Knowledge (XXG)

Membrane fouling

Source πŸ“

171: 17: 252:
Membrane performance can suffer from fouling-induced mechanical degradation. This may result in unwanted pressure and flux gradients, both of the solute and the solvent. The mechanism of membrane failure may be the direct consequence of fouling by means of physical alterations to the membrane, or by
141:
Recent fundamental studies indicate that membrane fouling is influenced by numerous factors such as system hydrodynamics, operating conditions, membrane properties, and material properties (solute). At low pressure, low feed concentration, and high feed velocity, concentration polarisation effects
287:. This is a process whereby existing imperfections in the membrane (such as microcracks) can grow and propagate due to the complex stress state dynamics. These impacts are not unknown; A 2007 study simulated aging via cyclic backwash pulses, and reported similar embrittlement due to the effects. 282:
Beyond direct physical damage, fouling can also induce indirect effects on membrane mechanical properties due to the strategies used to combat it. Backwashing subjects not only the particulates, but the membrane to strong shear forces. Greater fouling frequency therefore exposes the membrane to
130:. Formation of a strong matrix of fouling layer with the solute during a continuous filtration process will result in reversible fouling being transformed into an irreversible fouling layer. Irreversible fouling is the strong attachment of particles which cannot be removed by physical cleaning. 261:
It is important to note that the majority of membranes used commercially are polymers such as polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyethersulfone (PES) and polyamide (PA), which are materials which offer desirable properties (elasticity and strength) to withstand constant
269:
material with a soft polymer membrane, weakening its structural integrity. Degradation of the mechanical structure makes the membranes more susceptible to mechanical damage, potentially reducing its overall lifespan. A 2006 study observed this degradation by uniaxially straining
208:
Additionally, researchers have investigated the impact different coatings have on resistance to wear. A 2018 study from the Global Aqua Innovation Center in Japan reported improved surface roughness properties of PA membranes by coating them with multi-walled carbon nanotubes.
158:(TMP), Permeability, and Resistance are the best indicators of membrane fouling. Under constant flux operation, TMP increases to compensate for the fouling. On the other hand, under constant pressure operation, flux declines due to membrane fouling. In some technologies such as 290:
Additionally, repeated chemical treatment of fouling subjects membranes to excessive amounts of chlorine or other treatment chemicals which can cause degradation. This chemical degradation can lead to delamination of the membrane components, ultimately leading to failure.
422:
Tow, Emily W.; Warsinger, David M.; Trueworthy, Ali M.; Swaminathan, Jaichander; Thiel, Gregory P.; Zubair, Syed M.; Myerson, Allan S.; Lienhard V, John H. (2018). "Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation".
586: 689:
Warsinger, David M.; Servi, Amelia; Connors, Grace B.; Mavukkandy, Musthafa O.; Arafat, Hassan A.; Gleason, Karen K.; Lienhard V, John H. (2017). "Reversing membrane wetting in membrane distillation: comparing dryout to backwashing with pressurized air".
212:
Another strategy to minimise membrane fouling is the use of the appropriate membrane for a specific operation. The nature of the feed water must first be known; then a membrane that is less prone to fouling with that solution is chosen. For aqueous
469: 142:
are minimal and flux is almost proportional to trans-membrane pressure difference. However, in the high pressure range, flux becomes almost independent of applied pressure. Deviation from linear flux-pressure relation is due to
571:
Choi, H., Zhang, K., Dionysiou, D.D.,Oerther, D.B.& Sorial, G.A. (2005) Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment. J. Separation and Purification Technology 45:
835:
Warsinger, David M.; Servi, Amelia; Van Belleghem, Sarah; Gonzalez, Jocelyn; Swaminathan, Jaichander; Kharraz, Jehad; Chung, Hyung Won; Arafat, Hassan A.; Gleason, Karen K.; Lienhard V, John H. (2016).
325:
Meng, Fangang; Yang, Fenglin; Shi, Baoqiang; Zhang, Hanmin (February 2008). "A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities".
