Knowledge

Mesoscopic physics

Source đź“ť

672: 49: 685: 2939: 900:. When materials are this small, their electronic and optical properties deviate substantially from those of bulk materials. As the material is miniaturized towards nano-scale the confining dimension naturally decreases. The characteristics are no longer averaged by bulk, and hence continuous, but are at the level of quanta and thus discrete. In other words, the energy 933:
of a given specimen oscillates in an apparently random manner as a function of fluctuations in experimental parameters. However, the same pattern may be retraced if the experimental parameters are cycled back to their original values; in fact, the patterns observed are reproducible over a period of days. These are known as
932:
In the mesoscopic regime, scattering from defects – such as impurities – induces interference effects which modulate the flow of electrons. The experimental signature of mesoscopic interference effects is the appearance of reproducible fluctuations in physical quantities. For example, the conductance
923:
Because the electron energy levels of quantum dots are discrete rather than continuous, the addition or subtraction of just a few atoms to the quantum dot has the effect of altering the boundaries of the bandgap. Changing the geometry of the surface of the quantum dot also changes the bandgap energy,
814:
in semiconductor electronics. The mechanical, chemical, and electronic properties of materials change as their size approaches the nanoscale, where the percentage of atoms at the surface of the material becomes significant. For bulk materials larger than one micrometre, the percentage of atoms at the
815:
surface is insignificant in relation to the number of atoms in the entire material. The subdiscipline has dealt primarily with artificial structures of metal or semiconducting material which have been fabricated by the techniques employed for producing
915:
In addition, quantum confinement effects consist of isolated islands of electrons that may be formed at the patterned interface between two different semiconducting materials. The electrons typically are confined to disk-shaped regions termed
949:
such as crack formation in solids, phase separation, and rapid fluctuations in the liquid state or in biologically relevant environments; and the observation and study, at nanoscales, of the ultrafast dynamics of non-crystalline materials.
880:
exist at different energy levels or bands. In bulk materials these energy levels are described as continuous because the difference in energy is negligible. As electrons stabilize at various energy levels, most vibrate in
842:. Devices used in nanotechnology are examples of mesoscopic systems. Three categories of new electronic phenomena in such systems are interference effects, quantum confinement effects and charging effects. 716: 2862: 1770: 889:. This region is an energy range in which no electron states exist. A smaller amount have energy levels above the forbidden gap, and this is the conduction band. 1540: 764:, a mesoscopic object, by contrast, is affected by thermal fluctuations around the average, and its electronic behavior may require modeling at the level of 771:
A macroscopic electronic device, when scaled down to a meso-size, starts revealing quantum mechanical properties. For example, at the macroscopic level the
1859: 1257: 760:
objects contain many atoms. Whereas average properties derived from constituent materials describe macroscopic objects, as they usually obey the laws of
810:
Mesoscopic physics also addresses fundamental practical problems which occur when a macroscopic object is miniaturized, as with the miniaturization of
2612: 2850: 1738: 709: 671: 920:. The confinement of the electrons in these systems changes their interaction with electromagnetic radiation significantly, as noted above. 1173:"Mesoscopic physics." McGraw-Hill Encyclopedia of Science and Technology. The McGraw-Hill Companies, Inc., 2005. Answers.com 25 Jan 2010. 779:: the increases occur in discrete, or individual, whole steps. During research, mesoscopic devices are constructed, measured and observed 1892: 1228: 1195: 934: 2968: 2748: 1533: 702: 689: 1374: 984: â€“ increased resistance at small bias voltages of an electronic device comprising at least one low-capacitance tunnel junction 2829: 908:
asserts itself: there is a small and finite separation between energy levels. This situation of discrete energy levels is called
1686: 454: 960: 109: 2845: 1526: 629: 2963: 1823: 1439: 1047: 1414: 1188:
Quantum confinement VI : nanostructured materials and devices : proceedings of the international symposium
2973: 1654: 1627: 634: 259: 2921: 2333: 892:
The quantum confinement effect can be observed once the diameter of the particle is of the same magnitude as the
524: 199: 775:
of a wire increases continuously with its diameter. However, at the mesoscopic level, the wire's conductance is
1760: 1254: 830:) to 1 000 nm (the size of a typical bacterium): 100 nanometers is the approximate upper limit for a 733: 519: 514: 40: 2151: 604: 2889: 2524: 1885: 614: 209: 1335:
Barty, Anton; et al. (2008-06-22). "Ultrafast single-shot diffraction imaging of nanoscale dynamics".
