Knowledge (XXG)

Megamaser

Source πŸ“

810:. VLBI observations indicate that hydroxyl megamaser emission is composed of two components, one diffuse and one compact. The diffuse component displays gains of less than a factor of one and linewidths of order hundreds of kilometers per second. These characteristics are similar to those seen with single dish observations of hydroxyl megamasers that are unable to resolve individual masing components. The compact components have high gains, ranging from tens to hundreds, high ratios of flux at 1667 MHz to flux at 1665 MHz, and linewidths are of order a few kilometers per second. These general features have been explained by a narrow circumnuclear ring of material from which the diffuse emission arises, and individual masing clouds with sizes of order one 481:
must have a pumping mechanism to create the population inversion, and sufficient density and path length for significant amplification to take place. These combine to constrain when and where megamaser emission for a given molecule will take place. The specific conditions for each molecule known to produce megamasers are different, as exemplified by the fact that there is no known galaxy that hosts both of the two most common megamaser species, hydroxyl and water. As such, the different molecules with known megamasers will be addressed individually.
461: 415:(CH). Galactic formaldehyde masers are relatively rare, and more formaldehyde megamasers are known than are galactic formaldehyde masers. Methine masers, on the other hand, are quite common in the Milky Way. Both types of megamaser were found in galaxies in which hydroxyl had been detected. Methine is seen in galaxies with hydroxyl absorption, while formaldehyde is found in galaxies with hydroxyl absorption as well as those with hydroxyl megamaser emission. 824:
megamasers, as they required a very high fraction of infrared photons to be absorbed by hydroxyl and lead to a maser photon being emitted, making collisional excitation a more plausible pumping mechanism. However, a model of maser emission with a clumpy masing medium appear to be able to reproduce the observed properties of compact and diffuse hydroxyl emission. A recent detailed treatment finds that photons with a wavelength of 53
799:. Amplification of this background is low, with amplification factors, or gains, ranging from a few percent to a few hundred percent, and sources with larger hyperfine ratios typically exhibiting larger gains. Sources with higher gains typically have narrower emission lines. This is expected if the pre-gain linewidths are all roughly the same, as line centers are amplified more than the wings, leading to line narrowing. 196: 763:. The hydroxyl molecule also has two "satellite lines" that emit at 1612 and 1720 MHz, but few hydroxyl megamasers have had satellite lines detected. Emission in all known hydroxyl megamasers is stronger in the 1667 MHz line; typical ratios of the flux in the 1667 MHz line to the 1665 MHz line, called the hyperfine ratio, range from a minimum of 2 to greater than 20. For hydroxyl emitting in 172:, while galactic and weaker extragalactic water masers are found in star forming regions. Despite different environments, the circumstances that produce extragalactic water masers do not seem to be very different from those that produce galactic water masers. Observations of water megamasers have been used to make accurate measurements of distances to galaxies in order to provide constraints on the 737: 22: 502: 303:
can occur. Long path lengths provide photons traveling through the medium many opportunities to stimulate emission, and produce amplification of a background source of radiation. These factors accumulate to "make interstellar space a natural environment for maser operation." Astrophysical masers may be pumped either radiatively or collisionally. In radiative pumping,
307:
photons with higher energies than the maser transition photons preferentially excite atoms and molecules to the upper state in the maser in order to produce population inversion. In collisional pumping, this population inversion is instead produced by collisions that excite molecules to energy levels
814:
that give rise to the compact emission. The hydroxyl masers observed in the Milky Way more closely resemble the compact hydroxyl megamaser components. There are, however, some regions of extended galactic maser emission from other molecules that resemble the diffuse component of hydroxyl megamasers.
297:
and masers that occur in space both require population inversion in order to operate, but the conditions under which population inversion occurs are very different in the two cases. Masers in laboratories have systems with high densities, which limits the transitions that may be used for masing, and
948:
in the water molecule. The upper state is at an energy corresponding to 643 kelvins about the ground state, and populating this upper maser level requires number densities of molecular hydrogen of order 10 cm or greater and temperatures of at least 300 kelvins. The water molecule comes into thermal
783:
is typically many hundreds of kilometers per second, and individual features that make up the total emission profile have widths ranging from tens to hundreds of kilometers per second. These may also be compared with galactic hydroxyl masers, which typically have linewidths of order a kilometer per
140:
to the Milky Way. All subsequent OH megamasers that have been discovered are also in luminous infrared galaxies, and there are a small number of OH kilomasers hosted in galaxies with lower infrared luminosities. Most luminous infrared galaxies have recently merged or interacted with another galaxy,
898:
Whereas hydroxyl megamasers seem to be fundamentally distinct in some ways from galactic hydroxyl masers, water megamasers do not seem to require conditions too dissimilar from galactic water masers. Water masers stronger than galactic water masers, some of which are strong enough to be classified
480:
Regardless of the masing molecule, there are a few requirements that must be met for a strong maser source to exist. One requirement is a radio continuum background source to provide the radiation amplified by the maser, as all maser transitions take place at radio wavelengths. The masing molecule
302:
in order to bounce light back and forth many times. Astrophysical masers are at low densities, and naturally have very long path lengths. At low densities, being out of thermal equilibrium is more easily achieved because thermal equilibrium is maintained by collisions, meaning population inversion
865:
of z ~ 2, there are LIRG-like galaxies more luminous than the ones in the nearby universe. The observed relationship between the hydroxyl luminosity and far-infrared luminosity suggests that hydroxyl megamasers in such galaxies may be tens to hundreds of times more luminous than observed hydroxyl
610:
The far-infrared luminosity and dust temperature of a LIRG both affect the likelihood of hosting a hydroxyl megamaser, through correlations between the dust temperature and far-infrared luminosity, so it is unclear from observations alone what the role of each is in producing hydroxyl megamasers.
492:
hosts the first megamaser discovered, is the nearest ultraluminous infrared galaxy, and has been studied in great detail at many wavelengths. For this reason, it is the prototype of hydroxyl megamaser host galaxies, and is often used as a guide for interpreting other hydroxyl megamasers and their
274:
corresponding to the energy difference between two states can then produce stimulated emission of another photon of the same energy. The atom or molecule will drop to the lower energy level, and there will be two photons of the same energy, where before there was only one. The repetition of this
823:
The observed relationship between the luminosity of the hydroxyl line and the far infrared suggests that hydroxyl megamasers are radiatively pumped. Initial VLBI measurements of nearby hydroxyl megamasers seemed to present a problem with this model for compact emission components of hydroxyl
719:
greater than 1000 cm. These densities are among the highest mean densities of molecular gas among LIRGs. The LIRGs that host hydroxyl megamasers also have high fractions of dense gas relative to typical LIRGs. The dense gas fraction is measured by the ratio of the luminosity produced by
2401:
Kuo, C. Y.; Braatz, J. A.; Condon, J. J.; Impellizzeri, C. M. V.; Lo, K. Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M. J.; Greene, J. E. (2011). "The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks".