126:
Fouling can be divided into reversible and irreversible fouling based on the attachment strength of particles to the membrane surface. Reversible fouling can be removed by a strong shear force or
800:
Goosen, M. F. A.; Sablani, S. S.; Al-Hinai, H.; Al-Obeidani, S.; Al-Belushi, R.; Jackson, D. (2005-01-02). "Fouling of Reverse Osmosis and Ultrafiltration Membranes: A Critical Review".
265:
The accumulation of foulants can lead to the formation of cracks, surface roughening, and changes in pore size distribution. These physical changes are the result of impacts of
837: 735:
Ortiz-Medina, J.; Inukai, S.; Araki, T.; Morelos-Gomez, A.; Cruz-Silva, R.; Takeuchi, K.; Noguchi, T.; Kawaguchi, T.; Terrones, M.; Endo, M. (2018-02-09).
162:, fouling reduces membrane rejection, and thus permeate quality (e.g. as measured by electrical conductivity) is a primary measurement for fouling. 528:
Hong, Seungkwan; Elimelech, Menachem (1997). "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes".
185:
Membranes can be cleaned physically, biologically or chemically. Physical cleaning includes gas scour, sponges, water jets or backflushing using
262:
osmotic pressures. The accumulation of foulants, however, degrades these properties through physical alterations to the membrane structure.
228:
Operating conditions during membrane filtration are also vital, as they may affect fouling conditions during filtration. For instance,
1036:"Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides" 146:. At low feed flow rate or with high feed concentration, the limiting flux situation is observed even at relatively low pressures. 587:"Theoretical framework for predicting inorganic fouling in membrane distillation and experimental validation with calcium sulfate" 300: 352:
Warsinger, David M.; Tow, Emily W.; Maswadeh, Laith A.; Connors, Grace B.; Swaminathan, Jaichander; Lienhard V, John H. (2018).
244:). In some applications such as in many MBR applications, air scour is used to promote turbulence at the membrane surface. 127: 182:, it can be minimised by strategies such as cleaning, appropriate membrane selection and choice of operating conditions. 1081: 468:
Warsinger, David M.; Swaminathan, Jaichander; Guillen-Burrieza, Elena; Arafat, Hassan A.; Lienhard V, John H. (2015).
143: 1071: 155: 838:"Combining air recharging and membrane superhydrophobicity for fouling prevention in membrane distillation" 274:
that were both clean and fouled. The researchers reported the relative embrittlement of the fouled fibers.
20:
Fouling of a membrane in different steps 1–5. 1) virgin membrane 2) pore narrowing 3) pore blocking 4)
271: 222: 159: 56: 996: 939: 892: 240:
generated during the filtration entails a thinner deposit layer and therefore minimises fouling (e.g.
951: 904: 891:
Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.; Hilal, Nidal; Khraisheh, Marwan K. (2017-01-02).
748: 655: 484: 365: 241: 229: 71:
so that the membrane's performance is degraded. It is a major obstacle to the widespread use of this
32: 233: 179: 72: 44: 1035: 305: 284: 40: 1016: 977: 920: 870: 817: 782: 764: 737:"Robust water desalination membranes against degradation using high loads of carbon nanotubes" 717: 671: 636:
Ghosh, R., 2006, Principles of Bioseparation Engineering, World Scientific Publishing Pvt Ltd.
619: 545: 510: 450: 401: 393: 1076: 1047: 1008: 967: 959: 912: 860: 852: 809: 772: 756: 707: 699: 663: 611: 601: 562:
Baker, R.W. (2004). Membrane Technology and Applications, England: John Wiley & Sons Ltd
537: 500: 492: 440: 432: 383: 373: 334: 202: 120: 88: 112: 64: 60: 52: 48: 585:
Warsinger, David M.; Tow, Emily W.; Swaminathan, Jaichander; Lienhard V, John H. (2017).
83:
decline and affect the quality of the water produced. Severe fouling may require intense
955: 908: 752: 659: 488: 369: 777: 736: 194: 68: 646:
Liberman, Boris (2018). "Three methods of forward osmosis cleaning for RO membranes".