2824: 2161: 1844: 1706: 1346: 792: 776: 772: 599: 539: 509: 459: 179: 69: 30:
This article is about the sub-discipline of condensed matter physics. For the branch of meteorology, see
2911: 1849: 1818: 1681: 1602: 1041: 639: 254: 239: 31: 1808: 1632: 1592: 1489: 1293: 1103: 975: 229: 119: 1351: 904:
becomes discrete, measured as quanta, rather than continuous as in bulk materials. As a result, the
2926: 1909: 1783: 1642: 1637: 1622: 1597: 1574: 1550: 1422: 1032: â€“ An electrically conducting wire in which quantum effects influence the transport properties 1023: 850: 761: 469: 279: 129: 2938: 2869: 1878: 1839: 1716: 1711: 1664: 1507: 1479: 1317: 1283: 1127: 1093: 1020: â€“ Branch of physics seeking to explain chaotic dynamical systems in terms of quantum theory 1011: 649: 609: 584: 332: 323: 963: â€“ Electromagnetic quantum-mechanical effect in regions of zero magnetic and electric field 945:
Time-resolved experiments in mesoscopic dynamics: the observation and study, at nanoscales, of
876:
materials (larger than 10 nm) can be described by energy bands or electron energy levels.
2906: 2819: 2298: 2043: 1970: 1854: 1803: 1748: 1728: 1614: 1309: 1234: 1224: 1201: 1191: 1119: 1053: 807:. The applied science of mesoscopic physics deals with the potential of building nanodevices. 765: 757: 753: 579: 424: 314: 234: 736:
that deals with materials of an intermediate size. These materials range in size between the
2916: 2687: 2462: 2323: 2308: 1990: 1901: 1793: 1733: 1659: 1497: 1356: 1337: 1301: 1274:
Sánchez D, Büttiker M (2004). "Magnetic-field asymmetry of nonlinear mesoscopic transport".
1111: 1080:"Biological and synthetic membranes: What can be learned from a coarse-grained description?" 981: 737: 284: 249: 244: 204: 174: 144: 104: 64: 27:
Subdiscipline of condensed matter physics that deals with materials of an intermediate size
2884: 2809: 2793: 2733: 2143: 1960: 1813: 1723: 1669: 1569: 1410: 1261: 1084: 1008: â€“ Field of science involving control of matter on atomic and (supra)molecular scales 862: 835: 816: 594: 544: 414: 169: 81: 1493: 1382: 1297: 1107: 826:
but the systems studied are normally in the range of 100 nm (the size of a typical
2943: 2857: 2814: 2550: 2338: 2111: 2033: 2028: 1950: 1743: 1698: 1676: 1564: 1005: 854: 839: 804: 676: 644: 624: 619: 574: 494: 429: 327: 214: 59: 48: 2957: 2901: 2753: 2720: 2512: 2482: 2414: 2273: 2053: 1980: 1965: 1155: 1035: 1017: 990: 969: 897: 796: 549: 355: 336: 318: 219: 139: 1511: 1321: 1174: 1131: 752:. The lower limit can also be defined as being the size of individual atoms. At the 2879: 2429: 2419: 2409: 2170: 2121: 2063: 1985: 1940: 1778: 1470: 1079: 1029: 917: 882: 858: 831: 569: 559: 529: 489: 484: 464: 309: 289: 149: 1305: 1115: 924:
owing again to the small size of the dot, and the effects of quantum confinement.
1190:. Cahay, M., Electrochemical Society. Pennington, N.J.: Electrochemical Society. 2894: 2662: 2565: 2560: 2477: 2472: 2402: 2356: 2313: 2278: 2237: 2129: 2093: 1955: 996: 784: 654: 589: 564: 534: 479: 474: 406: 17: 1502: 1465: 2636: 2530: 2520: 2502: 2392: 2293: 2228: 1945: 1798: 1788: 893: 873: 811: 780: 749: 499: 341: 134: 1360: 1123: 2778: 2768: 2738: 2631: 2597: 2590: 2467: 2457: 2452: 2424: 2192: 1975: 1649: 1518: 1386:(The research appears in the online edition of the journal Nature Photonics) 1238: 1205: 554: 504: 377: 224: 124: 1313: 1014: â€“ Perpetual electric current, not requiring an external power sources 2874: 2702: 2657: 2641: 2602: 2575: 2288: 2283: 2263: 2233: 2223: 2218: 2068: 2058: 2048: 2038: 2013: 2008: 1935: 1448: 1288: 1221:
Quantum theory of the optical and electronic properties of semiconductors
1098: 901: 886: 877: 866: 745: 114: 2783: 2773: 2743: 2697: 2692: 2667: 2585: 2570: 2497: 2492: 2397: 2382: 2328: 2303: 2268: 2197: 2179: 1918: 1870: 946: 905: 788: 434: 419: 382: 373: 368: 2763: 2758: 2387: 2374: 2365: 2187: 2101: 2000: 1753: 1044: â€“ Use of both classical and quantum physics to analyze a system 387: 363: 94: 1381:. United Press International. 2008-06-25. p. 01. Archived from 1484: 834:. Thus, mesoscopic physics has a close connection to the fields of 2788: 2728: 2580: 2439: 2318: 2258: 2213: 2106: 2084: 1927: 827: 800: 392: 89: 2555: 2487: 2447: 2023: 2018: 741: 1874: 1522: 993: â€“ Materials whose granular size lies between 1 and 100 nm 978: â€“ Movement of charge carriers with negligible scattering 99: 1152:
McGraw-Hill Dictionary of Scientific and Technical Terms
1001:
Pages displaying short descriptions of redirect targets
999: â€“ Molecular-scale artificial or biological device 965:
Pages displaying short descriptions of redirect targets
853:
effects describe electrons in terms of energy levels,
1078:
Muller, M.; Katsov, K.; Schick, M. (November 2006).