981:
measured on the sky, the distance to the maser may be determined. This method is effective with water megamasers because they occur in a small region around an AGN, and have narrow linewidths. This method of measuring distances is being used to provide an independent measure of the
683:
Early spectral classification of the nuclei of the LIRGs that host hydroxyl megamasers indicated that the properties of LIRGs that host hydroxyl megamasers cannot be distinguished from the overall population of LIRGs. Roughly one third of megamaser hosts are classified as
828:
are the primary pump for main line maser emission, and applies to all hydroxyl masers. In order to provide enough photons at this wavelength, the interstellar dust that reprocesses stellar radiation to infrared wavelengths must have a temperature of at least 45
622:. At least one out of three ULIRGs hosts a hydroxyl megamaser, as compared with roughly one out of six LIRGs. Early observations of hydroxyl megamasers indicated a correlation between the isotropic hydroxyl luminosity and far-infrared luminosity, with L 889:
magnetic field strength. Zeeman splitting has been detected in five hydroxyl megamasers, and the typical strength of a detected field is of order a few milligauss, similar to the field strengths measured in galactic hydroxyl masers.
949:
equilibrium at molecular hydrogen number densities of roughly 10 cm, so this places an upper limit on the number density in a water masing region. Water masers emission has been successfully modelled by masers occurring behind
2351:
Herrnstein, J. R.; Moran, J. M.; Greenhill, L. J.; Diamond, P. J.; Inoue, M.; Nakai, N.; Miyoshi, M.; Henkel, C.; Riess#, A. (1999). "A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk".
998:. Black hole mass measurements using water megamasers is the most accurate method of mass determination for black holes in galaxies other than the Milky Way. The black hole masses that are measured are consistent with the 262:, which is when a system has more members in a higher energy level relative to a lower energy level. In such a situation, more photons will be produced by stimulated emission than will be absorbed. Such a system is not in 957:. These shocks produce the high number densities and temperatures (relative to typical conditions in the interstellar medium) required for maser emission, and are successful in explaining observed masers. 266:, and as such requires special conditions to occur. Specifically, it must have some energy source that can pump the atoms or molecules to the excited state. Once population inversion occurs, a 903:
as galactic water masers. Some extragalactic water masers occur in star forming regions, like galactic water masers, while stronger water masers are found in the circumnuclear regions around
2692:
Reid, M. J.; Braatz, J. A.; Condon, J. J.; Greenhill, L. J.; Henkel, C.; Lo, K. Y. (2009). "The megamaser cosmology project. I. Very long baseline interferometric observations of UGC 3789".
2829:
Willett, K.; Darling, J.; Spoon, H.; Charmandaris, V.; Armus, L. (2011). "Mid-infrared properties of OH megamaser host galaxies. II: Analysis and modeling of the maser environment".
779:, in which the 1612 MHz line is often strongest, and of the main lines, 1667 MHz emission is frequently stronger than 1612 MHz. The total width of emission at a given 837:
confirm this basic picture, but there are still some discrepancies between details of the model and observations of hydroxyl megamaser host galaxies such as the required dust
711:
The LIRGs that host hydroxyl megamasers may be distinguished from the general population of LIRGs by their molecular gas content. The majority of molecular gas is molecular
446: 866:
megamasers. Detection of hydroxyl megamasers in such galaxies would allow precise determination of the redshift, and aid understanding of star formation in these objects.
1942: 2891: 674: 643: 2790:
Weaver, H.; Williams, D. R. W.; Dieter, N. H.; Lum, W. T. (1965). "Observations of a Strong Unidentified Microwave Line and of Emission from the OH Molecule".
234:". The maser is a predecessor to lasers, which operate at optical wavelengths, and is named by the replacement of "microwave" with "light". Given a system of 693: 704:
are, however, able to distinguish hydroxyl megamaser hosts galaxies from non-masing LIRGs, as 10–25% of hydroxyl megamaser hosts show evidence for an
153:
in hydroxyl molecules is produced by far infrared radiation that results from absorption and re-emission of light from forming stars by surrounding
771:, so line ratios greater than 2 are indicative of a population out of thermal equilibrium. This may be compared with galactic hydroxyl masers in 607:
observed in hydroxyl megamaser hosts. The dust temperatures derived from far-infrared fluxes are warm relative to spirals, ranging from 40–90 K.
243: 2577: 2316: 2282: 1891: 2886: 93:
encompasses all masers found outside the Milky Way. Most known extragalactic masers are megamasers, and the majority of megamasers are
165:
in the masing regions, and this application represents the first detection of Zeeman splitting in a galaxy other than the Milky Way.
803: 2589:
Parra, R.; Conway, J. E.; Elitzur, M.; PihlstrΓΆm, Y. M. (2005). "A compact starburst ring traced by clumpy OH megamaser emission".
595:. Mergers help funnel molecular gas to the nuclear region of the LIRG, producing high molecular densities and stimulating high 977:
of water maser spots yields the physical diameter subtended by the maser spots. By then comparing the physical radius to the
2483: 101:
being amplified is one due to a transition in the hydroxyl molecule. There are known megamasers for three other molecules:
882: 363: 145:. Many of the characteristics of the emission in hydroxyl megamasers are distinct from that of hydroxyl masers within the 2119:"Optical Spectral Classification of Major Mergers: OH Megamaser Hosts versus Nonmasing (Ultra)Luminous Infrared Galaxies" 2638:
Randell, J.; Field, D.; Jones, K. N.; Yates, J. A.; Gray, M. D. (August 1995). "The OH zone in OH megamaser galaxies".
861:
in its host LIRG, hydroxyl masers may be useful probes of the conditions where star formation in LIRGs takes place. At
149:, including the amplification of background radiation and the ratio of hydroxyl lines at different frequencies. The 994:. This distance measurement also provides a measurement of the mass of the central object, which in this case is a 553:
are favored. These infrared luminosities are very large, but in many cases LIRGs are not particularly luminous in
886: 764: 1062: 873:
in another galaxy was made through observations of hydroxyl megamasers. The Zeeman effect is the splitting of a
308:
above that of the upper maser level, and then the molecule decays to the upper maser level by emitting photons.
275:
process is what leads to amplification, and since all of the photons are the same energy, the light produced is
258:
of another photon of the same energy and cause a transition to a lower energy level. Producing a maser requires
2896: 970: 697: 524: 400:
that was of comparable strength to the hydroxyl maser in Arp 220, and are as such considered water megamasers.
137: 1798:
Baan, W. A.; Haschick, A. D. (1984). "The peculiar galaxy IC 4553 – VLA-A observations of the OH megamaser".
124:
Water megamasers were the first type of megamaser discovered. The first water megamaser was found in 1979 in
995: 945: 834: 705: 701: 564:
The majority of the LIRGs show evidence of interaction with other galaxies or having recently experienced a
449: 2049:
Darling, J.; Giovanelli, R. (2002). "A Search for OH Megamasers at z > 0.1. III. The Complete Survey".
