp. 643–700, 2748: 2404: 2236:(in graph theoretical terms, a 6-vertex cycle) can be given such a structure. 2984: 2476: 1263:. Note that the (simple) graph of a real symmetric or skew-symmetric matrix 969:{\displaystyle \lambda _{1}>\lambda _{2}>\ldots >\lambda _{k}>0} 2756: 1660:
is used for this step, the running time of the Hungarian algorithm becomes
3020: 2976:
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing
2950: 1180:{\displaystyle \pm \lambda _{1},\pm \lambda _{2},\ldots ,\pm \lambda _{k}} 3007:(1986), "On some solved and unsolved problems of chemical graph theory", 3160: 2508: 2326:, a matching in an edge-colored bipartite graph with no repeated colors 2233: 1968: 1868: 1569:. This problem has various algorithms for different classes of graphs. 2728:"Extremal problems for topological indices in combinatorial chemistry" 2671: 2574:
Computers and Intractability: A Guide to the Theory of NP-Completeness
1858:
edges. Conversely, if we are given a minimum edge dominating set with
508:
is maximum if and only if there is no augmenting path with respect to
2550: 1871:; the decision versions of these problems are classical examples of 2480: 2258:
involves finding a minimum-weight perfect matching as a subproblem.
2703: 1611:, and algorithms for special classes of graphs such as bipartite 1365:-edge matchings in a graph is called a matching polynomial. Let 1323:
vertices and edges given by the nonozero off-diagonal entries of
1967:
The number of perfect matchings in a graph is also known as the
3049:, Annals of Discrete Mathematics, vol. 29, North-Holland, 2456:
Gallai, Tibor (1959), "Ăśber extreme Punkt- und Kantenmengen",
1699:, or the edge cost can be shifted with a potential to achieve 2695:
A combinatorial survey of identities for the double factorial
2243:
is the number of non-empty matchings plus one; it is used in
3217: 1216:
zeros, and (b) all real skew-symmetric matrices with graph
280:
has a non-empty intersection with at least one edge in
268:
that is not a subset of any other matching. A matching
2630:
The Complexity of Enumeration and Reliability Problems
2001:
For general graphs, a deterministic algorithm in time
2936:"An optimal algorithm for on-line bipartite matching" 2814: 2087: 2039: 2007: 1782: 1705: 1666: 1526:{\displaystyle \sum _{k\geq 0}(-1)^{k}m_{k}x^{n-2k},} 1455: 1393: 1329: 1309: 1289: 1269: 1242: 1222: 1193: 1125: 1102: 1082: 1059: 1039: 1006: 982: 917: 897: 873: 715: 645: 429: 365: 359:
to an edge of the matching. A matching is perfect if
309: 3193:
Fast Parallel Algorithms for Graph Matching Problems
2314:, a partition of the edges of a graph into matchings 1446:
Another definition gives the matching polynomial as
3126:
On Kuhn's Hungarian Method – A tribute from Hungary
2283:
problem involves bipartite matching as sub-problem.
1929:can be computed exactly in polynomial time via the 1897:The number of matchings in a graph is known as the 696:{\displaystyle |A\setminus B|\leq 2|B\setminus A|.} 3190: 2857: 2194:provides a characterization for arbitrary graphs. 2108: 2070: 2025: 1807: 1747: 1691: 1525: 1435: 1335: 1315: 1295: 1275: 1251: 1228: 1208: 1179: 1108: 1088: 1065: 1045: 1021: 988: 968: 903: 879: 847: 695: 459: 405: 324: 1925:states that the number of perfect matchings in a 1862:edges, we can construct a maximal matching with 1839:, that is, a maximal matching that contains the 1656:search in the augmenting path algorithm. If the 234:; that is, no two edges share common vertices. 