1058:
Pages displaying wikidata descriptions as a fallback
986:
Pages displaying wikidata descriptions as a fallback
2838: 2802: 2719: 2680: 2650: 2624: 2611: 2543: 2511: 2438: 2373: 2364: 2355: 2251: 2206: 2178: 2169: 2160: 2142: 2120: 2092: 2083: 1999: 1926: 1917: 1908: 1832: 1769: 1697: 1613: 1585: 1557: 1050: â€“ Relativistic interaction in quantum physics 1175:http://www.answers.com/topic/mesoscopic-physics-1 972: â€“ Scattering phenomenon in wave dynamics 1886: 1534: 1223:(3rd ed.). Singapore: World Scientific. 710: 8: 1375:"Study gains images at ultra-fast timescale" 2621: 2617: 2370: 2361: 2175: 2166: 2089: 1923: 1914: 1893: 1879: 1871: 1541: 1527: 1519: 885:below a forbidden energy level, named the 717: 703: 47: 36: 1501: 1483: 1350: 1287: 1097: 1026: â€“ Electromagnetic effect in physics 787:in order to advance understanding of the 1466:"Mesoscopic transport and quantum chaos" 1219:Hartmut, Haug; Koch, Stephan W. (1994). 1169: 1167: 1165: 1145: 1143: 1141: 756:are bulk materials. Both mesoscopic and 1250: 1248: 1070: 39: 1739:Atomic, molecular, and optical physics 1440:"Mesoscopic physics: an introduction" 1038: â€“ Matrix-valued random variable 7: 1056: â€“ quantum physical phenomenon 1379:Science Online. Facts On File, Inc 935:universal conductance fluctuations 25: 1264:. 2008 Evident Technologies, Inc. 941:Time-resolved mesoscopic dynamics 822:There is no rigid definition for 2937: 2830:Timeline of particle discoveries 684: 683: 670: 1860:Timeline of physics discoveries 1: 1464:Jalabert, Rodolfo A. (2016). 1306:10.1103/PhysRevLett.93.106802 1116:10.1016/j.physrep.2006.08.003 748:) and of materials measuring 2846:History of subatomic physics 1415:"Chaos in Quantum Billiards" 1824:Quantum information science 1156:McGraw-Hill Companies, Inc. 846:Quantum confinement effects 2990: 1655:Classical electromagnetism 1503:10.4249/scholarpedia.30946 260:Spin gapless semiconductor 29: 2935: 2620: 200:Electronic band structure 2969:Condensed matter physics 2863:mathematical formulation 2458:Eta and eta prime mesons 1761:Condensed matter physics 1361:10.1038/nphoton.2008.128 961:Aharonov–Bohm nano rings 947:condensed phase dynamics 734:condensed matter physics 110:Bose–Einstein condensate 41:Condensed matter physics 2525:Double-charm tetraquark 1150:"Sci-Tech Dictionary". 1845:Nobel Prize in Physics 1707:Relativistic mechanics 1048:Spin–orbit interaction 865:, and electron energy 732:is a subdiscipline of 2922:Wave–particle duality 2912:Relativistic particle 2049:Electron antineutrino 1850:Philosophy of physics 1345:(7): 415–419 (2008). 1042:Semiclassical physics 255:Topological insulator 32:mesoscale meteorology 2152:Faddeev–Popov ghosts 1902:Particles in physics 1809:Mathematical physics 1438:Harmans, C. (2003). 976:Ballistic conduction 928:Interference effects 273:Electronic phenomena 120:Fermionic condensate 2927:Particle chauvinism 2870:Subatomic particles 1784:Atmospheric physics 1623:Classical mechanics 1551:branches of physics 1494:2016SchpJ..1130946J 1423:Universiteit Leiden 1298:2004PhRvL..93j6802S 1108:2006PhR...434..113M 1024:Quantum Hall effect 910:quantum confinement 851:Quantum confinement 762:classical mechanics 280:Quantum Hall effect 2964:Mesoscopic physics 1840:History of physics 1260:2010-02-01 at the 