904: 854: 511: 169: 965:
Water megamasers may be used to provide accurate distance determinations to distant galaxies. Assuming a
849:
Hydroxyl megamasers occur in the nuclear regions of LIRGs, and appear to be a marker in the stage of the
990:. The method is limited, however, by the small number of water megamasers known at distances within the 862: 792: 759:
The emission of hydroxyl megamasers occurs predominantly in the so-called "main lines" at 1665 and 1667
419: 210: 129: 999: 1744:
Andreasian, N.; Alloin, D. (October 1994). "More ultraluminous IRAS galaxies as interacting systems".
2848: 2799: 2760: 2711: 2670: 2647: 2608: 2544: 2505: 2460: 2421: 2371: 2337: 2249: 2216: 2173: 2130: 2103: 2068: 2017: 1974: 1951: 1916: 1871: 1842: 1807: 1776: 1753: 259: 150: 472:(lower) – the microwave emissions from MCG+01-38-005 were used to calculate a refined value for the 380:. This luminosity is roughly one hundred million times stronger than the typical maser found in the 2741:
Robishaw, T.; Quataert, E.; Heiles, C. (2008). "Extragalactic Zeeman Detections in OH Megamasers".
954: 900: 751: 568:, and the same holds true for the LIRGs that host hydroxyl megamasers. Megamaser hosts are rich in 425: 288: 263: 255: 217: 89:
is used to describe masers billions of times stronger than the average maser in the Milky Way, and
42: 38: 2205:"Global VLBI Observations of the Compact OH Megamaser Emission from III Zw 35 and IRAS 17208βˆ’0014" 2864: 2838: 2815: 2776: 2750: 2727: 2701: 2624: 2598: 2521: 2495: 2437: 2411: 2387: 2361: 2300: 2189: 2163: 2084: 2058: 2035: 1990: 1940:
Burdiuzha, V. V.; Vikulov, K. A. (May 1990). "The excitation and physical nature of megamasers".
807: 558: 460: 2573: 2312: 2278: 1887: 1003: 858: 796: 784:
second or narrower, and are spread over a velocity of a few to tens of kilometers per second.
776: 659: 628: 600: 154: 29:
that beams out microwave emission rather than visible light (hence the β€˜m’ replacing the β€˜l’).
2856: 2807: 2768: 2719: 2678: 2674: 2651: 2616: 2612: 2552: 2513: 2468: 2464: 2429: 2379: 2341: 2257: 2224: 2181: 2138: 2076: 2025: 1982: 1978: 1924: 1920: 1879: 1850: 1815: 1784: 1757: 1208: 978: 850: 838: 721: 685: 528: 337: 158: 56: 2472: 2240:
Elitzur, M.; Hollenbach, D. J.; McKee, C. F. (1989). "H2O masers in star-forming regions".
1767:
Baan, W. A.; Wood, P. A. D.; Haschick, A. D. (1982). "Broad hydroxyl emission in IC 4553".
2566:
Moran, James (1976). "Radio Observations of Galactic Masers". In Avrett, Eugene H. (ed.).
987: 983: 966: 788: 725: 569: 473: 299: 173: 2535:
Mirabel, I. F.; Sanders, D. B. (1987). "OH megamasers in high-luminosity IRAS galaxies".
775:
regions, where the 1665 MHz line is typically strongest, and hydroxyl masers around
611:
LIRGs with warmer dust are more likely to host hydroxyl megamasers, as are ULIRGs, with L
384:, and so the maser source in Arp 220 was called a megamaser. At this time, extragalactic 2852: 2803: 2764: 2715: 2682: 2548: 2509: 2425: 2375: 2253: 2220: 2177: 2134: 2107: 2072: 2021: 1955: 1875: 1846: 1811: 1780: 469: 465: 452:
water masers are known, and of these, 65 are bright enough to be considered megamasers.
355:. The first evidence for extragalactic masing was detection of the hydroxyl molecule in 2305: 2102:. Vol. 340. San Francisco: Astronomical Society of the Pacific. pp. 216–223. 2098:
Darling, Jeremy (2005). "OH Megamasers: Discoveries, Insights, and Future Directions".
1059: 944:
Water maser emission is observed primarily at 22 GHz, due to a transition between
878: 772: 689: 650: 596: 162: 142: 2723: 907:(AGN). The isotropic luminosities of these span a range of order one to a few hundred 696:, or LINERs. The optical properties of hydroxyl megamaser hosts and non-hosts are not 48:
emission. Megamasers are distinguished from other astrophysical masers by their large
2880: 2860: 2731: 2433: 2391: 2039: 1994: 874: 870: 768: 649:. As more hydroxyl megamasers were discovered, and care was taken to account for the 573: 565: 554: 276: 271: 98: 45: 2868: 2780: 2628: 2525: 2441: 2819: 2193: 2088: 1247: 1022: 404: 251: 195: 110: 736: 21: 2620: 2567: 2272: 1929: 1904: 78:
is used to describe masers outside the Milky Way that have luminosities of order
2100:
Future Directions in High Resolution Astronomy: The 10th Anniversary of the VLBA
1965:
Burdyuzha, V. V.; Komberg, B. V. (1990). "Powerful masers at the early epochs".
991: 561:
is roughly 80 for Arp 220, the first source in which a megamaser was observed.
1883: 950: 915: 825: 581: 392:
O) masers were already known. In 1984, water maser emission was discovered in
348:
OH). The typical isotropic luminosity for these galactic masers is 10–10 
321: 52: 780: 760: 501: 381: 370: 325: 228: 204: 146: 67: 49: 332:
were discovered in the Milky Way in the following years, including water (H
85:, or thousands of times stronger than the average maser in the Milky Way, 2603: 2366: 2063: 974: 926: 745: 712: 577: 527:(LIRGs), with far-infrared luminosities in excess of one hundred billion 397: 393: 341: 329: 304: 239: 125: 94: 2203:
Diamond, P. J.; Lonsdale, C. J.; Lonsdale, C. J.; Smith, H. E. (1999).
1986: 741: 716: 505: 489: 412: 366: 359:
in 1973, and was roughly ten times more luminous than galactic masers.
356: 133: 118: 802:
A few hydroxyl megamasers, including Arp 220, have been observed with
2811: 830: 811: 520: 267: 247: 168:
Water megamasers and kilomasers are found primarily associated with
2772: 2556: 2517: 2328:
Henkel, C.; Wilson, T. L. (March 1990). "OH megamasers explained".
2261: 2229: 2204: 2185: 2143: 2118: 2080: 2030: 2005: 1855: 1830: 1819: 1788: 2843: 2755: 2706: 2500: 2416: 2383: 2168: 2006:"Photometric Study of Galaxies with OH Megamasers in the Infrared" 1002:, an empirical correlation between stellar velocity dispersion in 735: 557:. For instance, the ratio of infrared luminosity to luminosity in 519:
Hydroxyl megamasers are found in the nuclear region of a class of
500: 459: 385: 317: 294: 194: 190: 102: 71: 26: 2484:"The Effect of 53 ΞΌm IR Radiation on 18 cm OH Megamaser Emission" 203:
The word maser derives from the acronym MASER, which stands for "
235: 16:
Astrophysical maser, source of stimulated spectral line emission
791:
continuum of its host. This continuum is primarily composed of
603:, which re-radiates in the far infrared and produces the high L 418:
As of 2007, 109 hydroxyl megamaser sources were known, up to a
2154:
Darling, J. (2007). "A Dense Gas Trigger for OH Megamasers".
