Knowledge (XXG)

Polygon covering

Source πŸ“

192: 501:(i.e. no two edges are collinear), then every minimal covering without Steiner points is also a minimal partitioning of the polygon to triangles (i.e., the triangles in the minimal covering to not overlap). Hence, the minimum covering problem is identical to the polygon triangulation problem, which can be solved in time O( 454:
The most general class of polygons for which coverings by squares or rectangles can be found is the class of polygons without acute interior angles. This is because an acute angle cannot be covered by a finite number of rectangles. This problem is NP-hard, but several approximation algorithms exist.
206:
Some maximal squares have a continuous intersection with the boundary of the polygon; when they are removed, the remaining polygon remains connected. Such squares are called "continuators" and are analogous to leaf nodes – nodes with a single edge – that can be removed without disconnecting the
125:
can always be covered with a finite number of vertices of the polygon. The algorithm uses a local optimization approach: it builds the covering by iteratively selecting maximal squares that are essential to the cover (i.e., contain uncovered points not covered by other maximal squares) and then
471:
Finding the smallest set of triangles covering a given polygon is NP-hard. It is also hard to approximate - every polynomial-time algorithm might find a covering with size (1 + 1/19151) times the minimal covering.
210:
Other maximal squares are "separators": when they are removed, the polygon splits into two disconnected polygons. They are analogous to nodes with two or more edges that, when removed, leave a disconnected
202:. This sharp difference between hole-free and general polygons can be intuitively explained based on the following analogy between maximal squares in a rectilinear polygon and nodes in an undirected graph: 302:
For general rectilinear polygons, the problem of finding a minimum rectangle covering is NP-hard, even when the target polygon is hole-free. Several partial solutions have been suggested to this problem:
1326: 606: 547: 84:. In general, the problem of finding a smallest set covering is NP-complete, but for special classes of polygons, a smallest polygon covering can be found in polynomial time. 223:
problem is polynomial for tree graphs but NP-hard for general graphs, the square covering problem is linear for hole-free polygons but NP-hard for general polygons.
126:
deleting from the polygon the points that become unnecessary (i.e., unneeded to support future squares). Here is a simplified pseudo-code of the algorithm:
564:, but there is a 6-approximation algorithm for the hole-free case. The problem is NP-complete when the covering must not introduce new vertices (i.e. 43:. There are many different polygon covering problems, depending on the type of polygon being covered. An example polygon covering problem is: given a 446:. This perfectness property implies a polynomial algorithm for finding a minimum covering of any rectilinear polygon with rectilinear star polygons. 509:). Note that if we drop the general position assumption, there are polygons in which the triangles in the optimal covering overlap. Think of the 487: 384:
The number of orthogonally-convex components in a minimum covering can, in some cases, be found without finding the covering itself, in time O(
1267: 1179: 1103: 810: 65:, the units in the covering are allowed to overlap, as long as their union is exactly equal to the target polygon. This is in contrast to a 656:
can be covered by a single square, if and only if the two squares centered at them overlap. Therefore, a square-covering of the points in
622:
of points in the plane, and a set of identical squares, the goal is to find the smallest number of squares that can cover all points in
1226: 994: 879: 215:
In a hole-free rectilinear polygon, all maximal squares are either continuators or separators; thus, such a polygon is analogous to a
1414: 1250:
Eidenbenz, S.; Widmayer, P. (2001). "An Approximation Algorithm for Minimum Convex Cover with Logarithmic Performance Guarantee".
39:
is a problem of finding a covering with a smallest number of units for a given polygon. This is an important class of problems in
516:
The problem of covering only the boundary of a polygon with triangles is NP-complete, but there is an efficient 2-approximation.
1436: 583: 113:
is a covering with a smallest number of units (i.e. a global minimum). Every minimum covering is minimal, but not vice versa.
1076:
Levcopoulos, C.; Gudmundsson, J. (1997). "Approximation algorithms for covering polygons with squares and similar problems".
1451: 739:
Bar-Yehuda, R.; Ben-Hanoch, E. (1996). "A Linear-Time Algorithm for Covering Simple Polygons with Similar Rectangles".
1446: 463:
In some cases, a polygon has to be covered not with arbitrary rectangles but with rectangles from a finite family.
185:
a certain rectangle adjacent to the knob, taking care to leave a sufficient security distance for future squares.
