Knowledge (XXG)

Mean-periodic function

Source 📝

338:
If f is a mean periodic function, then it is the limit of a certain sequence of exponential polynomials which are finite linear combinations of term t^^n exp(at) where n is any non-negative integer and a is any complex number; also Df is a mean periodic function (ie mean periodic) and if h is an
171: 348:
For linear differential difference equations such as Df(t) - af(t - b) = g where a is any complex number and b is a positive real number, then f is mean periodic if and only if g is mean periodic.
342:
If f and g are mean periodic then f + g and the truncated convolution product of f and g is mean periodic. However, the pointwise product of f and g need not be mean periodic.
293: 330:
bounded mean-periodic function is almost periodic (in the sense of Bohr). In the other direction, there exist almost periodic functions which are not mean-periodic.
261: 228: 194: 364:
have been suggested to correspond to automorphicity of the related L-function. There is a certain class of mean-periodic functions arising from number theory.
345:
If L(D) is a linear differential operator with constant co-efficients, and L(D)f = g, then f is mean periodic if and only if g is mean periodic.
105: 602: 373: 357: 307: 326:, but they are not almost periodic as they are unbounded. Still, there is a theorem which states that any 17: 327: 197: 568: 495: 417: 534: 440: 361: 266: 29: 578: 526: 487: 468: 33: 472: 444: 246: 213: 179: 360:, the mean-periodicity of certain (functions related to) zeta functions associated to an 45: 596: 306:
Mean-periodic functions are a separate generalization of periodic functions from the
25: 556: 552: 339:
exponential polynomial, then the pointwise product of f and h is mean periodic).
421: 234: 55: 514: 530: 538: 230:
is some arbitrary nonzero measure with compact (hence bounded) support.
499: 582: 491: 243:
for which there exists a compactly supported (signed) Borel measure
573: 210:
is mean-periodic if it satisfies the same equation (1), but where
310:. For instance, exponential functions are mean-periodic since 393:
Delsarte, Jean (1935). "Les fonctions moyenne-périodiques".
166:{\displaystyle \int f(x-t)\,d\mu (t)=0\qquad \qquad (1)} 445:"Fonctions moyenne-périodiques (d'après J.-P. Kahane)" 298:
There are several well-known equivalent definitions.
269: 249: 216: 182: 108: 473:"Théorie générale des fonctions moyenne-périodiques" 287: 255: 222: 188: 165: 429:. Tata Institute of Fundamental Research, Bombay. 237:, so that a mean-periodic function is a function 519:Journal of the Australian Mathematical Society 8: 515:"Some properties of mean periodic functions" 463: 461: 395:Journal de Mathématiques Pures et Appliquées 412: 410: 408: 24:is a generalization introduced in 1935 by 572: 268: 248: 215: 181: 130: 107: 385: 557:"Mean-periodicity and zeta functions" 302:Relation to almost periodic functions 233:Equation (1) can be interpreted as a 7: 423:Lectures on Mean Periodic Functions 555:; Ricotta, G.; Suzuki, M. (2012). 14: 153: 152: 32:. Further results were made by 196:is the difference between the 160: 154: 143: 137: 127: 115: 1: 561:Annales de l'Institut Fourier 619: 70:precisely if for all real 531:10.1017/s1446788700011058 374:almost periodic functions 308:almost periodic functions 99:. This can be written as 358:Langlands correspondence 288:{\displaystyle f*\mu =0} 200:at 0 and  64:is periodic with period 58:variable. The function 356:In work related to the 289: 257: 224: 190: 167: 44:Consider a continuous 22:mean-periodic function 603:Mathematical analysis 513:Laird, P. G. (1972). 