242:, each with different energy states, an atom or molecule may 1866:
Baan, W. A. (1993). "Molecular megamasers after ten years".
653:, this observed relationship was found to be flatter, with L 599:
rates characteristic of LIRGs. The starlight in turn heats
324:, a hydroxyl (OH) maser was discovered in the plane of the 767:, this ratio will range from 1.8 to 1, depending upon the 715:, and typical hydroxyl megamaser hosts have molecular gas 403:
Over the next decade, megamasers were also discovered for
66:), which is 100 million times brighter than masers in the 1870:. Lecture Notes in Physics. Vol. 412. p. 73. 542:, and ultra-luminous infrared galaxies (ULIRGs), with L 1465: 1463: 1006:
and the mass of the central supermassive black hole.
806:(VLBI), which allows sources to be studied at higher 662: 631: 428: 1341: 1339: 132:. The first hydroxyl megamaser was found in 1982 in 362:In 1982, the first megamaser was discovered in the 161:of hydroxyl megamaser lines may be used to measure 2304: 1230: 1228: 787:The radiation amplified by hydroxyl masers is the 700:different. Recent infrared observations using the 668: 637: 508:, the prototypical hydroxyl megamaser host galaxy 440: 369:. The luminosity of the source, assuming it emits 199:Diagram showing the process of stimulated emission 1943:Monthly Notices of the Royal Astronomical Society 1480: 1478: 1440: 1438: 2451:Lo, K. Y. (2005). "Mega-Masers and Galaxies". 2004:Chen, P. S.; Shan, H. G.; Gao, Y. F. (2007). 55:. Megamasers have typical luminosities of 10 8: 2661:Reid, M. J.; Moran, J. M. (1981). "Masers". 1403: 1401: 899:"mega" masers, may be described by the same 881:, and the size of the splitting is linearly 694:low-ionization nuclear emission-line regions 2663:Annual Review of Astronomy and Astrophysics 2453:Annual Review of Astronomy and Astrophysics 708:, compared to 50–95% for non-masing LIRGs. 41:, which is a naturally occurring source of 1905:"Radio properties of FIR-megamaser nuclei" 940:Line characteristics and pumping mechanism 2842: 2754: 2705: 2602: 2499: 2415: 2365: 2228: 2167: 2142: 2062: 2029: 1928: 1854: 953:propagating through dense regions in the 853:. As hydroxyl emission is not subject to 661: 630: 427: 914:, and are found in nearby galaxies like 20: 2892:Astronomical objects discovered in 1982 1696:Elitzur, Hollenbach, & McKee (1989) 1014: 2473:10.1146/annurev.astro.41.011802.094927 1903:Baan, W. A.; KlΓΆckner, H. -R. (2006). 1063:"Charles H. Townes 1964 Nobel Lecture" 692:, and the remainder are classified as 316:In 1965, twelve years after the first 1746:Astronomy and Astrophysics Supplement 1661:Robishaw, Quataert, and Heiles (2008) 1649:Robishaw, Quataert, and Heiles (2008) 740:The 1665 and 1667 MHz maser lines in 7: 2117:Darling, J.; Giovanelli, R. (2006). 1831:"Infrared properties of OH galaxies" 1671: 1307: 1283: 1209:"A Catalog of Galaxies Detected in H 1172: 1138: 1081: 724:(HCN) relative to the luminosity of 25:A megamaser acts as an astronomical 2683:10.1146/annurev.aa.19.090181.001311 1706: 1625: 1345: 1319: 14: 2482:Lockett, P.; Elitzur, M. (2008). 1660: 1648: 1577: 1532: 925:) and more distant galaxies like 804:very long baseline interferometry 1695: 1613: 1601: 1589: 1543: 1469: 1455: 1444: 1430: 1418: 1392: 1380: 1369: 1357: 1330: 1295: 688:, one quarter are classified as 580:masses in excess of one billion 2307:Introduction to Electrodynamics 1485:Baan, Wood, and Haschick (1982) 1248:"From microwaves to megamasers" 1151:Baan, Wood, and Haschick (1982) 1105: 986:that does not rely upon use of 833:. Recent observations with the 1967:Astrophysics and Space Science 1565: 1554: 1127: 1046: 141:and are undergoing a burst of 1: 1717: 1520: 1508: 1496: 1484: 1431:Darling and Giovanelli (2006) 1419:Darling and Giovanelli (2002) 1407: 1393:Darling and Giovanelli (2002) 1358:Darling and Giovanelli (2002) 1331:Darling and Giovanelli (2002) 1296:Darling and Giovanelli (2002) 1271: 1195: 1184: 1161: 1150: 1116: 441:{\displaystyle z\approx 0.27} 364:ultraluminous infrared galaxy 138:ultraluminous infrared galaxy 97:(OH) megamasers, meaning the 2572:. Harvard University Press. 1728: 1626:Burdyuzha and Komberg (1990) 1346:Burdyuzha and Vikulov (1990) 1320:Andreasian and Alloin (1994) 2724:10.1088/0004-637X/695/1/287 1683: 1636: 1234: 1207:Braatz, Jim (May 4, 2010). 