1827:A maximal matching can be found with a simple 2865:algorithms for problems in matching theory", 2172:. Via this result, the minimum vertex cover, 1997:edges). Algorithms for this problem include: 1380:-edge matchings. One matching polynomial of 173: 8: 3132:(Technical report). Egerváry Research Group. 3111:: CS1 maint: multiple names: authors list ( 2530:Yannakakis, Mihalis; Gavril, Fanica (1980), 2458:Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 3179:Kekule Structures in Benzenoid Hydrocarbons 2277:involves bipartite matching as sub-problem. 3009:International Journal of Quantum Chemistry 2726:Tichy, Robert F.; Wagner, Stephan (2005), 1436:{\displaystyle \sum _{k\geq 0}m_{k}x^{k}.} 180: 166: 71: 3159: 2983: 2908: 2844: 2836: 2816: 2815: 2813: 2785: 2702: 2661: 2507: 2477:https://doi.org/10.1016/j.laa.2016.02.004 2433: 2296:- a generalization of matching in graphs. 2086: 2059: 2041: 2040: 2038: 2006: 1793: 1781: 1728: 1716: 1704: 1677: 1665: 1505: 1495: 1485: 1460: 1454: 1424: 1414: 1398: 1392: 1328: 1308: 1288: 1268: 1241: 1221: 1192: 1171: 1149: 1133: 1124: 1101: 1081: 1058: 1038: 1005: 981: 954: 935: 922: 916: 896: 872: 837: 829: 818: 804: 793: 779: 768: 754: 746: 732: 724: 716: 714: 685: 671: 660: 646: 644: 584:. To see this, observe that each edge in 521:is a matching that is the edge set of an 428: 395: 390: 382: 374: 366: 364: 308: 2858:{\displaystyle {\widetilde {O}}(M(|V|))} 1576:, the optimization problem is to find a 594:can be adjacent to at most two edges in 2360: 2350:(also known as stable matching problem) 2071:{\displaystyle {\tilde {O}}(V^{2.376})} 1544:Algorithms and computational complexity 812: 762: 679: 654: 74: 3248:Computational problems in graph theory 3177:S. J. Cyvin & Ivan Gutman (1988), 3104: 2642:Bezáková, Ivona; Ĺ tefankoviÄŤ, Daniel; 2230:Friedrich August KekulĂ© von Stradonitz 2216:consists of a perfect matching of its 2808:Cheriyan, Joseph (1997), "Randomized 2251:investigations for organic compounds. 2129:for matching was first considered by 1979:Finding all maximally matchable edges 1936:The number of perfect matchings in a 610:is a matching; moreover each edge in 7: 1615:, as described in the main article. 460:{\displaystyle \nu (G)\leq \rho (G)} 27:Set of edges without common vertices 2539:SIAM Journal on Applied Mathematics 2228:. These structures are named after 2033:and a randomized algorithm in time 1748:{\displaystyle O(V^{2}\log {V}+VE)} 1640:maximum weighted bipartite matching 1603:time, and there are more efficient 1073:if and only if (a) there is a real 30:For comparisons of two graphs, see 37:In the mathematical discipline of 25: 2632:, SIAM J. Comput., 8(3), 410–421 2736:Journal of Computational Biology 2532:"Edge dominating sets in graphs" 2481:https://arxiv.org/abs/1602.03590 2306:Dulmage–Mendelsohn decomposition 1580:. The problem is solved by the 560:are two maximal matchings, then 341: 288: 1875:problems. Both problems can be 2852: 2849: 2845: 2837: 2833: 2827: 2103: 2091: 2065: 2052: 2046: 2020: 2011: 1802: 1786: 1742: 1709: 1686: 1670: 1482: 1472: 838: 830: 819: 805: 794: 780: 769: 755: 747: 733: 725: 717: 686: 672: 661: 647: 454: 448: 439: 433: 391: 383: 375: 367: 319: 313: 76:Covering/packing-problem pairs 1: 2125:The problem of developing an 3189:and Wojciech Rytter (1998), 2896:Theoretical Computer Science 2796:10.1016/0196-6774(89)90005-9 2435:10.1016/0166-218X(92)90275-F 2421:Discrete Applied Mathematics 2373:NetworkX 2.8.2 documentation 2263:Matching in bipartite graphs 1768:non-bipartite weighted graph 1578:maximum cardinality matching 1557:Maximum cardinality matching 1551:Maximum-cardinality matching 276:is maximal if every edge in 3197:, Oxford University Press, 2606:Minimum Edge Dominating Set 2275:Hitchcock transport problem 2220:, showing the locations of 3264: 3238:Combinatorial optimization 3089:Introduction to Algorithms 2203:Matching in general graphs 2180:problems may be solved in 1982: 1890: 1843:possible number of edges. 