1012:Persistent current 896:of the electron's 872:Electrons in bulk 824:mesoscopic physics 740:for a quantity of 730:Mesoscopic physics 677:Physics portal 2974:Quantum mechanics 2951: 2950: 2907:Massless particle 2715: 2714: 2711: 2710: 2676: 2675: 2539: 2538: 2351: 2350: 2347: 2346: 2299:Magnetic monopole 2247: 2246: 2138: 2137: 2079: 2078: 2059:Muon antineutrino 2044:Electron neutrino 1868: 1867: 1855:Physics education 1804:Materials science 1771:Interdisciplinary 1729:Quantum mechanics 1186:Cahay, M (2001). 1054:Weak localization 766:quantum mechanics 754:microscopic scale 727: 726: 425:Granular material 193:Electronic phases 16:(Redirected from 2981: 2941: 2917:Virtual particle 2688:Mesonic molecule 2622: 2618: 2463:Bottom eta meson 2371: 2362: 2334:W′ and Z′ bosons 2324:Sterile neutrino 2309:Majorana fermion 2176: 2167: 2090: 2069:Tau antineutrino 1924: 1915: 1895: 1888: 1881: 1872: 1794:Chemical physics 1734:Particle physics 1660:Classical optics 1543: 1536: 1529: 1520: 1515: 1505: 1487: 1460: 1458: 1456: 1444: 1434: 1432: 1430: 1419: 1411:Beenakker, Carlo 1397: 1396: 1394: 1393: 1387: 1371: 1365: 1364: 1354: 1338:Nature Photonics 1332: 1326: 1325: 1291: 1289:cond-mat/0404387 1271: 1265: 1252: 1243: 1242: 1216: 1210: 1209: 1183: 1177: 1171: 1160: 1159: 1147: 1136: 1135: 1101: 1099:cond-mat/0609295 1092:(5–6): 113–176. 1075: 1059: 1002: 987: 982:Coulomb blockade 966: 863:conduction bands 719: 712: 705: 692: 687: 686: 679: 675: 674: 285:Spin Hall effect 175:Phase transition 145:Luttinger liquid 82:States of matter 65:Phase transition 51: 37: 21: 18:Mesoscopic scale 2989: 2988: 2984: 2983: 2982: 2980: 2979: 2978: 2954: 2953: 2952: 2947: 2931: 2885:Nuclear physics 2834: 2798: 2734:Davydov soliton 2707: 2672: 2646: 2607: 2535: 2507: 2434: 2343: 2243: 2202: 2156: 2134: 2116: 2075: 1995: 1904: 1899: 1869: 1864: 1828: 1814:Medical physics 1765: 1724:Nuclear physics 1693: 1687:Non-equilibrium 1609: 1581: 1553: 1547: 1463: 1454: 1452: 1447:OpenCourseWare 1442: 1437: 1428: 1426: 1417: 1409: 1406: 1401: 1400: 1391: 1389: 1385: 1373: 1372: 1368: 1352:10.1.1.712.8451 1334: 1333: 1329: 1276:Phys. Rev. Lett 1273: 1272: 1268: 1262:Wayback Machine 1253: 1246: 1231: 1218: 1217: 1213: 1198: 1185: 1184: 1180: 1172: 1163: 1149: 1148: 1139: 1085:Physics Reports 1077: 1076: 1072: 1067: 1062: 1057: 1000: 985: 964: 956: 943: 930: 855:potential wells 848: 836:nanofabrication 817:microelectronic 805:superconductors 723: 682: 669: 668: 661: 660: 659: 449: 441: 440: 439: 415:Amorphous solid 409: 399: 398: 397: 376: 358: 348: 347: 346: 335: 333:Antiferromagnet 326: 324:Superparamagnet 317: 304: 303:Magnetic phases 296: 295: 294: 274: 266: 265: 264: 194: 186: 185: 184: 170:Order parameter 164: 163:Phase phenomena 156: 155: 154: 84: 74: 35: 28: 23: 22: 15: 12: 11: 5: 2987: 2985: 2977: 2976: 2971: 2966: 2956: 2955: 2949: 2948: 2944:Physics portal 2936: 2933: 2932: 2930: 2929: 2924: 2919: 2914: 2909: 2904: 2899: 2898: 2897: 2887: 2882: 2877: 2872: 2867: 2866: 2865: 2858:Standard Model 2855: 2854: 2853: 2842: 2840: 2836: 2835: 2833: 2832: 2827: 2825:Quasiparticles 2822: 2817: 2812: 2806: 2804: 2800: 2799: 2797: 2796: 2791: 2786: 2781: 2776: 2771: 2766: 2761: 2756: 2751: 2746: 2741: 2736: 2731: 2725: 2723: 2721:Quasiparticles 2717: 2716: 2713: 2712: 2709: 