1093: 869:The first detection of the 293:Masers and lasers built on 2913: 2887:Astronomical radio sources 2861:10.1088/0004-637X/730/1/56 2640:Astronomy and Astrophysics 2621:10.1051/0004-6361:20052971 2591:Astronomy and Astrophysics 2434:10.1088/0004-637X/727/1/20 2330:Astronomy and Astrophysics 1930:10.1051/0004-6361:20042331 1909:Astronomy and Astrophysics 1602:Lockett and Elitzur (2008) 1590:Lockett and Elitzur (2008) 1381:Lockett and Elitzur (2008) 1370:Mirabel and Sanders (1987) 1196:Chen, Shan, and Gao (2007) 525:luminous infrared galaxies 286: 188: 2831:The Astrophysical Journal 2743:The Astrophysical Journal 2694:The Astrophysical Journal 2569:Frontiers of Astrophysics 2537:The Astrophysical Journal 2488:The Astrophysical Journal 2404:The Astrophysical Journal 2242:The Astrophysical Journal 2209:The Astrophysical Journal 2156:The Astrophysical Journal 1884:10.1007/3-540-56343-1_216 1835:The Astrophysical Journal 1800:The Astrophysical Journal 1769:The Astrophysical Journal 877:due to the presence of a 765:thermodynamic equilibrium 128:, a galaxy in the nearby 2123:The Astronomical Journal 2051:The Astronomical Journal 2010:The Astronomical Journal 1707:Herrnstein et al. (1999) 1509:Baan and Klockner (2006) 1162:Baan and Haschick (1984) 971:centripetal acceleration 946:rotational energy levels 841:for megamaser emission. 669:{\displaystyle \propto } 638:{\displaystyle \propto } 2675:1981ARA&A..19..231R 2652:1995A&A...300..659R 2613:2005A&A...443..383P 2465:2005ARA&A..43..625L 2342:1990A&A...229..431H 2271:Elitzur, Moshe (1992). 1979:1990Ap&SS.171..125B 1921:2006A&A...449..559B 1758:1994A&AS..107...23A 996:supermassive black hole 835:Spitzer Space Telescope 706:active galactic nucleus 702:Spitzer Space Telescope 136:, which is the nearest 1578:Lonsdale et al. (1998) 1533:Lonsdale et al. (1998) 1252:www.spacetelescope.org 1027:www.spacetelescope.org 905:active galactic nuclei 756: 670: 639: 516: 512:Hubble Space Telescope 477: 442: 200: 170:active galactic nuclei 30: 1544:Diamond et al. (1999) 1497:Reid and Moran (1981) 1470:Randell et al. (1995) 1445:Willett et al. (2011) 1117:Reid and Moran (1981) 851:formation of galaxies 793:synchrotron radiation 748:to lower frequencies 739: 671: 640: 504: 497:Hosts and environment 463: 443: 373:, is roughly 10  250:and move to a higher 198: 130:Centaurus A/M83 Group 74:. Likewise, the term 24: 1868:Astrophysical Masers 1829:Baan, W. A. (1989). 1106:Weaver et al. (1965) 1023:"A cosmic megamaser" 732:Line characteristics 660: 629: 456:General requirements 426: 283:Astrophysical masers 260:population inversion 254:, or the photon may 151:population inversion 2853:2011ApJ...730...56W 2804:1965Natur.208...29W 2765:2008ApJ...680..981R 2716:2009ApJ...695..287R 2549:1987ApJ...322..688M 2510:2008ApJ...677..985L 2426:2011ApJ...727...20K 2376:1999Natur.400..539H 2274:Astronomical Masers 2254:1989ApJ...346..983E 2221:1999ApJ...511..178D 2178:2007ApJ...669L...9D 2135:2006AJ....132.2596D 2108:2005ASPC..340..216D 2073:2002AJ....124..100D 2022:2007AJ....133..496C 1956:1990MNRAS.244...86B 1876:1993LNP...412...73B 1847:1989ApJ...338..804B 1812:1984ApJ...279..541B 1781:1982ApJ...260L..49B 1566:Parra et al. (2005) 1555:Parra et al. (2005) 955:interstellar medium 901:luminosity function 752:Arecibo Observatory 485:Hydroxyl megamasers 289:astrophysical maser 264:thermal equilibrium 91:extragalactic maser 70:, hence the prefix 39:astrophysical maser 1987:10.1007/BF00646831 1718:Reid et al. (2009) 1060:Townes, Charles H. 808:angular resolution 797:Type II supernovae 757: 744:, which have been 690:Seyfert 2 galaxies 686:starburst galaxies 666: 635: 529:solar luminosities 517: 478: 438: 328:. Masers of other 256:stimulate emission 201: 57:solar luminosities 31: 2579:978-0-674-32659-0 2318:978-0-13-805326-0 2311:. Prentice Hall. 2284:978-0-7923-1216-1 1893:978-3-540-56343-3 1729:Kuo et al. (2011) 1213:O Maser Emission" 859:interstellar dust 819:Pumping mechanism 576:, with molecular 298:requires using a 155:interstellar dust 2904: 2873: 2872: 2846: 2824: 2823: 2812:10.1038/208029a0 2785: 2784: 2758: 2736: 2735: 2709: 2687: 2686: 2656: 2655: 2633: 2632: 2606: 2604:astro-ph/0507436 2584: 2583: 2561: 2560: 2530: 2529: 2503: 2477: 2476: 2446: 2445: 2419: 2396: 2395: 2369: 2367:astro-ph/9907013 2346: 2345: 2323: 2322: 2310: 2301:Griffiths, David 2295: 2294: 2292: 2291: 2266: 2265: 2235: 2234: 2232: 2198: 2197: 2171: 2149: 2148: 2146: 2112: 2111: 2093: 2092: 2066: 2064:astro-ph/0205185 2044: 2043: 2033: 1999: 1998: 1960: 1959: 1935: 1934: 1932: 1898: 1897: 1861: 1860: 1858: 1824: 1823: 1793: 1792: 1762: 1761: 1731: 1726: 1720: 1715: 1709: 1704: 1698: 1693: 1687: 1681: 1675: 1669: 1663: 1658: 1652: 1646: 1640: 1634: 1628: 1623: 1617: 1611: 1605: 1599: 1593: 1587: 1581: 1575: 1569: 1563: 1557: 1552: 1546: 1541: 1535: 1530: 1524: 1518: 1512: 1506: 1500: 1494: 1488: 1482: 1473: 1467: 1458: 1453: 1447: 1442: 1433: 1428: 1422: 1416: 1410: 1405: 1396: 1390: 1384: 1378: 1372: 1367: 1361: 1355: 1349: 1343: 1334: 1328: 1322: 1317: 1311: 1305: 1299: 1293: 1287: 1281: 1275: 1269: 1263: 1262: 1260: 1258: 1244: 1238: 1232: 1223: 1222: 1220: 1219: 1204: 1198: 1193: 1187: 1182: 1176: 1170: 1164: 1159: 1153: 1148: 1142: 1136: 1130: 1125: 1119: 1114: 1108: 1103: 1097: 1091: 1085: 1079: 1073: 1072: 1070: 1069: 1056: 1050: 1047:Griffiths (2005) 1044: 1038: 1037: 1035: 1033: 1019: 