334:Some basic properties 290: 258: 225: 191: 168: 18:mathematical analysis 328:uniformly continuous 267: 256:{\displaystyle \mu } 247: 223:{\displaystyle \mu } 214: 189:{\displaystyle \mu } 180: 106: 28:of the concept of a 20:, the concept of a 452:Séminaire Bourbaki 441:Malgrange, Bernard 285: 253: 220: 186: 163: 469:Schwartz, Laurent 362:arithmetic scheme 48:-valued function 30:periodic function 610: 587: 586: 583:10.5802/aif.2737 576: 567:(5): 1819–1887. 549: 543: 542: 510: 504: 503: 477: 465: 456: 455: 449: 437: 431: 430: 428: 414: 403: 402: 390: 325: 294: 292: 291: 286: 262: 260: 259: 254: 242: 229: 227: 226: 221: 209: 204:. The function 195: 193: 192: 187: 172: 170: 169: 164: 98: 75: 69: 63: 53: 36:and J-P Kahane. 34:Laurent Schwartz 618: 617: 613: 612: 611: 609: 608: 607: 593: 592: 591: 590: 551: 550: 546: 512: 511: 507: 492:10.2307/1969386 475: 467: 466: 459: 447: 439: 438: 434: 426: 416: 415: 406: 392: 391: 387: 382: 370: 354: 336: 311: 304: 265: 264: 245: 244: 238: 212: 211: 205: 178: 177: 104: 103: 77: 71: 65: 59: 49: 42: 12: 11: 5: 616: 614: 606: 605: 595: 594: 589: 588: 544: 525:(4): 424–432. 505: 486:(2): 857–929. 457: 454:(97): 425–437. 432: 404: 384: 383: 381: 378: 377: 376: 369: 366: 353: 350: 335: 332: 303: 300: 284: 281: 278: 275: 272: 252: 219: 198:Dirac measures 185: 174: 173: 162: 159: 156: 151: 148: 145: 142: 139: 136: 133: 129: 126: 123: 120: 117: 114: 111: 41: 38: 13: 10: 9: 6: 4: 3: 2: 615: 604: 601: 600: 598: 584: 580: 575: 570: 566: 562: 558: 554: 548: 545: 540: 536: 532: 528: 524: 520: 516: 509: 506: 501: 497: 493: 489: 485: 481: 474: 470: 464: 462: 458: 453: 446: 442: 436: 433: 425: 424: 419: 418:Kahane, J.-P. 413: 411: 409: 405: 400: 396: 389: 386: 379: 375: 372: 371: 367: 365: 363: 359: 351: 349: 346: 343: 340: 333: 331: 329: 323: 319: 315: 309: 301: 299: 296: 282: 279: 276: 273: 270: 250: 241: 236: 231: 217: 208: 203: 199: 183: 157: 149: 146: 140: 134: 131: 124: 121: 118: 112: 109: 102: 101: 100: 96: 92: 88: 84: 80: 74: 68: 62: 57: 52: 47: 39: 37: 35: 31: 27: 26:Jean Delsarte 23: 19: 564: 560: 547: 522: 518: 508: 483: 480:Ann. of Math 479: 451: 435: 422: 398: 394: 388: 355: 352:Applications 347: 344: 341: 337: 321: 317: 313: 305: 297: 239: 232: 206: 201: 175: 94: 90: 86: 82: 78: 72: 66: 60: 50: 43: 21: 15: 553:Fesenko, I. 235:convolution 401:: 403–453. 380:References 263:for which 76:, we have 40:Definition 574:0803.2821 539:0004-9735 277:μ 274:∗ 251:μ 218:μ 184:μ 135:μ 122:− 110:∫ 597:Category 471:(1947). 443:(1954). 420:(1959). 368:See also 500:1969386 46:complex 537:  498:  316:+1) − 176:where 569:arXiv 496:JSTOR 476:(PDF) 448:(PDF) 427:(PDF) 324:) = 0 320:.exp( 97:) = 0 54:of a 535:ISSN 312:exp( 85:) − 56:real 579:doi 527:doi 488:doi 16:In 599:: 577:. 565:62 563:. 559:. 533:. 523:14 521:. 517:. 494:. 484:48 482:. 478:. 460:^ 450:. 407:^ 399:17 397:. 295:. 93:− 585:. 581:: 571:: 541:. 529:: 502:. 490:: 322:x 318:e 314:x 283:0 280:= 271:f 240:f 207:f 202:a 161:) 158:1 155:( 150:0 147:= 144:) 141:t 138:( 132:d 128:) 125:t 119:x 116:( 113:f 95:a 91:x 89:( 87:f 83:x 81:( 79:f 73:x 67:a 61:f 51:f

Index

mathematical analysis
Jean Delsarte
periodic function
Laurent Schwartz
complex
real
Dirac measures
convolution
almost periodic functions
uniformly continuous
Langlands correspondence
arithmetic scheme
almost periodic functions



Kahane, J.-P.
Lectures on Mean Periodic Functions
Malgrange, Bernard
"Fonctions moyenne-périodiques (d'après J.-P. Kahane)"


Schwartz, Laurent
"Théorie générale des fonctions moyenne-périodiques"
doi
10.2307/1969386
JSTOR
1969386
"Some properties of mean periodic functions"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.