1817:Edmonds' blossom algorithm 1622: 1574:unweighted bipartite graph 1563:combinatorial optimization 1554: 1350: 620:is adjacent to an edge in 29: 2910:10.1016/j.tcs.2011.12.071 2881:10.1137/S0097539793256223 2868:SIAM Journal on Computing 2649:SIAM Journal on Computing 2121:Online bipartite matching 1991:maximally matchable edges 1808:{\displaystyle O(V^{2}E)} 1692:{\displaystyle O(V^{2}E)} 1561:A fundamental problem in 406:{\displaystyle |M|=|V|/2} 230:edges, none of which are 3243:Polynomial-time problems 2749:10.1089/cmb.2005.12.1004 2610:Minimum Maximal Matching 1985:Maximally matchable edge 1913:, because computing the 1846:A maximal matching with 1837:minimum maximal matching 1609:approximation algorithms 1022:{\displaystyle 2k\leq n} 998:purely imaginary numbers 3233:Matching (graph theory) 2985:10.1145/1993636.1993716 2348:Stable marriage problem 2294:Matching in hypergraphs 2256:Chinese postman problem 2245:computational chemistry 2188:Hall's marriage theorem 2178:maximum vertex biclique 2174:maximum independent set 1776:can be solved in time 1773:maximum weight matching 1625:Maximum weight matching 1619:Maximum-weight matching 1582:Hopcroft-Karp algorithm 706:Further we deduce that 504:states that a matching 325:{\displaystyle \nu (G)} 128:Maximum independent set 2859: 2693:Callan, David (2009), 2342:Independent vertex set 2249:mathematical chemistry 2184:for bipartite graphs. 2110: 2109:{\displaystyle O(V+E)} 2072: 2027: 1952:even) is given by the 1809: 1755:running time with the 1749: 1693: 1658:Bellman–Ford algorithm 1527: 1437: 1337: 1317: 1297: 1277: 1253: 1230: 1210: 1181: 1110: 1090: 1067: 1047: 1023: 990: 970: 905: 881: 849: 697: 461: 407: 326: 3021:10.1002/qua.560300762 3003:; Klein, Douglas J.; 2951:10.1145/100216.100262 2860: 2773:Journal of Algorithms 2111: 2073: 2028: 2026:{\displaystyle O(VE)} 1810: 1750: 1694: 1605:randomized algorithms 1528: 1438: 1338: 1318: 1298: 1278: 1254: 1231: 1211: 1182: 1111: 1091: 1075:skew-symmetric matrix 1068: 1048: 1024: 991: 971: 906: 882: 850: 698: 474:near-perfect matching 462: 408: 327: 226:is a set of pairwise 3076:Charles E. Leiserson 2978:. pp. 597–606. 2945:. pp. 352–358. 2812: 2330:Skew-symmetric graph 2085: 2037: 2005: 1901:of the graph. It is 1780: 1703: 1664: 1453: 1391: 1347:Matching polynomials 1327: 1307: 1287: 1267: 1240: 1220: 1209:{\displaystyle n-2k} 1191: 1123: 1100: 1080: 1057: 1037: 1004: 980: 915: 895: 871: 713: 643: 535:edge covering number 427: 363: 307: 123:Minimum vertex cover 65:can be treated as a 47:independent edge set 3161:10.1145/28869.28874 2713:2009arXiv0906.1317C 2509:10.1145/28869.28874 2318:Matching preclusion 2300:Fractional matching 2281:Subtree isomorphism 1852:edge dominating set 1650:Hungarian algorithm 1359:generating function 1353:Matching polynomial 104:Maximum set packing 3147:Journal of the ACM 3138:Michael L. Fredman 2932:Vazirani, Vijay V. 2928:Vazirani, Umesh V. 2855: 2644:Vazirani, Vijay V. 2495:Journal of the ACM 2269:Graduation