2708: 2706: 2705: 2700: 2695: 2690: 2684: 2682: 2678: 2677: 2674: 2673: 2671: 2670: 2665: 2660: 2654: 2652: 2648: 2647: 2645: 2644: 2639: 2634: 2628: 2626: 2615: 2609: 2608: 2606: 2605: 2600: 2595: 2594: 2593: 2588: 2583: 2578: 2573: 2568: 2558: 2553: 2547: 2545: 2541: 2540: 2537: 2536: 2534: 2533: 2528: 2517: 2515: 2513:Exotic hadrons 2509: 2508: 2506: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2444: 2442: 2436: 2435: 2433: 2432: 2427: 2422: 2417: 2412: 2407: 2406: 2405: 2400: 2395: 2390: 2379: 2377: 2368: 2359: 2353: 2352: 2349: 2348: 2345: 2344: 2342: 2341: 2339:X and Y bosons 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2266: 2261: 2255: 2253: 2249: 2248: 2245: 2244: 2242: 2241: 2231: 2226: 2221: 2216: 2210: 2208: 2204: 2203: 2201: 2200: 2195: 2190: 2184: 2182: 2173: 2164: 2158: 2157: 2155: 2154: 2148: 2146: 2140: 2139: 2136: 2135: 2133: 2132: 2126: 2124: 2118: 2117: 2115: 2114: 2112:W and Z bosons 2109: 2104: 2098: 2096: 2087: 2081: 2080: 2077: 2076: 2074: 2073: 2072: 2071: 2066: 2061: 2056: 2051: 2046: 2036: 2031: 2026: 2021: 2016: 2011: 2005: 2003: 1997: 1996: 1994: 1993: 1988: 1983: 1978: 1973: 1968: 1966:Strange (quark 1963: 1958: 1953: 1948: 1943: 1938: 1932: 1930: 1921: 1912: 1906: 1905: 1900: 1898: 1897: 1890: 1883: 1875: 1866: 1865: 1863: 1862: 1857: 1852: 1847: 1842: 1836: 1834: 1830: 1829: 1827: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1775: 1773: 1767: 1766: 1764: 1763: 1758: 1757: 1756: 1751: 1746: 1736: 1731: 1726: 1721: 1720: 1719: 1714: 1703: 1701: 1695: 1694: 1692: 1691: 1690: 1689: 1684: 1677:Thermodynamics 1674: 1673: 1672: 1667: 1657: 1652: 1647: 1646: 1645: 1640: 1635: 1630: 1619: 1617: 1611: 1610: 1608: 1607: 1606: 1605: 1595: 1589: 1587: 1583: 1582: 1580: 1579: 1578: 1577: 1567: 1561: 1559: 1555: 1554: 1548: 1546: 1545: 1538: 1531: 1523: 1517: 1516: 1461: 1435: 1405: 1404:External links 1402: 1399: 1398: 1366: 1327: 1282:(10): 106802. 1266: 1244: 1230:978-9810220020 1229: 1211: 1197:978-1566773522 1196: 1178: 1161: 1137: 1069: 1068: 1066: 1063: 1061: 1060: 1051: 1045: 1039: 1033: 1027: 1021: 1015: 1009: 1006:Nanotechnology 1003: 994: 988: 979: 973: 967: 957: 955: 952: 942: 939: 929: 926: 847: 844: 840:nanotechnology 797:semiconductors 781:experimentally 725: 724: 722: 721: 714: 707: 699: 696: 695: 694: 693: 680: 663: 662: 658: 657: 652: 647: 642: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 451: 450: 447: 446: 443: 442: 438: 437: 432: 430:Liquid crystal 427: 422: 417: 411: 410: 405: 404: 401: 400: 396: 395: 390: 385: 380: 371: 366: 360: 359: 356:Quasiparticles 354: 353: 350: 349: 345: 344: 339: 330: 321: 315:Superdiamagnet 312: 306: 305: 302: 301: 298: 297: 293: 292: 287: 282: 276: 275: 272: 271: 268: 267: 263: 262: 257: 252: 247: 242: 240:Thermoelectric 237: 235:Superconductor 232: 227: 222: 217: 215:Mott insulator 212: 207: 202: 196: 195: 192: 191: 188: 187: 183: 182: 177: 172: 166: 165: 162: 161: 158: 157: 153: 152: 147: 142: 137: 132: 127: 122: 117: 112: 107: 102: 97: 92: 86: 85: 80: 79: 76: 75: 73: 72: 67: 62: 56: 53: 52: 44: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2986: 2975: 2972: 2970: 2967: 2965: 2962: 2961: 2959: 2946: 2945: 2940: 2934: 2928: 2925: 2923: 2920: 2918: 2915: 2913: 2910: 2908: 2905: 2903: 2902:Exotic matter 2900: 2896: 2893: 2892: 