1120:
Stoyan, Y. G.; Romanova, T.; Scheithauer, G.; Krivulya, A. (2009). "Covering a polygonal region by rectangles".
191: 766:
Aupperle, L.J.; Conn, H.E.; Keil, J.M.; O'Rourke, Joseph (1988). "Covering orthogonal polygons with squares".
316:, and this fact can be used to build a polynomial time algorithm for finding a minimum covering by rectangles. 524:
Covering a polygon (which may contain holes) with convex polygons is NP-hard. It has also been shown to be
1306: 1081: 949: 904: 610:, as is the version where a point in the kernel of each star must be contained in an edge of the polygon. 586: 527: 40: 480: 256:(see figure). The resulting polygon is not planar, but it still 2-dimensional, and now it has no holes. 69:, in which the units must be disjoint and their union may be smaller than the target polygon, and to a 479:(i.e. no two edges are collinear), then every triangle can cover at most 3 polygon edges. Hence every 1341: 565: 50:
In some scenarios, it is not required to cover the entire polygon but only its edges (this is called
1283: 313: 1086: 954: 940:
Kumar, V. S. A.; Ramesh, H. (2003). "Covering Rectilinear Polygons with Axis-Parallel Rectangles".
909: 862:
Franzblau, D. S.; Kleitman, D. J. (1984). "An algorithm for constructing regions with rectangles".
711: 577: 439: 432: 417: 366: 358: 309: 226:
It is possible to use the linear algorithm to get a 2-approximation; i.e., a covering with at most
152: 138: 122: 44: 1331: 1137: 922: 816: 649: 32: 334:
An approximation algorithm which gives good empirical results on real-life data is presented by.
312:
polygons, the number of rectangles in a minimum covering is equal to the number of blocks in an
1441: 1410: 1379: 1263: 1175: 1099: 990: 875: 835:
Chaiken, S.; Kleitman, D. J.; Saks, M.; Shearer, J. (1981). "Covering Regions by Rectangles".
806: 706: 81: 70: 62: 1402: 1371: 1255: 1207: 1167: 1129: 1091: 1056: 1023: 982: 959: 914: 867: 844: 798: 748: 498: 486:
If the covering is restricted to triangles whose vertices are vertices of the polygon (i.e.
476: 66: 895:
Heinrich-Litan, L.; LΓΌbbecke, M. E. (2007). "Rectangle covers revisited computationally".
377:
is the number of vertices of the polygon. The same is true for a covering by rectilinear
1345: 1406: 691: 557: 1359: 1430: 1375: 1061: 1044: 1028: 1011: 510: 443: 106:
is a covering that does not contain any other covering (i.e. it is a local minimum).
1141: 820: 977:
Keil, J. M. (1986). "Minimally covering a horizontally convex orthogonal polygon".
864:
Proceedings of the sixteenth annual ACM symposium on Theory of computing - STOC '84
716: 661: 556:
Covering a polygon with convex polygons is NP-hard even when the target polygon is
397: 378: 220: 926: 1198:
O'Rourke, J.; Supowit, K. (1983). "Some NP-hard polygon decomposition problems".
1171: 319:
Even when the target polygon is only half-orthogonally convex (i.e. only in the
687:
Covering a polygon (which may contain holes) with spiral polygons is NP-hard.
1133: 979:
Proceedings of the second annual symposium on Computational geometry - SCG '86
963: 752: 216: 1383: 1259: 1211: 1162:
Christ, T. (2011). "Beyond Triangulation: Covering Polygons with Triangles".
1045:"Covering orthogonal polygons with star polygons: The perfect graph approach" 1095: 918: 802: 1358:
Fowler, Robert J.; Paterson, Michael S.; Tanimoto, Steven L. (1981-06-13).
95:
is a collection of maximal units, possibly overlapping, whose union equals
871: 561: 431:
The problem of covering a polygon with star polygons is a variant of the
198:
For polygons which may contain holes, finding a minimum such covering is
20: 986: 1166:. Lecture Notes in Computer Science. Vol. 6844. pp. 231–242. 199: 28: 793:
Culberson, J. C.; Reckhow, R. A. (1988). "Covering polygons is hard".