541: 470:"Scaling and fouling in membrane distillation for desalination applications: A review" 1065: 96: 1012: 856: 606: 436: 378: 353: 338: 997:"Statistical analysis of data from accelerated ageing tests of PES UF membranes" 963: 916: 893:"Mechanical properties of water desalination and wastewater treatment membranes" 667: 496: 21: 1051: 760: 253:
indirect means, in which the foulant removal processes yield membrane damage.
170: 237: 218: 214: 1020: 981: 924: 874: 821: 768: 721: 675: 623: 549: 514: 454: 397: 16: 786: 405: 354:"Inorganic fouling mitigation by salinity cycling in batch reverse osmosis" 87:
cleaning or membrane replacement. This increases the operating costs of a
865: 813: 712: 615: 505: 445: 388: 266: 186: 100: 84: 36: 940:"Fouling autopsy of hollow-fibre MF membranes in wastewater reclamation" 703: 190: 92: 76: 972: 198: 169: 116: 104: 995:
Zondervan, Edwin; Zwijnenburg, Arie; Roffel, Brian (2007-08-15).
178:
Even though membrane fouling is an inevitable phenomenon during
108: 80: 248:
Impact of Fouling on the Mechanical Properties of Membranes
43:
surface or in membrane pores in a processes such as in a
692:
Environmental Science: Water Research & Technology
1034:
Kawaguchi, Takeyuki; Tamura, Hiroki (November 1984).
174:
Sediment accumulated on the reverse osmosis membrane.
580: 578: 938:Nghiem, Long D.; SchΓ€fer, Andrea I. (2006-02-05). 197:, whereas chemical cleaning involves the use of 189:or pressurized air. Biological cleaning uses 8: 946:. Integrated Concepts in Water Recycling. 971: 864: 776: 711: 605: 504: 444: 387: 377: 417: 415: 15: 317: 225:, a hydrophobic membrane is preferred. 91:. There are various types of foulants: 327:Separation and Purification Technology 138:Factors that affect membrane fouling: 886: 884: 7: 899:. 50th anniversary of Desalination. 24:layer formation 5) cleaned membrane 205:to remove foulants and impurities. 1040:Journal of Applied Polymer Science 14: 802:Separation Science and Technology 283:cyclic loading which can lead to 301:Vibratory shear-enhanced process 1: 542:10.1016/s0376-7388(97)00060-4 1013:10.1016/j.memsci.2007.05.015 857:10.1016/j.memsci.2016.01.018 607:10.1016/j.memsci.2017.01.031 437:10.1016/j.memsci.2018.03.065 379:10.1016/j.watres.2018.01.060 339:10.1016/j.seppur.2007.05.040 1001:Journal of Membrane Science 964:10.1016/j.desal.2005.04.108 917:10.1016/j.desal.2016.06.032 845:Journal of Membrane Science 668:10.1016/j.desal.2017.11.023 594:Journal of Membrane Science 530:Journal of Membrane Science 497:10.1016/j.desal.2014.06.031 425:Journal of Membrane Science 278:Indirect Impacts of Fouling 221:membrane is preferred. For 1098: 1052:10.1002/app.1984.070291113 761:10.1038/s41598-018-21192-5 144:concentration polarization 257:Direct Impacts of Fouling 123:(mineral precipitates). 