2891: 2890:Eightfold way 2888: 2886: 2883: 2881: 2880:Antiparticles 2878: 2876: 2873: 2871: 2868: 2864: 2861: 2860: 2859: 2856: 2852: 2849: 2848: 2847: 2844: 2843: 2841: 2837: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2807: 2805: 2801: 2795: 2792: 2790: 2787: 2785: 2782: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2727: 2726: 2724: 2722: 2718: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2685: 2683: 2679: 2669: 2666: 2664: 2661: 2659: 2656: 2655: 2653: 2649: 2643: 2640: 2638: 2635: 2633: 2630: 2629: 2627: 2623: 2619: 2616: 2614: 2610: 2604: 2601: 2599: 2596: 2592: 2589: 2587: 2584: 2582: 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2563: 2562: 2559: 2557: 2554: 2552: 2551:Atomic nuclei 2549: 2548: 2546: 2542: 2532: 2529: 2526: 2522: 2519: 2518: 2516: 2514: 2510: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2483:Upsilon meson 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2445: 2443: 2441: 2437: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2415:Lambda baryon 2413: 2411: 2408: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2385: 2384: 2381: 2380: 2378: 2376: 2372: 2369: 2367: 2363: 2360: 2358: 2354: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2274:Dual graviton 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2256: 2254: 2250: 2239: 2235: 2232: 2230: 2227: 2225: 2222: 2220: 2217: 2215: 2212: 2211: 2209: 2205: 2199: 2196: 2194: 2191: 2189: 2186: 2185: 2183: 2181: 2177: 2174: 2172: 2171:Superpartners 2168: 2165: 2163: 2159: 2153: 2150: 2149: 2147: 2145: 2141: 2131: 2128: 2127: 2125: 2123: 2119: 2113: 2110: 2108: 2105: 2103: 2100: 2099: 2097: 2095: 2091: 2088: 2086: 2082: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2054:Muon neutrino 2052: 2050: 2047: 2045: 2042: 2041: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2006: 2004: 2002: 1998: 1992: 1989: 1987: 1986:Bottom (quark 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1937: 1934: 1933: 1931: 1929: 1925: 1922: 1920: 1916: 1913: 1911: 1907: 1903: 1896: 1891: 1889: 1884: 1882: 1877: 1876: 1873: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1837: 1835: 1831: 1825: 1822: 1820: 1819:Ocean physics 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1776: 1774: 1772: 1768: 1762: 1759: 1755: 1754:Modern optics 1752: 1750: 1747: 1745: 1742: 1741: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1718: 1715: 1713: 1710: 1709: 1708: 1705: 1704: 1702: 1700: 1696: 1688: 1685: 1683: 1680: 1679: 1678: 1675: 1671: 1668: 1666: 1663: 1662: 1661: 1658: 1656: 1653: 1651: 1648: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1625: 1624: 1621: 1620: 1618: 1616: 1612: 1604: 1603:Computational 1601: 1600: 1599: 1596: 1594: 1591: 1590: 1588: 1584: 1576: 1573: 1572: 1571: 1568: 1566: 1563: 1562: 1560: 1556: 1552: 1544: 1539: 1537: 1532: 1530: 1525: 1524: 1521: 1513: 1509: 1504: 1499: 1495: 1491: 1486: 1481: 1477: 1473: 1472: 1467: 1462: 1451: 1450: 1441: 1436: 1425: 1424: 1416: 1412: 1408: 1407: 1403: 1388:on 2020-11-27 1384: 1380: 1376: 1370: 1367: 1362: 1358: 1353: 1348: 1344: 1340: 1339: 1331: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1290: 1285: 1281: 1277: 1270: 1267: 1263: 1259: 1256: 1251: 1249: 1245: 1240: 1236: 1232: 1226: 1222: 1215: 1212: 1207: 1203: 1199: 1193: 1189: 1182: 1179: 