438:
The visibility graph for the problem of minimally covering hole-free
1012:"Orthogonally convex coverings of orthogonal polygons without holes" 848: 323:
direction), a minimum covering by rectangles can be found in time O(
1336: 219:. A general polygon is analogous to a general graph. Just like the 1254:. Lecture Notes in Computer Science. Vol. 2161. p. 333. 741:
International Journal of Computational Geometry & Applications
450:
Covering a polygon without acute angles with squares or rectangles
190: 1080:. Lecture Notes in Computer Science. Vol. 1269. p. 27. 47:, find a smallest set of squares whose union equals the polygon. 676: 353:
Covering a rectilinear polygon with orthogonally convex polygons
337:
For rectilinear polygons which may contain holes, there is an O(
1301:
Abrahamsen, Mikkel; Adamaszek, Anna; Miltzow, Tillmann (2017),
1078:
Randomization and Approximation Techniques in Computer Science
1360:"Optimal packing and covering in the plane are NP-complete" 263:
The number of squares in the resulting covering is at most
252:
from the polygon, then glue back two overlapping copies of
259:
Now use the original algorithm to find a minimum covering.
287:. Hence the number of squares in the covering is at most 795:
29th Annual Symposium on Foundations of Computer Science
1309: 589: 530: 459:
Covering a polygon with rectangles of a finite family
277:
is the number of holes. It is possible to prove that
361:
which is half-orthogonally convex (i.e. only in the
80:
A polygon covering problem is a special case of the
16:
Set of primitive shapes whose union equals a polygon
490:are not allowed), then the problem is NP-complete. 1320: 600: 541: 780:Prof. Reuven Bar-Yehuda in personal communication 768:Proc. 26th Allerton Conf. Commun. Control Comput. 392:Covering a rectilinear polygon with star polygons 77:their union must be equal to the target polygon. 31:is a set of primitive units (e.g. squares) whose 1043:Motwani, R.; Raghunathan, A.; Saran, H. (1990). 582:Covering a simple polygon with star polygons is 237:is the number of squares in a minimum covering: 614:Covering a set of points with identical squares 837:SIAM Journal on Algebraic and Discrete Methods 298:Covering a rectilinear polygon with rectangles 1397:Keil, J. M. (2000). "Polygon Decomposition". 245:connecting the hole to the external boundary. 73:problem, in which the units must be disjoint 8: 181:is a one-knob continuator, then remove from 1122:Computational Optimization and Applications 675:is NP-hard; the proof is by reduction from 117:Covering a rectilinear polygon with squares 652:of these squares. Note that two points in 1335: 1314: 1313: 1308: 1085: 1060: 1027: 953: 908: 594: 593: 588: 535: 534: 529: 331:is the number of vertices of the polygon. 734: 732: 697:Additional information can be found in. 671:. Finding a smallest square-covering of 1245: 1243: 1200:IEEE Transactions on Information Theory 1193: 1191: 1049:Journal of Computer and System Sciences 1016:Journal of Computer and System Sciences 728: 520:Covering a polygon with convex polygons 1157: 1155: 1153: 1151: 1010:Culberson, J.; Reckhow, R. A. (1989). 