31:is a process whereby a 232:is often preferred to 175: 156:transmembrane pressure 25: 223:membrane distillation 193:to remove all viable 173: 160:membrane distillation 57:membrane distillation 19: 814:10.1081/ss-120039343 242:tubular pinch effect 230:crossflow filtration 1082:Membrane technology 956:2006Desal.188..113N 909:2017Desal.401..190W 753:2018NatSR...8.2748O 660:2018Desal.431...22L 489:2015Desal.356..294W 370:2018WatRe.137..384W 234:dead end filtration 180:membrane filtration 134:Influential factors 45:membrane bioreactor 741:Scientific Reports 704:10.1039/c7ew00085e 306:Water purification 176: 39:is deposited on a 26: 1046:(11): 3359–3367. 808:(10): 2261–2297. 79:can cause severe 1089: 1072:Water technology 1056: 1055: 1031: 1025: 1024: 992: 986: 985: 975: 935: 929: 928: 888: 879: 878: 868: 842: 832: 826: 825: 797: 791: 790: 780: 732: 726: 725: 715: 686: 680: 679: 643: 637: 634: 628: 627: 609: 591: 582: 573: 569: 563: 560: 554: 553: 525: 519: 518: 508: 474: 465: 459: 458: 448: 419: 410: 409: 391: 381: 349: 343: 342: 322: 113:polyelectrolytes 29:Membrane fouling 1097: 1096: 1092: 1091: 1090: 1088: 1087: 1086: 1062: 1061: 1060: 1059: 1033: 1032: 1028: 994: 993: 989: 937: 936: 932: 890: 889: 882: 840: 834: 833: 829: 799: 798: 794: 734: 733: 729: 688: 687: 683: 645: 644: 640: 635: 631: 589: 584: 583: 576: 570: 566: 561: 557: 527: 526: 522: 472: 467: 466: 462: 421: 420: 413: 351: 350: 346: 324: 323: 319: 314: 297: 285:fatigue failure 280: 259: 250: 168: 166:Fouling control 152: 136: 99:), biological ( 89:treatment plant 65:microfiltration 61:ultrafiltration 53:forward osmosis 49:reverse osmosis 12: 11: 5: 1095: 1093: 1085: 1084: 1079: 1074: 1064: 1063: 1058: 1057: 1026: 1007:(1): 111–116. 987: 950:(1): 113–121. 930: 880: 827: 792: 727: 698:(5): 930–939. 681: 638: 629: 574: 564: 555: 536:(2): 159–181. 520: 460: 411: 358:Water Research 344: 316: 315: 313: 310: 309: 308: 303: 296: 293: 279: 276: 258: 255: 249: 246: 195:microorganisms 167: 164: 151: 148: 135: 132: 69:nanofiltration 13: 10: 9: 6: 4: 3: 2: 1094: 1083: 1080: 1078: 1075: 1073: 1070: 1069: 1067: 1053: 1049: 1045: 1041: 1037: 1030: 1027: 1022: 1018: 1014: 1010: 1006: 1002: 998: 991: 988: 983: 979: 974: 969: 965: 961: 957: 953: 949: 945: 941: 934: 931: 926: 922: 918: 914: 910: 906: 902: 898: 894: 887: 885: 881: 876: 872: 867: 866:1721.1/105438 862: 858: 854: 850: 846: 839: 831: 828: 823: 819: 815: 811: 807: 803: 796: 793: 788: 784: 779: 774: 770: 766: 762: 758: 754: 750: 746: 742: 738: 731: 728: 723: 719: 714: 713:1721.1/118392 709: 705: 701: 697: 693: 685: 682: 677: 673: 669: 665: 661: 657: 653: 649: 642: 639: 633: 630: 625: 621: 617: 616:1721.1/107916 613: 608: 603: 599: 595: 588: 581: 579: 575: 568: 565: 559: 556: 551: 547: 543: 539: 535: 531: 524: 521: 516: 512: 507: 506:1721.1/102497 502: 498: 494: 490: 486: 482: 478: 471: 464: 461: 456: 452: 447: 446:1721.1/115270 442: 438: 434: 430: 426: 418: 416: 412: 407: 403: 399: 395: 390: 389:1721.1/114637 385: 380: 375: 371: 367: 363: 359: 355: 348: 345: 340: 336: 333:(1): 91–100. 