1176: 1170: 1168: 1166: 1162: 1157: 1153: 1146: 1144: 1142: 1138: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1100: 1095: 1091: 1087: 1086: 1081: 1074: 1071: 1064: 1055: 1052: 1049: 1046: 1043: 1040: 1037: 1036:Random matrix 1034: 1031: 1028: 1025: 1022: 1019: 1018:Quantum chaos 1016: 1013: 1010: 1007: 1004: 998: 995: 992: 991:Nanomaterials 989: 983: 980: 977: 974: 971: 970:Branched flow 968: 962: 959: 958: 953: 951: 948: 940: 938: 936: 927: 925: 921: 919: 913: 911: 907: 903: 899: 898:wave function 895: 890: 888: 884: 883:valence bands 879: 875: 870: 868: 864: 860: 859:valence bands 856: 852: 845: 843: 841: 837: 833: 829: 825: 820: 818: 813: 808: 806: 802: 798: 794: 790: 786: 785:theoretically 782: 778: 774: 769: 767: 763: 759: 755: 751: 747: 743: 739: 735: 731: 720: 715: 713: 708: 706: 701: 700: 698: 697: 691: 681: 678: 673: 667: 666: 665: 664: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 455:Van der Waals 453: 452: 445: 444: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 412: 408: 403: 402: 394: 391: 389: 386: 384: 381: 379: 375: 372: 370: 367: 365: 362: 361: 357: 352: 351: 343: 340: 338: 334: 331: 329: 325: 322: 320: 316: 313: 311: 308: 307: 300: 299: 291: 288: 286: 283: 281: 278: 277: 270: 269: 261: 258: 256: 253: 251: 250:Ferroelectric 248: 246: 245:Piezoelectric 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 220:Semiconductor 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 190: 189: 181: 178: 176: 173: 171: 168: 167: 160: 159: 151: 148: 146: 143: 141: 140:Superfluidity 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 87: 83: 78: 77: 71: 68: 66: 63: 61: 58: 57: 55: 54: 50: 46: 45: 42: 38: 33: 19: 2942: 2613:Hypothetical 2561:Exotic atoms 2430:Omega baryon 2420:Sigma baryon 2410:Delta baryon 2162:Hypothetical 2144:Ghost fields 2130:Higgs boson 2064:Tau neutrino 1956:Charm (quark 1779:Astrophysics 1593:Experimental 1478:(1): 30946. 1475: 1471:Scholarpedia 1469: 1453:. Retrieved 1446: 1427:. Retrieved 1421: 1390:. Retrieved 1383:the original 1378: 1369: 1342: 1336: 1330: 1279: 1275: 1269: 1255:Quantum dots 1220: 1214: 1187: 1181: 1151: 1089: 1083: 1073: 1030:Quantum wire 944: 931: 922: 918:quantum dots 914: 909: 891: 871: 849: 832:nanoparticle 823: 821: 809: 770: 729: 728: 585:von Klitzing 290:Kondo effect 150:Time crystal 130:Fermi liquid 2895:Quark model 2663:Theta meson 2566:Positronium 2478:Omega meson 2473:J/psi meson 2403:Antineutron 2314:Dark photon 2279:Graviphoton 2238:Stop squark 1946:Down (quark 1682:Statistical 1598:Theoretical 1575:Engineering 997:Nanophysics 812:transistors 773:conductance 758:macroscopic 750:micrometres 744:(such as a 407:Soft matter 328:Ferromagnet 2958:Categories 2637:Heptaquark 2598:Superatoms 2531:Pentaquark 2521:Tetraquark 2503:Quarkonium 2393:Antiproton 2294:Leptoquark 2229:Neutralino 1991:antiquark) 1981:antiquark) 1976:Top (quark 1971:antiquark) 1961:antiquark) 1951:antiquark) 1941:antiquark) 1910:Elementary 1799:Geophysics 1789:Biophysics 1633:Analytical 1586:Approaches 1485:1601.02237 1392:2010-01-25 1065:References 894:wavelength 874:dielectric 819:circuits. 