788: 786: 572:Covering a polygon with star polygons 7: 1321:{\displaystyle \exists \mathbb {R} } 897:Journal of Experimental Algorithmics 601:{\displaystyle \exists \mathbb {R} } 542:{\displaystyle \exists \mathbb {R} } 1399:Handbook of Computational Geometry 1310: 1227:"Covering Polygons is Even Harder" 590: 531: 493:If Steiner points are not allowed 365:direction), a minimum covering by 54:) or its vertices (this is called 14: 467:Covering a polygon with triangles 347:) factor approximation algorithm. 1407:10.1016/B978-044482537-7/50012-7 369:polygons can be found in time O( 1364:Information Processing Letters 1164:Algorithms and Data Structures 637:, we put a square centered at 549:-complete. There is an O(log 1: 629:Suppose that, for each point 241:For each hole, find a square 159:is not yet covered, then add 1376:10.1016/0020-0190(81)90111-3 1172:10.1007/978-3-642-22300-6_20 1062:10.1016/0022-0000(90)90017-f 1029:10.1016/0022-0000(89)90043-3 408:, such that for every point 1303:The Art Gallery Problem is 553:) approximation algorithm. 1468: 575: 1134:10.1007/s10589-009-9258-1 964:10.1137/s0097539799358835 942:SIAM Journal on Computing 753:10.1142/S021819599600006X 1260:10.1007/3-540-44676-1_28 1212:10.1109/tit.1983.1056648 1110:, Grazyna Zwozniak, 1998 690:Covering a polygon with 442:with star polygons is a 37:polygon covering problem 1096:10.1007/3-540-63248-4_3 919:10.1145/1187436.1216583 803:10.1109/sfcs.1988.21976 694:has also been studied. 56:polygon vertex covering 1437:Computational geometry 1322: 602: 543: 483:is a 3-approximation. 195: 166:Remove the balcony of 41:computational geometry 35:equals the polygon. A 1323: 1252:Algorithms β€” ESA 2001 872:10.1145/800057.808678 603: 544: 481:polygon triangulation 475:If the polygon is in 194: 52:polygon edge covering 1452:NP-complete problems 1401:. pp. 491–518. 1307: 1284:"Program- FOCS 2023" 1225:Abrahamsen, Mikkel. 587: 528: 440:rectilinear polygons 1346:2017arXiv170406969A 987:10.1145/10515.10520 712:Art gallery problem 660:is equivalent to a 578:Art gallery problem 433:art gallery problem 420:polygon containing 418:orthogonally convex 404:containing a point 367:orthogonally convex 359:rectilinear polygon 310:orthogonally convex 177:If what remains of 123:rectilinear polygon 45:rectilinear polygon 1318: 981:. pp. 43–51. 683:Other combinations 650:intersection graph 598: 568:are not allowed). 539: 497:the polygon is in 196: 139:continuator square 130:While the polygon 1447:Covering problems 1269:978-3-540-42493-2 1181:978-3-642-22299-3 1105:978-3-540-63248-1 812:978-0-8186-0877-3 707:Covering problems 82:set cover problem 71:polygon partition 1459: 1421: 1420: 1394: 1388: 1387: 1355: 1349: 1348: 1339: 1327: 1325: 1324: 1319: 1317: 1298: 1292: 1291: 1280: 1274: 1273: 1247: 1238: 1237: 1231: 1222: 1216: 1215: 1195: 1186: 1185: 1159: 1146: 1145: 1117: 1111: 1109: 1089: 1073: 1067: 1066: 1064: 1040: 1034: 1033: 1031: 1007: 1001: 1000: 974: 968: 967: 957: 937: 931: 930: 912: 892: 886: 885: 859: 853: 852: 832: 826: 824: 790: 781: 778: 772: 771: 763: 757: 756: 736: 607: 605: 604: 599: 597: 548: 546: 545: 540: 538: 499:general position 477:general position 346: 345: 293: 286: 272: 232: 163:to the covering. 111:minimum covering 104:minimal covering 98: 94: 63:covering problem 1467: 1466: 1462: 1461: 1460: 1458: 1457: 1456: 1427: 1426: 1425: 1424: 1417: 1396: 1395: 1391: 1357: 1356: 1352: 1305: 1304: 1300: 1299: 1295: 1282: 1281: 1277: 1270: 1249: 1248: 1241: 1229: 1224: 1223: 1219: 1197: 1196: 1189: 1182: 1161: 1160: 1149: 1119: 1118: 1114: 1106: 1075: 1074: 1070: 1042: 1041: 1037: 1009: 1008: 1004: 997: 976: 975: 971: 939: 938: 934: 894: 893: 889: 882: 866:. p. 167. 