1000:M–sigma relation 988:standard candles 979:angular diameter 969:, measuring the 894:Water megamasers 755: 722:hydrogen cyanide 675: 673: 672: 667: 644: 642: 641: 636: 515: 447: 445: 444: 439: 338:silicon monoxide 159:Zeeman splitting 2912: 2911: 2907: 2906: 2905: 2903: 2902: 2901: 2897:Radio astronomy 2877: 2876: 2828: 2827: 2789: 2788: 2740: 2739: 2691: 2690: 2660: 2659: 2637: 2636: 2588: 2587: 2580: 2565: 2564: 2534: 2533: 2481: 2480: 2450: 2449: 2400: 2399: 2350: 2349: 2327: 2326: 2319: 2299: 2298: 2289: 2287: 2285: 2270: 2269: 2239: 2238: 2202: 2201: 2153: 2152: 2116: 2115: 2097: 2096: 2048: 2047: 2003: 2002: 1964: 1963: 1939: 1938: 1902: 1901: 1894: 1865: 1864: 1828: 1827: 1797: 1796: 1766: 1765: 1743: 1742: 1739: 1734: 1727: 1723: 1716: 1712: 1705: 1701: 1694: 1690: 1682: 1678: 1670: 1666: 1659: 1655: 1647: 1643: 1635: 1631: 1624: 1620: 1612: 1608: 1600: 1596: 1588: 1584: 1576: 1572: 1564: 1560: 1553: 1549: 1542: 1538: 1531: 1527: 1519: 1515: 1507: 1503: 1495: 1491: 1483: 1476: 1468: 1461: 1454: 1450: 1443: 1436: 1429: 1425: 1417: 1413: 1406: 1399: 1391: 1387: 1379: 1375: 1368: 1364: 1356: 1352: 1344: 1337: 1329: 1325: 1318: 1314: 1306: 1302: 1294: 1290: 1282: 1278: 1270: 1266: 1256: 1254: 1246: 1245: 1241: 1233: 1226: 1217: 1215: 1212: 1206: 1205: 1201: 1194: 1190: 1183: 1179: 1171: 1167: 1160: 1156: 1149: 1145: 1137: 1133: 1126: 1122: 1115: 1111: 1104: 1100: 1092: 1088: 1080: 1076: 1067: 1065: 1058: 1057: 1053: 1045: 1041: 1031: 1029: 1021: 1020: 1016: 1012: 1004:galactic bulges 984:Hubble constant 967:Keplerian orbit 963: 942: 935: 932: 924: 921: 913: 910: 896: 847: 821: 749: 734: 726:carbon monoxide 679: 658: 657: 656: 648: 627: 626: 625: 621: 618: 614: 606: 594: 591: 587: 574:spiral galaxies 552: 549: 545: 541: 538: 534: 509: 499: 487: 474:Hubble constant 458: 424: 423: 410: 391: 379: 376: 354: 351: 347: 335: 320:was built in a 314: 300:resonant cavity 291: 285: 193: 187: 182: 174:Hubble constant 163:magnetic fields 116: 108: 84: 81: 65: 62: 17: 12: 11: 5: 2910: 2908: 2900: 2899: 2894: 2889: 2879: 2878: 2875: 2874: 2825: 2786: 2773:10.1086/588031 2737: 2700:(1): 287–291. 2688: 2657: 2634: 2585: 2578: 2562: 2557:10.1086/165764 2531: 2518:10.1086/533429 2478: 2459:(1): 625–676. 2447: 2397: 2347: 2336:(2): 431–440. 2324: 2317: 2296: 2283: 2267: 2262:10.1086/168080 2236: 2230:10.1086/306681 2199: 2186:10.1086/523756 2150: 2144:10.1086/508513 2113: 2094: 2081:10.1086/341166 2045: 2031:10.1086/510130 2000: 1961: 1936: 1899: 1892: 1862: 1856:10.1086/167237 1825: 1820:10.1086/161918 1794: 1789:10.1086/183868 1763: 1738: 1735: 1733: 1732: 1721: 1710: 1699: 1688: 1686:, pp. 629–630. 1676: 1674:, pp. 314–316. 1672:Elitzur (1992) 1664: 1653: 1641: 1639:, pp. 656–657. 1629: 1618: 1614:Darling (2005) 1606: 1594: 1582: 1580:, pp. L15–L16. 1570: 1558: 1547: 1536: 1525: 1513: 1501: 1499:, pp. 247–251. 1489: 1474: 1459: 1456:Darling (2007) 1448: 1434: 1423: 1421:, pp. 118–120. 1411: 1397: 1395:, pp. 117–118. 1385: 1373: 1362: 1350: 1335: 1333:, pp. 115–116. 1323: 1312: 1308:Elitzur (1992) 1300: 1288: 1286:, pp. 308–310. 1284:Elitzur (1992) 1276: 1264: 1239: 1224: 1210: 1199: 1188: 1177: 1173:Elitzur (1992) 1165: 1154: 1143: 1139:Elitzur (1992) 1131: 1120: 1109: 1098: 1096:, pp. 628–629. 1086: 1082:Elitzur (1992) 1074: 1051: 1049:, pp. 350–351. 1039: 1013: 1011: 1008: 962: 959: 941: 938: 933: 930: 922: 919: 911: 908: 895: 892: 879:magnetic field 846: 843: 820: 817: 733: 730: 677: 665: 654: 651:Malmquist bias 646: 634: 623: 619: 616: 612: 604: 597:star formation 592: 589: 585: 550: 547: 543: 539: 536: 532: 498: 495: 486: 483: 457: 454: 437: 434: 431: 408: 389: 377: 374: 352: 349: 345: 333: 313: 310: 287:Main article: 284: 281: 189:Main article: 186: 183: 181: 178: 143:star formation 114: 106: 82: 79: 63: 60: 15: 13: 10: 9: 6: 4: 3: 2: 2909: 2898: 2895: 2893: 2890: 2888: 2885: 2884: 2882: 2870: 2866: 2862: 2858: 2854: 2850: 2845: 2840: 2836: 2832: 2826: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2787: 2782: 2778: 2774: 2770: 2766: 2762: 2757: 2752: 2748: 2744: 2738: 2733: 2729: 2725: 2721: 2717: 2713: 2708: 2703: 2699: 2695: 2689: 2684: 2680: 2676: 2672: 2668: 2664: 2658: 2653: 2649: 2645: 2641: 2635: 2630: 2626: 2622: 2618: 2614: 2610: 2605: 2600: 2596: 2592: 2586: 2581: 2575: 2571: 2570: 2563: 2558: 2554: 2550: 2546: 2542: 2538: 2532: 2527: 2523: 2519: 2515: 2511: 2507: 2502: 2497: 2493: 2489: 2485: 2479: 2474: 2470: 2466: 2462: 2458: 2454: 2448: 2443: 2439: 2435: 2431: 2427: 2423: 2418: 2413: 2409: 2405: 2398: 2393: 2389: 2385: 2384:10.1038/22972 2381: 2377: 2373: 2368: 2363: 2360:(6744): 539. 