problem 2232:, who showed that 2226:chemical structure 2106: 2068: 2023: 1919:biadjacency matrix 1805: 1757:Dijkstra algorithm 1745: 1689: 1645:assignment problem 1523: 1471: 1433: 1409: 1333: 1313: 1293: 1273: 1252:{\displaystyle 2k} 1249: 1226: 1206: 1177: 1106: 1086: 1063: 1043: 1019: 986: 966: 901: 877: 845: 693: 457: 403: 322: 111:Minimum edge cover 3204:978-0-19-850162-6 3181:, Springer-Verlag 3001:Trinajstić, Nenad 2824: 2672:10.1137/050644033 2569:Johnson, David S. 2565:Garey, Michael R. 2214:aromatic compound 2161:Characterizations 2151:competitive ratio 2147:secretary problem 2049: 1962:telephone numbers 1907:perfect matchings 1887:Counting problems 1823:Maximal matchings 1770:, the problem of 1456: 1394: 1376:be the number of 1361:of the number of 1336:{\displaystyle A} 1316:{\displaystyle n} 1296:{\displaystyle n} 1276:{\displaystyle A} 1229:{\displaystyle G} 1109:{\displaystyle G} 1089:{\displaystyle A} 1066:{\displaystyle k} 1046:{\displaystyle G} 996:distinct nonzero 989:{\displaystyle k} 904:{\displaystyle n} 880:{\displaystyle G} 630:by maximality of 488:Given a matching 415:complete matching 190: 189: 157: 156: 152:Rectangle packing 99:Minimum set cover 87:Covering problems 49:in an undirected 16:(Redirected from 3255: 3207: 3196: 3182: 3173: 3163: 3142:Robert E. Tarjan 3133: 3131: 3116: 3110: 3102: 3080:Ronald L. Rivest 3072:Thomas H. Cormen 3067: 3025: 3023: 3015:(S20): 699–742, 2996: 2990: 2989: 2987: 2971: 2965: 2964: 2940: 2924:Karp, Richard M. 2920: 2914: 2913: 2912: 2890: 2884: 2883: 2875:(6): 1635–1655, 2864: 2862: 2861: 2856: 2848: 2840: 2826: 2825: 2817: 2805: 2799: 2798: 2789: 2767: 2761: 2759: 2743:(7): 1004–1013, 2732: 2723: 2717: 2715: 2706: 2690: 2684: 2683: 2665: 2656:(5): 1429–1454. 2639: 2633: 2623: 2617: 2603: 2595: 2589: 2587: 2577:, W.H. Freeman, 2561: 2555: 2553: 2536: 2527: 2521: 2520: 2511: 2489: 2483: 2473: 2467: 2465: 2453: 2447: 2446: 2437: 2415: 2409: 2408: 2401: 2395: 2392: 2386: 2385: 2380: 2379: 2365: 2324:Rainbow matching 2210:KekulĂ© structure 2156: 2127:online algorithm 2115: 2113: 2112: 2107: 2077: 2075: 2074: 2069: 2064: 2063: 2051: 2050: 2042: 2032: 2030: 2029: 2024: 1973:adjacency matrix 1954:double factorial 1911:bipartite graphs 1829:greedy algorithm 1814: 1812: 1811: 1806: 1798: 1797: 1754: 1752: 1751: 1746: 1732: 1721: 1720: 1698: 1696: 1695: 1690: 1682: 1681: 1636:bipartite graph, 1602: 1597: 1596: 1567:maximum matching 1532: 1530: 1529: 1524: 1519: 1518: 1500: 1499: 1490: 1489: 1470: 1442: 1440: 1439: 1434: 1429: 1428: 1419: 1418: 1408: 1342: 1340: 1339: 1334: 1322: 1320: 1319: 1314: 1302: 1300: 1299: 1294: 1282: 1280: 1279: 1274: 1258: 1256: 1255: 1250: 1235: 1233: 1232: 1227: 1215: 1213: 1212: 1207: 1186: 1184: 1183: 1178: 1176: 1175: 1154: 1153: 1138: 1137: 1115: 1113: 1112: 1107: 1095: 1093: 1092: 1087: 1072: 1070: 1069: 1064: 1052: 1050: 1049: 1044: 1028: 1026: 1025: 1020: 995: 993: 992: 987: 975: 973: 972: 967: 959: 958: 940: 939: 927: 926: 910: 908: 907: 902: 886: 884: 883: 878: 863: 854: 852: 851: 846: 841: 833: 822: 808: 797: 783: 772: 758: 750: 736: 728: 720: 702: 700: 699: 694: 689: 675: 664: 650: 635: 629: 619: 609: 603: 593: 583: 578:| â‰¤ 2| 571: 566:| â‰¤ 2| 559: 553: 544: 523:induced subgraph 518:induced matching 494:alternating path 468: 466: 464: 463: 458: 412: 410: 409: 404: 399: 394: 386: 378: 370: 352:perfect matching 345: 335: 331: 329: 328: 323: 298:maximum matching 292: 258:maximal matching 214: 182: 175: 168: 147:Polygon covering 