793:insulators 550:Louis NĂ©el 540:Schrieffer 448:Scientists 342:Spin glass 337:Metamagnet 319:Paramagnet 135:Supersolid 2875:Particles 2820:Particles 2779:Polariton 2769:Plasmaron 2739:Dropleton 2632:Hexaquark 2603:Molecules 2591:Protonium 2468:Phi meson 2453:Rho meson 2425:Xi baryon 2357:Composite 2193:Gravitino 1936:Up (quark 1749:Molecular 1650:Acoustics 1643:Continuum 1638:Celestial 1628:Newtonian 1615:Classical 1558:Divisions 1347:CiteSeerX 1124:0370-1573 878:Electrons 867:band gaps 777:quantized 738:nanoscale 650:Wetterich 630:Abrikosov 545:Josephson 515:Van Vleck 505:Luttinger 378:Polariton 310:Diamagnet 230:Conductor 225:Semimetal 210:Insulator 125:Fermi gas 2851:timeline 2703:R-hadron 2658:Glueball 2642:Skyrmion 2576:Tauonium 2289:Inflaton 2284:Graviton 2264:Curvaton 2234:Sfermion 2224:Higgsino 2219:Chargino 2180:Gauginos 2039:Neutrino 2024:Antimuon 2014:Positron 2009:Electron 1919:Fermions 1512:26633032 1449:TU Delft 1413:(1995). 1322:11686506 1314:15447435 1258:Archived 1239:32264947 1206:49051457 1132:16012275 902:spectrum 887:band gap 746:molecule 690:Category 635:Ginzburg 610:Laughlin 570:Kadanoff 525:Shockley 510:Anderson 465:von Laue 115:Bose gas 2839:Related 2810:Baryons 2784:Polaron 2774:Plasmon 2749:Fracton 2744:Exciton 2698:Diquark 2693:Pomeron 2668:T meson 2625:Baryons 2586:Pionium 2571:Muonium 2498:D meson 2493:B meson 2398:Neutron 2383:Nucleon 2375:Baryons 2366:Hadrons 2329:Tachyon 2304:Majoron 2269:Dilaton 2198:Photino 2034:Antitau 2001:Leptons 1833:Related 1717:General 1712:Special 1570:Applied 1490:Bibcode 1455:14 June 1429:14 June 1294:Bibcode 1104:Bibcode 954:Related 906:bandgap 789:physics 640:Leggett 615:Störmer 600:Bednorz 560:Giaever 530:Bardeen 520:Hubbard 495:Peierls 485:Onsager 435:Polymer 420:Colloid 383:Polaron 374:Plasmon 369:Exciton 2815:Mesons 2764:Phonon 2759:Magnon 2681:Others 2651:Mesons 2544:Others 2440:Mesons 2388:Proton 2252:Others 2207:Others 2188:Gluino 2122:Scalar 2102:Photon 2085:Bosons 1928:Quarks 1744:Atomic 1699:Modern 1549:Major 1510:  1349:  1320:  1312:  1237:  1227:  1204:  1194:  1130:  1122:  803:, and 801:metals 688:  655:Perdew 645:Parisi 605:MĂĽller 595:Rohrer 590:Binnig 580:Wilson 575:Fisher 535:Cooper 500:Landau 388:Magnon 364:Phonon 205:Plasma 105:Plasma 95:Liquid 60:Phases 2803:Lists 2794:Trion 2789:Roton 2729:Anyon 2556:Atoms 2319:Preon 2259:Axion 2214:Axino 2107:Gluon 2094:Gauge 1508:S2CID 1480:arXiv 1443:(PDF) 1418:(PDF) 1318:S2CID 1284:arXiv 1158:2003. 1128:S2CID 1094:arXiv 828:virus 742:atoms 555:Esaki 480:Bloch 475:Debye 470:Bragg 460:Onnes 393:Roton 90:Solid 2754:Hole 2581:Onia 2488:Kaon 2448:Pion 2019:Muon 1670:Wave 1565:Pure 1457:2018 1431:2018 1310:PMID 1235:OCLC 1225:ISBN 1202:OCLC 1192:ISBN 1120:ISSN 838:and 783:and 625:Tsui 620:Yang 565:Kohn 490:Mott 2029:Tau 1665:Ray 1498:doi 1357:doi 1302:doi 1112:doi 1090:434 791:of 180:QCP 100:Gas 70:QCP 2960:: 1506:. 1496:. 1488:. 1476:11 1474:. 1468:. 1445:. 1420:. 1377:. 1355:. 1341:. 1316:. 1308:. 1300:. 1292:. 1280:93 1278:. 1247:^ 1233:. 1200:. 1164:^ 1154:. 1140:^ 1126:. 1118:. 1110:. 1102:. 1088:. 1082:. 937:. 912:. 869:. 861:, 857:, 799:, 795:, 768:. 2527:) 2523:( 2240:) 2236:( 1894:e 1887:t 1880:v 1542:e 1535:t 1528:v 1514:. 1500:: 1492:: 1482:: 1459:. 1433:. 1395:. 1363:. 1359:: 1343:2 1324:. 1304:: 1296:: 1286:: 1241:. 1208:. 1134:. 1114:: 1106:: 1096:: 718:e 711:t 704:v 34:. 20:)

Index

Mesoscopic scale
mesoscale meteorology
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