861: 860: 856: 849:10.1137/0602042 834: 833: 829: 813: 797:. p. 601. 792: 791: 784: 779: 775: 765: 764: 760: 738: 737: 730: 725: 703: 692:pseudotriangles 685: 670: 647: 616: 585: 584: 580: 574: 526: 525: 522: 469: 461: 452: 394: 355: 350: 340: 338: 300: 288: 278: 264: 233:squares, where 227: 119: 96: 92: 67:packing problem 17: 12: 11: 5: 1465: 1463: 1455: 1454: 1449: 1444: 1439: 1429: 1428: 1423: 1422: 1415: 1389: 1370:(3): 133–137. 1350: 1316: 1312: 1293: 1275: 1268: 1239: 1217: 1187: 1180: 1147: 1112: 1104: 1087:10.1.1.22.9094 1068: 1035: 1002: 996:978-0897911948 995: 969: 955:10.1.1.20.2664 932: 910:10.1.1.69.4576 887: 881:978-0897911337 880: 854: 827: 811: 782: 773: 758: 727: 726: 724: 721: 720: 719: 714: 709: 702: 699: 684: 681: 668: 645: 615: 612: 596: 592: 576:Main article: 573: 570: 566:Steiner points 537: 533: 521: 518: 488:Steiner points 468: 465: 460: 457: 451: 448: 416:, there is an 396:A rectilinear 393: 390: 354: 351: 349: 348: 335: 332: 317: 314:anti rectangle 305: 299: 296: 261: 260: 257: 246: 213: 212: 208: 189: 188: 187: 186: 175: 164: 149: 134:is not empty: 118: 115: 15: 13: 10: 9: 6: 4: 3: 2: 1464: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1434: 1432: 1418: 1416:9780444825377 1412: 1408: 1404: 1400: 1393: 1390: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1354: 1351: 1347: 1343: 1338: 1333: 1329: 1297: 1294: 1289: 1285: 1279: 1276: 1271: 1265: 1261: 1257: 1253: 1246: 1244: 1240: 1235: 1228: 1221: 1218: 1213: 1209: 1205: 1201: 1194: 1192: 1188: 1183: 1177: 1173: 1169: 1165: 1158: 1156: 1154: 1152: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1116: 1113: 1107: 1101: 1097: 1093: 1088: 1083: 1079: 1072: 1069: 1063: 1058: 1054: 1050: 1046: 1039: 1036: 1030: 1025: 1021: 1017: 1013: 1006: 1003: 998: 992: 988: 984: 980: 973: 970: 965: 961: 956: 951: 947: 943: 936: 933: 928: 924: 920: 916: 911: 906: 902: 898: 891: 888: 883: 877: 873: 869: 865: 858: 855: 850: 846: 842: 838: 831: 828: 822: 818: 814: 808: 804: 800: 796: 789: 787: 783: 777: 774: 769: 762: 759: 754: 750: 746: 742: 735: 733: 729: 722: 718: 715: 713: 710: 708: 705: 704: 700: 698: 695: 693: 688: 682: 680: 678: 674: 667: 663: 659: 655: 651: 644: 640: 636: 632: 627: 625: 621: 613: 611: 609: 579: 571: 569: 567: 563: 560:. It is also 559: 554: 552: 519: 517: 514: 513:for example. 512: 511:Star of David 508: 504: 500: 496: 491: 489: 484: 482: 478: 473: 466: 464: 458: 456: 449: 447: 445: 444:perfect graph 441: 436: 434: 429: 427: 423: 419: 415: 411: 407: 403: 400:is a polygon 399: 391: 389: 387: 382: 380: 379:star polygons 376: 372: 368: 364: 360: 352: 344: 336: 333: 330: 326: 322: 318: 315: 311: 307: 306: 304: 297: 295: 292: 285: 281: 276: 271: 267: 258: 255: 251: 247: 244: 240: 239: 238: 236: 231: 224: 222: 218: 209: 205: 204: 203: 201: 193: 184: 180: 176: 173: 169: 165: 162: 158: 154: 150: 147: 143: 140: 136: 135: 133: 129: 128: 127: 124: 116: 114: 112: 107: 105: 100: 91:of a polygon 90: 85: 83: 78: 76: 72: 68: 64: 59: 57: 53: 48: 46: 42: 38: 34: 30: 26: 22: 1398: 1392: 1367: 1363: 1353: 1302: 1296: 1287: 1278: 1251: 1233: 1220: 1203: 1199: 1163: 1125: 1121: 1115: 1077: 1071: 