116:Maximum matching 92:Packing problems 83: 82: 72: 21: 18:Maximal matching 3263: 3262: 3258: 3257: 3256: 3254: 3253: 3252: 3223: 3222: 3214: 3205: 3187:Marek Karpinski 3185: 3176: 3136: 3129: 3119: 3103: 3100: 3070: 3057: 3047:Matching Theory 3037: 3034: 3032:Further reading 3029: 3028: 2999: 2997: 2993: 2973: 2972: 2968: 2961: 2938: 2922: 2921: 2917: 2892: 2891: 2887: 2810: 2809: 2807: 2806: 2802: 2787:10.1.1.228.1996 2769: 2768: 2764: 2730: 2725: 2724: 2720: 2692: 2691: 2687: 2641: 2640: 2636: 2624: 2620: 2597: 2596: 2592: 2585: 2563: 2562: 2558: 2551:10.1137/0138030 2534: 2529: 2528: 2524: 2491: 2490: 2486: 2474: 2470: 2455: 2454: 2450: 2428:(1–3): 97–102, 2417: 2416: 2412: 2403: 2402: 2398: 2393: 2389: 2377: 2375: 2367: 2366: 2362: 2357: 2336:Stable matching 2290: 2265: 2218:carbon skeleton 2205: 2200: 2182:polynomial time 2166:KĹ‘nig's theorem 2163: 2154: 2131:Richard M. Karp 2123: 2083: 2082: 2055: 2035: 2034: 2003: 2002: 1987: 1981: 1947: 1895: 1889: 1825: 1789: 1778: 1777: 1712: 1701: 1700: 1673: 1662: 1661: 1627: 1621: 1600: 1595: 1592: 1590: 1588: 1585: 1559: 1553: 1546: 1501: 1491: 1481: 1451: 1450: 1420: 1410: 1389: 1388: 1374: 1369:be a graph and 1355: 1349: 1325: 1324: 1305: 1304: 1285: 1284: 1265: 1264: 1238: 1237: 1218: 1217: 1189: 1188: 1167: 1145: 1129: 1121: 1120: 1098: 1097: 1078: 1077: 1055: 1054: 1035: 1034: 1031:matching number 1002: 1001: 978: 977: 950: 931: 918: 913: 912: 893: 892: 869: 868: 859: 711: 710: 641: 640: 631: 621: 611: 605: 595: 585: 573: 561: 555: 549: 538: 531: 498:augmenting path 483:factor-critical 425: 424: 422: 361: 360: 333: 305: 304: 302:matching number 201: 195: 186: 63:bipartite graph 57:without common 35: 28: 23: 22: 15: 12: 11: 5: 3261: 3259: 3251: 3250: 3245: 3240: 3235: 3225: 3224: 3221: 3220: 3213: 3212:External links 3210: 3209: 3208: 3203: 3183: 3174: 3154:(3): 595–615, 3134: 3117: 3098: 3084:Clifford Stein 3068: 3055: 3043:Plummer, M. D. 3039:Lovász, LászlĂł 3033: 3030: 3027: 3026: 2991: 2966: 2959: 2915: 2885: 2854: 2851: 2847: 2843: 2839: 2835: 2832: 2829: 2823: 2820: 2800: 2780:(4): 557–567, 2762: 2718: 2685: 2634: 2626:Leslie Valiant 2618: 2614:web compendium 2590: 2583: 2556: 2545:(3): 364–372, 2522: 2502:(3): 596–615, 2484: 2468: 2448: 2410: 2396: 2387: 2359: 2358: 2356: 2353: 2352: 2351: 2345: 2339: 2333: 2327: 2321: 2315: 2309: 2303: 2297: 2289: 2286: 2285: 2284: 2278: 2272: 2264: 2261: 2260: 2259: 2252: 2237: 2204: 2201: 2199: 2196: 2162: 2159: 2139:Vijay Vazirani 2135:Umesh Vazirani 2122: 2119: 2118: 2117: 2105: 2102: 2099: 2096: 2093: 2090: 2079: 2067: 2062: 2058: 2054: 2048: 2045: 2022: 2019: 2016: 2013: 2010: 1983:Main article: 1980: 1977: 1943: 1938:complete graph 1891:Main article: 1888: 1885: 1824: 1821: 1804: 1801: 1796: 1792: 1788: 1785: 1761:Fibonacci heap 1744: 1741: 1738: 1735: 1731: 1727: 1724: 1719: 1715: 1711: 1708: 1688: 1685: 1680: 1676: 1672: 1669: 1623:Main article: 1620: 1617: 1598: 1593: 1586: 1555:Main article: 1552: 1549: 1545: 1542: 1534: 1533: 1522: 1517: 1514: 1511: 1508: 1504: 1498: 1494: 1488: 1484: 1480: 1477: 1474: 1469: 1466: 1463: 1459: 1444: 1443: 1432: 1427: 1423: 1417: 1413: 1407: 1404: 1401: 1397: 1372: 1351:Main article: 1348: 1345: 1332: 1312: 1292: 1272: 1248: 1245: 1225: 1205: 1202: 1199: 1196: 1174: 1170: 1166: 1163: 1160: 1157: 1152: 1148: 1144: 1141: 1136: 1132: 1128: 1105: 1085: 1062: 1042: 1018: 1015: 1012: 1009: 985: 965: 962: 957: 953: 949: 946: 943: 938: 934: 930: 925: 921: 911:vertices, and 900: 876: 856: 855: 844: 