2359: 2355: 2348: 2343: 2339: 2335: 2331: 2325: 2320: 2314: 2309: 2308: 2302: 2297: 2286: 2280: 2276: 2275: 2268: 2263: 2259: 2255: 2251: 2247: 2243: 2237: 2231: 2226: 2222: 2218: 2214: 2210: 2206: 2200: 2195: 2191: 2187: 2183: 2179: 2175: 2170: 2165: 2161: 2157: 2151: 2145: 2140: 2136: 2132: 2128: 2124: 2120: 2114: 2109: 2105: 2101: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2065: 2060: 2056: 2052: 2046: 2041: 2037: 2032: 2027: 2023: 2019: 2015: 2011: 2007: 2001: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1962: 1957: 1953: 1949: 1945: 1944: 1937: 1931: 1926: 1922: 1918: 1914: 1910: 1906: 1900: 1895: 1889: 1885: 1881: 1877: 1873: 1869: 1863: 1857: 1852: 1848: 1844: 1840: 1836: 1832: 1826: 1821: 1817: 1813: 1809: 1805: 1801: 1795: 1790: 1786: 1782: 1778: 1774: 1770: 1764: 1759: 1755: 1751: 1747: 1741: 1740: 1736: 1730: 1725: 1722: 1719: 1714: 1711: 1708: 1703: 1700: 1697: 1692: 1689: 1685: 1680: 1677: 1673: 1668: 1665: 1662: 1657: 1654: 1650: 1645: 1642: 1638: 1633: 1630: 1627: 1622: 1619: 1615: 1610: 1607: 1603: 1598: 1595: 1591: 1586: 1583: 1579: 1574: 1571: 1567: 1562: 1559: 1556: 1551: 1548: 1545: 1540: 1537: 1534: 1529: 1526: 1522: 1517: 1514: 1510: 1505: 1502: 1498: 1493: 1490: 1486: 1481: 1479: 1475: 1471: 1466: 1464: 1460: 1457: 1452: 1449: 1446: 1441: 1439: 1435: 1432: 1427: 1424: 1420: 1415: 1412: 1409: 1404: 1402: 1398: 1394: 1389: 1386: 1382: 1377: 1374: 1371: 1366: 1363: 1359: 1354: 1351: 1347: 1342: 1340: 1336: 1332: 1327: 1324: 1321: 1316: 1313: 1309: 1304: 1301: 1297: 1292: 1289: 1285: 1280: 1277: 1273: 1268: 1265: 1253: 1249: 1243: 1240: 1236: 1231: 1229: 1225: 1214: 1203: 1200: 1197: 1192: 1189: 1186: 1181: 1178: 1174: 1169: 1166: 1163: 1158: 1155: 1152: 1147: 1144: 1140: 1135: 1132: 1129: 1124: 1121: 1118: 1113: 1110: 1107: 1102: 1099: 1095: 1090: 1087: 1083: 1078: 1075: 1064: 1061: 1055: 1052: 1048: 1043: 1040: 1028: 1024: 1018: 1015: 1009: 1007: 1005: 1001: 997: 993: 989: 985: 980: 976: 972: 968: 960: 958: 956: 952: 947: 939: 937: 928: 917: 906: 902: 893: 891: 888: 887:line-of-sight 884: 880: 876: 875:spectral line 872: 871:Zeeman effect 867: 864: 860: 856: 852: 844: 842: 840: 836: 832: 827: 818: 816: 813: 809: 805: 800: 798: 794: 790: 785: 782: 778: 777:evolved stars 774: 770: 769:optical depth 766: 762: 753: 747: 743: 738: 731: 729: 727: 723: 718: 714: 709: 707: 703: 699: 698:significantly 695: 691: 687: 681: 663: 652: 632: 615:> 10  608: 602: 598: 588:> 10  583: 579: 575: 571: 570:molecular gas 567: 566:galaxy merger 562: 560: 556: 555:visible light 546:> 10  535:> 10  530: 526: 522: 513: 507: 503: 496: 494: 491: 484: 482: 475: 471: 470:MCG+01-38-005 467: 466:MCG+01-38-004 462: 455: 453: 451: 450:extragalactic 435: 432: 429: 421: 416: 414: 406: 401: 399: 395: 387: 383: 372: 371:isotropically 368: 365: 360: 358: 343: 339: 331: 327: 323: 319: 311: 309: 306: 301: 296: 290: 282: 280: 278: 277:monochromatic 273: 272:photon energy 269: 265: 261: 257: 253: 249: 245: 241: 237: 233: 231: 226: 224: 220: 215: 213: 209: 207: 197: 192: 184: 179: 177: 175: 171: 166: 164: 160: 156: 152: 148: 144: 139: 135: 131: 127: 122: 120: 112: 104: 100: 99:spectral line 96: 92: 88: 77: 73: 69: 58: 54: 51: 47: 46:spectral line 44: 40: 37:is a type of 36: 28: 23: 19: 2834: 2830: 2798:(5005): 29. 2795: 2791: 2746: 2742: 2697: 2693: 2666: 2662: 2643: 2639: 2594: 2590: 2568: 2540: 2536: 2491: 2487: 2456: 2452: 2407: 2403: 2357: 2353: 2333: 2329: 2306: 2288:. Retrieved 2277:. Springer. 2273: 2245: 2241: 2212: 2208: 2159: 2155: 2126: 2122: 2099: 2054: 2050: 2013: 2009: 1973:(1–2): 125. 1970: 1966: 1947: 1941: 1912: 1908: 1867: 1838: 1834: 1803: 1799: 1772: 1768: 1749: 1745: 1724: 1713: 1702: 1691: 1679: 1667: 1656: 1644: 1632: 1621: 1609: 1597: 1585: 1573: 1561: 1550: 1539: 1528: 1523:, pp. 74–76. 1516: 1504: 1492: 1451: 1426: 1414: 1388: 1376: 1365: 1353: 1326: 1315: 1303: 1291: 1279: 1274:, pp. 80–81. 1267: 1255:. Retrieved 1251: 1242: 1216:. Retrieved 1202: 1191: 1180: 1168: 1157: 1146: 1134: 1128:Moran (1976) 1123: 1112: 1101: 1089: 1084:, pp. 56–58. 1077: 1066:. Retrieved 1054: 1042: 1030:. Retrieved 1026: 1017: 964: 961:Applications 943: 897: 883:proportional 868: 848: 845:Applications 822: 801: 795:produced by 786: 773:star-forming 758: 710: 682: 609: 582:solar masses 572:compared to 563: 518: 488: 479: 468:(upper) and 417: 405:formaldehyde 402: 361: 315: 292: 252:energy level 229: 222: 218: 214:mplification 211: 205: 202: 167: 123: 111:formaldehyde 90: 86: 75: 34: 32: 18: 2646:: 659–674. 2129:(6): 2596. 1521:Baan (1993) 1408:Baan (1989) 1272:Baan (1993) 1185:Baan (1993) 1032:26 December 992:Hubble flow 951:shock waves 826:micrometres 448:. Over 100 340:(SiO), and 2881:Categories 2749:(2): 981. 2597:(2): 383. 2494:(2): 985. 2290:2010-12-24 2215:(1): 178. 2057:(1): 100. 2016:(2): 496. 1915:(2): 559. 1737:References 1218:2010-08-20 1068:2010-12-25 929:(120  918:(0.8  916:Messier 51 855:extinction 746:redshifted 559:blue light 322:laboratory 221:timulated 180:Background 53:luminosity 43:stimulated 2844:1101.4946 2837:(1): 56. 2756:0803.1832 2732:119205037 2707:0811.4345 2501:0801.2937 2417:1008.2146 2410:(1): 20. 