1052: 1048: 1038: 1019: 1015: 1005: 978: 972: 945: 941: 935: 900: 896: 890: 863: 857: 840: 836: 830: 794: 776: 767: 761: 744: 740: 717:Tessellation 696: 689: 686: 672: 665: 662:clique cover 657: 653: 642: 638: 634: 630: 628: 623: 619: 618:Given a set 617: 581: 555: 550: 523: 515: 506: 502: 494: 492: 485: 474: 470: 462: 453: 437: 430: 425: 421: 413: 409: 405: 401: 398:star polygon 395: 385: 383: 374: 370: 362: 356: 342: 328: 324: 320: 301: 290: 283: 279: 274: 269: 265: 262: 253: 249: 242: 234: 229: 225: 221:vertex cover 214: 197: 182: 178: 171: 167: 160: 156: 145: 141: 131: 120: 110: 108: 103: 101: 88: 86: 79: 74: 60: 55: 51: 49: 36: 24: 18: 948:(6): 1509. 373:^2), where 1431:Categories 1337:1704.06969 1206:(2): 181. 1128:(3): 675. 1022:(2): 166. 843:(4): 394. 747:: 79–102. 723:References 217:tree graph 211:remainder. 1384:0020-0190 1328:-complete 1311:∃ 1288:FOCS 2023 1234:IEEE-FOCS 1082:CiteSeerX 1055:: 19–48. 950:CiteSeerX 905:CiteSeerX 770:: 97–106. 608:-complete 591:∃ 558:hole-free 532:∃ 327:), where 137:Select a 1442:Polygons 1142:15599243 821:34508387 701:See also 562:APX-hard 273:, where 89:covering 25:covering 21:geometry 1342:Bibcode 1290:. IEEE. 903:: 2.6. 648:be the 339:√ 200:NP-hard 153:balcony 151:If the 29:polygon 1413:  1382:  1266:  1178:  1140:  1102:  1084:  993:  952:  927:619557 925:  907:  878:  819:  809:  641:. Let 357:For a 207:graph. 1332:arXiv 1230:(PDF) 1138:S2CID 923:S2CID 817:S2CID 284:holes 275:holes 270:holes 170:from 61:In a 33:union 27:of a 1411:ISBN 1380:ISSN 1264:ISBN 1176:ISBN 1100:ISBN 991:ISBN 876:ISBN 807:ISBN 677:3SAT 505:log 424:and 341:log 248:Cut 23:, a 1403:doi 1372:doi 1256:doi 1208:doi 1168:doi 1130:doi 1092:doi 1057:doi 1024:doi 983:doi 960:doi 915:doi 868:doi 845:doi 799:doi 749:doi 664:of 633:in 626:. 495:and 412:in 388:). 308:In 291:opt 280:opt 266:opt 235:opt 230:opt 155:of 144:in 75:and 58:). 19:In 1433:: 1409:. 1378:. 1368:12 1366:. 1362:. 1340:, 1330:, 1286:. 1262:. 1242:^ 1232:. 1204:29 1202:. 1190:^ 1174:. 1150:^ 1136:. 1126:48 1124:. 1098:. 1090:. 1053:40 1051:. 1047:. 1020:39 1018:. 1014:. 989:. 958:. 946:32 944:. 921:. 913:. 901:11 899:. 874:. 839:. 815:. 805:. 785:^ 745:06 743:. 731:^ 679:. 435:. 428:. 381:. 294:. 289:2 282:β‰₯ 268:+ 228:2 121:A 109:A 102:A 99:. 87:A 1419:. 1405:: 1386:. 1374:: 1344:: 1334:: 1315:R 1272:. 1258:: 1236:. 1214:. 1210:: 1184:. 1170:: 1144:. 1132:: 1108:. 1094:: 1065:. 1059:: 1032:. 1026:: 999:. 985:: 966:. 962:: 929:. 917:: 884:. 870:: 851:. 847:: 841:2 825:. 823:. 801:: 755:. 751:: 673:S 669:S 666:G 658:S 654:S 646:S 643:G 639:p 635:S 631:p 624:S 620:S 595:R 551:n 536:R 507:n 503:n 426:q 422:p 414:P 410:q 406:p 402:P 386:n 375:n 371:n 363:x 343:n 329:n 325:n 321:y 254:s 250:s 243:s 183:P 179:s 174:. 172:P 168:s 161:s 157:s 148:. 146:P 142:s 132:P 97:P 93:P

Index

geometry
polygon
union
computational geometry
rectilinear polygon
covering problem
packing problem
polygon partition
set cover problem
rectilinear polygon
continuator square
balcony

NP-hard
tree graph
vertex cover
orthogonally convex
anti rectangle
rectilinear polygon
orthogonally convex
star polygons
star polygon
orthogonally convex
art gallery problem
rectilinear polygons
perfect graph
general position
polygon triangulation
Steiner points
general position

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