840: 836: 832: 828: 825: 821: 817: 814: 811: 807: 803: 800: 796: 792: 789: 786: 782: 778: 775: 771: 767: 764: 761: 757: 753: 749: 745: 742: 739: 735: 731: 727: 723: 719: 704: 703: 692: 688: 684: 681: 678: 674: 670: 667: 663: 659: 656: 653: 649: 530: 527: 456: 453: 450: 447: 444: 441: 438: 435: 432: 402: 398: 393: 389: 385: 381: 377: 373: 369: 347: 346: 321: 318: 315: 312: 294: 293: 260:is a matching 194: 191: 188: 187: 185: 184: 177: 170: 162: 159: 158: 155: 154: 149: 143: 142: 137: 131: 130: 125: 119: 118: 113: 107: 106: 101: 95: 94: 89: 79: 78: 32:Graph matching 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3260: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3230: 3228: 3219: 3216: 3215: 3211: 3206: 3200: 3195: 3194: 3188: 3184: 3180: 3175: 3171: 3167: 3162: 3157: 3153: 3149: 3148: 3143: 3139: 3135: 3128: 3127: 3122: 3118: 3114: 3108: 3101: 3099:0-262-53196-8 3095: 3091: 3090: 3085: 3081: 3077: 3073: 3069: 3066: 3062: 3058: 3056:0-444-87916-1 3052: 3048: 3044: 3040: 3036: 3035: 3031: 3022: 3018: 3014: 3010: 3006: 3005:Randić, Milan 3002: 2995: 2992: 2986: 2981: 2977: 2970: 2967: 2962: 2960:0-89791-361-2 2956: 2952: 2948: 2944: 2937: 2933: 2929: 2925: 2919: 2916: 2911: 2906: 2902: 2898: 2897: 2889: 2886: 2882: 2878: 2874: 2870: 2869: 2841: 2830: 2821: 2818: 2804: 2801: 2797: 2793: 2788: 2783: 2779: 2775: 2774: 2766: 2763: 2758: 2754: 2750: 2746: 2742: 2738: 2737: 2729: 2722: 2719: 2714: 2710: 2705: 2700: 2696: 2689: 2686: 2681: 2677: 2673: 2669: 2664: 2663:10.1.1.80.687 2659: 2655: 2651: 2650: 2645: 2638: 2635: 2631: 2627: 2622: 2619: 2615: 2611: 2607: 2601: 2594: 2591: 2586: 2584:0-7167-1045-5 2580: 2576: 2575: 2570: 2566: 2560: 2557: 2552: 2548: 2544: 2540: 2533: 2526: 2523: 2519: 2515: 2510: 2505: 2501: 2497: 2496: 2488: 2485: 2482: 2478: 2472: 2469: 2463: 2459: 2452: 2449: 2445: 2441: 2436: 2431: 2427: 2423: 2422: 2414: 2411: 2406: 2400: 2397: 2391: 2388: 2384: 2374: 2370: 2369:"is_matching" 2364: 2361: 2354: 2349: 2346: 2343: 2340: 2337: 2334: 2331: 2328: 2325: 2322: 2319: 2316: 2313: 2312:Edge coloring 2310: 2307: 2304: 2301: 2298: 2295: 2292: 2291: 2287: 2282: 2279: 2276: 2273: 2270: 2267: 2266: 2262: 2257: 2253: 2250: 2246: 2242: 2238: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2206: 2202: 2197: 2195: 2193: 2192:Tutte theorem 2189: 2185: 2183: 2179: 2175: 2171: 2167: 2160: 2158: 2152: 2148: 2142: 2140: 2136: 2132: 2128: 2120: 2100: 2097: 2094: 2088: 2080: 2060: 2056: 2043: 2017: 2014: 2008: 2000: 1999: 1998: 1996: 1992: 1986: 1978: 1976: 1974: 1970: 1965: 1963: 1959: 1955: 1951: 1946: 1942: 1939: 1934: 1932: 1931:FKT algorithm 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1894: 1886: 1884: 1882: 1878: 1874: 1870: 1865: 1861: 1857: 1853: 1849: 1844: 1842: 1838: 1834: 1830: 1822: 1820: 1818: 1799: 1794: 1790: 1783: 1775: 1774: 1769: 1764: 1762: 1758: 1739: 1736: 1733: 1729: 1725: 1722: 1717: 1713: 1706: 1683: 1678: 1674: 1667: 1659: 1655: 1654:shortest path 1651: 1647: 1646: 1641: 1637: 1634: 1633: 1626: 1618: 1616: 1614: 1613:planar graphs 1610: 1606: 1583: 1579: 1575: 1570: 1568: 1565:is finding a 1564: 1558: 1550: 1548: 1543: 1541: 1539: 1520: 1515: 1512: 1509: 1506: 1502: 1496: 1492: 1486: 1478: 1475: 1467: 1464: 1461: 1457: 1449: 1448: 1447: 1430: 1425: 1421: 1415: 1411: 1405: 1402: 1399: 1395: 1387: 1386: 1385: 1383: 1379: 1375: 1368: 1364: 1360: 1354: 1346: 1344: 1330: 1310: 1290: 1270: 1262: 1246: 1243: 1236:have at most 1223: 1203: 1200: 1197: 1194: 1172: 1168: 1164: 1161: 