2392:204995005 2169:0710.1080 2162:(1): L9. 2040:122101526 1995:121736761 1950:: 86–92. 1752:: 23–28. 1684:Lo (2005) 1651:, p. 981. 1637:Lo (2005) 1616:, p. 217. 1604:, p. 991. 1592:, p. 985. 1568:, p. 394. 1511:, p. 559. 1487:, p. L51. 1472:, p. 660. 1383:, p. 986. 1310:, p. 309. 1257:28 August 1237:, p. 668. 1235:Lo (2005) 1175:, p. 315. 1141:, p. 308. 1094:Lo (2005) 863:redshifts 781:frequency 717:densities 664:∝ 633:∝ 464:Galaxies 433:≈ 382:Milky Way 330:molecules 326:Milky Way 240:molecules 147:Milky Way 117:CO), and 87:gigamaser 76:kilomaser 68:Milky Way 50:isotropic 35:megamaser 2869:51362028 2781:13875219 2629:17406397 2526:10181212 2442:43300756 2303:(1999). 1360:, p. 116 1348:, p. 86. 1298:, p. 115 975:velocity 934:☉ 927:NGC 4258 923:☉ 912:☉ 713:hydrogen 620:☉ 593:☉ 578:hydrogen 551:☉ 540:☉ 521:galaxies 420:redshift 411:CO) and 398:NGC 1068 394:NGC 4258 378:☉ 353:☉ 342:methanol 305:infrared 232:adiation 208:icrowave 126:NGC 4945 95:hydroxyl 83:☉ 64:☉ 2849:Bibcode 2820:4293176 2800:Bibcode 2761:Bibcode 2712:Bibcode 2671:Bibcode 2669:: 231. 2648:Bibcode 2609:Bibcode 2545:Bibcode 2543:: 688. 2506:Bibcode 2461:Bibcode 2422:Bibcode 2372:Bibcode 2338:Bibcode 2250:Bibcode 2248:: 983. 2217:Bibcode 2194:9235917 2174:Bibcode 2131:Bibcode 2104:Bibcode 2089:7340232 2069:Bibcode 2018:Bibcode 1975:Bibcode 1952:Bibcode 1917:Bibcode 1872:Bibcode 1843:Bibcode 1841:: 804. 1808:Bibcode 1806:: 541. 1777:Bibcode 1775:: L49. 1754:Bibcode 885:to the 839:opacity 831:kelvins 742:Arp 220 523:called 506:Arp 220 493:hosts. 490:Arp 220 413:methine 367:Arp 220 357:NGC 253 312:History 270:with a 225:mission 134:Arp 220 119:methine 2867:  2818:  2792:Nature 2779:  2730:  2627:  2576:  2524:  2440:  2390:  2354:Nature 2315:  2281:  2192:  2087:  2038:  1993:  1890:  812:parsec 728:(CO). 584:, or H 531:, or L 268:photon 248:photon 244:absorb 185:Masers 121:(CH). 2865:S2CID 2839:arXiv 2816:S2CID 2777:S2CID 2751:arXiv 2728:S2CID 2702:arXiv 2625:S2CID 2599:arXiv 2522:S2CID 2496:arXiv 2438:S2CID 2412:arXiv 2388:S2CID 2362:arXiv 2190:S2CID 2164:arXiv 2085:S2CID 2059:arXiv 2036:S2CID 1991:S2CID 1010:Notes 789:radio 754:data) 386:water 318:maser 295:Earth 236:atoms 191:maser 103:water 27:laser 2574:ISBN 2313:ISBN 2279:ISBN 1888:ISBN 1259:2017 1034:2016 973:and 601:dust 436:0.27 396:and 336:O), 109:O), 72:mega 2857:doi 2835:730 2808:doi 2796:208 2769:doi 2747:680 2720:doi 2698:695 2679:doi 2644:300 2617:doi 2595:443 2553:doi 2541:322 2514:doi 2492:677 2469:doi 2430:doi 2408:727 2380:doi 2358:400 2334:229 2258:doi 2246:346 2225:doi 2213:511 2182:doi 2160:669 2139:doi 2127:132 2077:doi 2055:124 2026:doi 2014:133 1983:doi 1971:171 1948:244 1925:doi 1913:449 1880:doi 1851:doi 1839:338 1816:doi 1804:279 1785:doi 1773:260 1750:107 936:). 857:by 761:MHz 678:FIR 647:FIR 613:FIR 605:FIR 544:FIR 533:FIR 422:of 344:(CH 238:or 227:of 216:by 2883:: 2863:. 2855:. 2847:. 2833:. 2814:. 2806:. 2794:. 2775:. 2767:. 2759:. 2745:. 2726:. 2718:. 2710:. 2696:. 2677:. 2667:19 2665:. 2642:. 2623:. 2615:. 2607:. 2593:. 2551:. 2539:. 2520:. 2512:. 2504:. 2490:. 2486:. 2467:. 2457:43 2455:. 2436:. 2428:. 2420:. 2406:. 2386:. 2378:. 2370:. 2356:. 2332:. 2256:. 2244:. 2223:. 2211:. 2207:. 2188:. 2180:. 2172:. 2158:. 2137:. 2125:. 2121:. 2083:. 2075:. 2067:. 2053:. 2034:. 2024:. 2012:. 2008:. 1989:. 1981:. 1969:. 1946:. 1923:. 1911:. 1907:. 1886:. 1878:. 1849:. 1837:. 1833:. 1814:. 1802:. 1783:. 1771:. 1748:. 1477:^ 1462:^ 1437:^ 1400:^ 1338:^ 1250:. 1227:^ 1025:. 680:. 655:OH 624:OH 407:(H 388:(H 279:. 246:a 176:. 157:. 113:(H 105:(H 33:A 2871:. 2859:: 2851:: 2841:: 2822:. 2810:: 2802:: 2783:. 2771:: 2763:: 2753:: 2734:. 2722:: 2714:: 2704:: 2685:. 2681:: 2673:: 2654:. 2650:: 2631:. 2619:: 2611:: 2601:: 2582:. 2559:. 2555:: 2547:: 2528:. 2516:: 2508:: 2498:: 2475:. 2471:: 2463:: 2444:. 2432:: 2424:: 2414:: 2394:. 2382:: 2374:: 2364:: 2344:. 2340:: 2321:. 2293:. 2264:. 2260:: 2252:: 2233:. 2227:: 2219:: 2196:. 2184:: 2176:: 2166:: 2147:. 2141:: 2133:: 2110:. 2106:: 2091:. 2079:: 2071:: 2061:: 2042:. 2028:: 2020:: 1997:. 1985:: 1977:: 1958:. 1954:: 1933:. 1927:: 1919:: 1896:. 1882:: 1874:: 1859:. 1853:: 1845:: 1822:. 1818:: 1810:: 1791:. 1787:: 1779:: 1760:. 1756:: 1261:. 1221:. 1211:2 1071:. 1036:. 931:L 920:L 909:L 750:( 676:L 645:L 617:L 590:M 586:2 548:L 537:L 514:) 510:( 476:. 430:z 409:2 390:2 375:L 350:L 346:3 334:2 230:R 223:E 219:S 212:A 206:M 115:2 107:2 80:L 61:L 59:(

Index


laser
astrophysical maser
stimulated
spectral line
isotropic
luminosity
solar luminosities
Milky Way
mega
hydroxyl
spectral line
water
formaldehyde
methine
NGC 4945
Centaurus A/M83 Group
Arp 220
ultraluminous infrared galaxy
star formation
Milky Way
population inversion
interstellar dust
Zeeman splitting
magnetic fields
active galactic nuclei
Hubble constant
maser

Microwave

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