332: 328: 321: 318: 311: 307: 304: 302: 299: 298: 294: 292: 288: 286: 277: 275: 273: 272:hollow fibers 268: 263: 256: 254: 247: 245: 243: 239: 235: 231: 226: 224: 220: 216: 210: 206: 204: 200: 196: 192: 188: 183: 181: 172: 165: 163: 161: 157: 149: 147: 145: 139: 133: 131: 129: 124: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 23: 18: 1043: 1039: 1029: 1004: 1000: 990: 947: 944:Desalination 943: 933: 900: 897:Desalination 896: 848: 844: 830: 805: 801: 795: 744: 740: 730: 695: 691: 684: 651: 648:Desalination 647: 641: 632: 597: 593: 567: 558: 533: 529: 523: 480: 477:Desalination 476: 463: 428: 424: 361: 357: 347: 330: 326: 320: 289: 281: 264: 260: 251: 227: 211: 207: 184: 177: 153: 140: 137: 125: 107:), organic ( 28: 27: 903:: 190–205. 851:: 241–252. 747:(1): 2748. 600:: 381–390. 483:: 294–313. 431:: 352–364. 364:: 384–394. 219:hydrophilic 150:Measurement 128:backwashing 75:. Membrane 1066:Categories 312:References 238:turbulence 236:, because 215:filtration 73:technology 1021:0376-7388 982:0011-9164 973:1842/4122 925:0011-9164 875:0376-7388 822:0149-6395 769:2045-2322 722:2053-1400 676:0011-9164 654:: 22–26. 624:0376-7388 550:0376-7388 515:0011-9164 455:0376-7388 398:0043-1354 93:colloidal 787:29426871 406:29573825 295:See also 191:biocides 187:permeate 101:bacteria 95:(clays, 85:chemical 41:membrane 37:particle 33:solution 1077:Fouling 952:Bibcode 905:Bibcode 778:5807517 749:Bibcode 656:Bibcode 485:Bibcode 366:Bibcode 121:scaling 77:fouling 1019:  980:  923:  873:  820:  785:  775:  767:  720:  674:  622:  572:68-78. 548:  513:  453:  404:  396:  154:Flux, 119:) and 117:humics 841:(PDF) 590:(PDF) 473:(PDF) 203:bases 199:acids 105:fungi 97:flocs 67:, or 35:or a 1017:ISSN 978:ISSN 921:ISSN 871:ISSN 818:ISSN 783:PMID 765:ISSN 718:ISSN 672:ISSN 620:ISSN 546:ISSN 511:ISSN 451:ISSN 402:PMID 394:ISSN 267:hard 217:, a 201:and 109:oils 81:flux 22:cake 1048:doi 1009:doi 1005:300 968:hdl 960:doi 948:188 913:doi 901:401 861:hdl 853:doi 849:505 810:doi 773:PMC 757:doi 708:hdl 700:doi 664:doi 652:431 612:hdl 602:doi 598:528 538:doi 534:132 501:hdl 493:doi 481:356 441:hdl 433:doi 429:556 384:hdl 374:doi 362:137 335:doi 1068:: 1044:29 1042:. 1038:. 1015:. 1003:. 999:. 976:. 966:. 958:. 942:. 919:. 911:. 895:. 883:^ 869:. 859:. 847:. 843:. 816:. 806:39 804:. 781:. 771:. 763:. 755:. 743:. 739:. 716:. 706:. 694:. 670:. 662:. 650:. 618:. 610:. 596:. 592:. 577:^ 544:. 532:. 509:. 499:. 491:. 479:. 475:. 449:. 439:. 427:. 414:^ 400:. 392:. 382:. 372:. 360:. 356:. 331:59 329:. 115:, 111:, 103:, 63:, 59:, 55:, 51:, 47:, 1054:. 1050:: 1023:. 1011:: 984:. 970:: 962:: 954:: 927:. 915:: 907:: 877:. 863:: 855:: 824:. 812:: 789:. 759:: 751:: 745:8 724:. 710:: 702:: 696:3 678:. 666:: 658:: 626:. 614:: 604:: 552:. 540:: 517:. 503:: 495:: 487:: 457:. 443:: 435:: 408:. 386:: 376:: 368:: 341:. 337::

Index


cake
solution
particle
membrane
membrane bioreactor
reverse osmosis
forward osmosis
membrane distillation
ultrafiltration
microfiltration
nanofiltration
technology
fouling
flux
chemical
treatment plant
colloidal
flocs
bacteria
fungi
oils
polyelectrolytes
humics
scaling
backwashing
concentration polarization
transmembrane pressure
membrane distillation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