1158: 1155: 1150: 1146: 1142: 1139: 1134: 1130: 1126: 1119: 1103: 1083: 1076: 1060: 1040: 1032: 1016: 1013: 1010: 1007: 999: 983: 963: 960: 955: 951: 947: 944: 941: 936: 932: 928: 923: 919: 898: 890: 874: 865: 862: 842: 834: 826: 823: 815: 809: 801: 798: 790: 787: 784: 776: 773: 765: 759: 751: 743: 740: 737: 729: 721: 709: 708: 707: 690: 682: 676: 668: 665: 657: 651: 639: 638: 637: 634: 628: 625: \  624: 618: 615: \  614: 608: 602: 599: \  598: 592: 589: \  588: 581: 577: 569: 565: 558: 552: 546: 542: 536: 528: 526: 524: 520: 519: 513: 511: 507: 503: 502:Berge's lemma 499: 495: 491: 486: 484: 479: 475: 470: 451: 445: 442: 436: 430: 420: 416: 400: 396: 387: 379: 371: 358: 354: 353: 344: 340: 339: 338: 316: 310: 303: 299: 291: 287: 286: 285: 283: 279: 275: 271: 267: 263: 259: 254: 252: 248: 244: 240: 235: 233: 229: 225: 221: 218: 212: 208: 204: 200: 192: 183: 178: 176: 171: 169: 164: 163: 161: 160: 153: 150: 148: 145: 144: 141: 138: 136: 133: 132: 129: 126: 124: 121: 120: 117: 114: 112: 109: 108: 105: 102: 100: 97: 96: 93: 90: 88: 85: 84: 81: 80: 77: 73: 70: 68: 64: 60: 56: 52: 48: 44: 40: 33: 19: 3192: 3178: 3151: 3145: 3125: 3121:András Frank 3088: 3046: 3012: 3008: 2994: 2975: 2969: 2942: 2918: 2900: 2894: 2888: 2872: 2866: 2803: 2777: 2771: 2765: 2740: 2734: 2721: 2694: 2688: 2653: 2647: 2637: 2629: 2621: 2599: 2593: 2573: 2559: 2542: 2538: 2525: 2499: 2493: 2487: 2471: 2461: 2457: 2451: 2425: 2419: 2413: 2399: 2390: 2382: 2376:. Retrieved 2372: 2363: 2241:Hosoya index 2222:double bonds 2209: 2198:Applications 2186: 2170:vertex cover 2164: 2143: 2124: 1994: 1988: 1966: 1957: 1949: 1944: 1940: 1935: 1927:planar graph 1899:Hosoya index 1896: 1893:Hosoya index 1880: 1877:approximated 1863: 1859: 1855: 1850:edges is an 1847: 1845: 1840: 1836: 1832: 1826: 1771: 1767: 1765: 1643: 1639: 1635: 1631: 1628: 1573: 1571: 1566: 1560: 1547: 1537: 1535: 1445: 1381: 1377: 1370: 1366: 1362: 1356: 866: 860: 857: 705: 632: 626: 622: 616: 612: 606: 600: 596: 590: 586: 579: 575: 567: 563: 556: 550: 547: 540: 532: 516: 514: 509: 505: 497: 493: 489: 487: 473: 471: 414: 350: 348: 301: 297: 295: 281: 277: 273: 269: 265: 261: 257: 255: 250: 246: 242: 238: 237:A vertex is 236: 228:non-adjacent 223: 219: 216: 210: 206: 202: 196: 135:Bin covering 115: 67:network flow 53:is a set of 46: 42: 39:graph theory 36: 2998:See, e.g., 1903:#P-complete 1873:NP-complete 1261:eigenvalues 1118:eigenvalues 1096:with graph 1029:. Then the 332:of a graph 272:of a graph 264:of a graph 251:unsaturated 193:Definitions 140:Bin packing 3227:Categories 2602:, Springer 2378:2022-05-31 2355:References 2141:in 1990. 1909:, even in 529:Properties 478:odd number 419:edge cover 2903:: 50–58, 2822:~ 2782:CiteSeerX 2704:0906.1317 2658:CiteSeerX 2464:: 133–138 2405:"Preview" 2047:~ 1923:Kasteleyn 1915:permanent 1726:⁡ 1642:, or the 1510:− 1476:− 1465:≥ 1458:∑ 1403:≥ 1396:∑ 1283:of order 1198:− 1169:λ 1165:± 1159:… 1147:λ 1143:± 1131:λ 1127:± 1014:≤ 952:λ 945:… 933:λ 920:λ 813:∖ 788:∩ 774:≤ 763:∖ 741:∩ 680:∖ 666:≤ 655:∖ 446:ρ 443:≤ 431:ν 311:ν 247:unmatched 243:saturated 69:problem. 3123:(2004). 3107:citation 3086:(2001), 3045:(1986), 2934:(1990). 2757:16201918 2571:(1979), 2288:See also 1841:smallest 1632:weighted 1584:in time 1259:nonzero 636:, hence 604:because 357:incident 217:matching 209:,  197:Given a 59:vertices 43:matching 3170:7904683 3065:0859549 2709:Bibcode 2612:in the 2518:7904683 2444:1011265 2234:benzene 2224:in the 1995:allowed 1971:of its 1969:hafnian 1869:NP-hard 1833:largest 1591:√ 467:⁠ 423:⁠ 239:matched 3201:  3168:  3096:  3063:  3053:  2957:  2784:  2755:  2680:755231 2678:  2660:  2581:  2516:  2442:  2212:of an 2176:, and 2137:, and 1948:(with 1815:using 1648:. The 1572:In an 1536:where 1000:where 3166:S2CID 3130:(PDF) 2939:(PDF) 2731:(PDF) 2699:arXiv 2676:S2CID 2535:(PDF) 2514:S2CID 2155:0.696 2061:2.376 1993:, or 1854:with 1766:In a 1629:In a 1116:and 889:graph 887:be a 543:| / 2 492:, an 232:loops 199:graph 55:edges 51:graph 3199:ISBN 3140:and 3113:link 3094:ISBN 3082:and 3051:ISBN 2955:ISBN 2753:PMID 2608:and 2579:ISBN 2254:The 2247:and 2239:The 1759:and 1303:has 1187:and 961:> 948:> 942:> 929:> 572:and 554:and 249:(or 241:(or 41:, a 3156:doi 3017:doi 2980:doi 2947:doi 2905:doi 2901:423 2877:doi 2792:doi 2745:doi 2668:doi 2547:doi 2504:doi 2430:doi 2153:of 1723:log 1384:is 1053:is 1033:of 976:be 891:on 548:If 515:An 253:). 222:in 205:= ( 45:or 3229:: 3164:, 3152:34 3150:, 3109:}} 3105:{{ 3078:, 3074:, 3061:MR 3059:, 3041:; 3013:30 3011:, 2953:. 2941:. 2930:; 2926:; 2899:, 2873:26 2871:, 2790:, 2778:10 2776:, 2751:, 2741:12 2739:, 2733:, 2707:, 2697:, 2674:. 2666:. 2654:37 2652:. 2628:, 2567:; 2543:38 2541:, 2537:, 2512:, 2500:34 2498:, 2479:, 2460:, 2440:MR 2438:, 2426:24 2424:, 2381:. 2371:. 2208:A 2157:. 2133:, 1975:. 1964:. 1933:. 1883:. 1819:. 1763:. 1607:, 1357:A 1343:. 545:. 525:. 512:. 485:. 472:A 349:A 296:A 256:A 215:a 213:), 3172:. 3158:: 3115:) 3024:. 3019:: 2988:. 2982:: 2963:. 2949:: 2907:: 2879:: 2853:) 2850:) 2846:| 2842:V 2838:| 2834:( 2831:M 2828:( 2819:O 2794:: 2760:. 2747:: 2716:. 2711:: 2701:: 2682:. 2670:: 2616:. 2554:. 2549:: 2506:: 2466:. 2462:2 2432:: 2407:. 2302:. 2116:. 2104:) 2101:E 2098:+ 2095:V 2092:( 2089:O 2078:. 2066:) 2057:V 2053:( 2044:O 2021:) 2018:E 2015:V 2012:( 2009:O 1958:n 1956:( 1950:n 1945:n 1941:K 1881:M 1864:k 1860:k 1856:k 1848:k 1803:) 1800:E 1795:2 1791:V 1787:( 1784:O 1743:) 1740:E 1737:V 1734:+ 1730:V 1718:2 1714:V 1710:( 1707:O 1687:) 1684:E 1679:2 1675:V 1671:( 1668:O 1601:) 1599:E 1594:V 1589:( 1587:O 1538:n 1521:, 1516:k 1513:2 1507:n 1503:x 1497:k 1493:m 1487:k 1483:) 1479:1 1473:( 1468:0 1462:k 1431:. 1426:k 1422:x 1416:k 1412:m 1406:0 1400:k 1382:G 1378:k 1373:k 1371:m 1367:G 1363:k 1331:A 1311:n 1291:n 1271:A 1247:k 1244:2 1224:G 1204:k 1201:2 1195:n 1173:k 1162:, 1156:, 1151:2 1140:, 1135:1 1104:G 1084:A 1061:k 1041:G 1017:n 1011:k 1008:2 984:k 964:0 956:k 937:2 924:1 899:n 875:G 861:G 843:. 839:| 835:B 831:| 827:2 824:= 820:| 816:A 810:B 806:| 802:2 799:+ 795:| 791:A 785:B 781:| 777:2 770:| 766:B 760:A 756:| 752:+ 748:| 744:B 738:A 734:| 730:= 726:| 722:A 718:| 691:. 687:| 683:A 677:B 673:| 669:2 662:| 658:B 652:A 648:| 633:B 627:A 623:B 617:B 613:A 607:A 601:B 597:A 591:A 587:B 582:| 580:A 576:B 574:| 570:| 568:B 564:A 562:| 557:B 551:A 541:V 539:| 510:M 506:M 490:M 455:) 452:G 449:( 440:) 437:G 434:( 401:2 397:/ 392:| 388:V 384:| 380:= 376:| 372:M 368:| 334:G 320:) 317:G 314:( 282:M 278:G 274:G 270:M 266:G 262:M 224:G 220:M 211:E 207:V 203:G 181:e 174:t 167:v 34:. 20:)

Index

Maximal matching
Graph matching
graph theory
graph
edges
vertices
bipartite graph
network flow
Covering/packing-problem pairs
Covering problems
Packing problems
Minimum set cover
Maximum set packing
Minimum edge cover
Maximum matching
Minimum vertex cover
Maximum independent set
Bin covering
Bin packing
Polygon covering
Rectangle packing
v
t
e
graph
non-adjacent
loops


perfect matching

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