Knowledge

Metal–insulator transition

Source 📝

36: 485: 316:
The polarization catastrophe model describes the transition of a material from an insulator to a metal. This model considers the electrons in a solid to act as oscillators and the conditions for this transition to occur is determined by the number of oscillators per unit volume of the material. Since
247:
up and one with spin down. Due to the interaction the electrons would then feel a strong Coulomb repulsion, which Mott argued splits the band in two. Having one electron per-site fills the lower band while the upper band remains empty, which suggests the system becomes an insulator. This
651: 775:
The polarization catastrophe model also theorizes that, with a high enough density, and thus a low enough molar volume, any solid could become metallic in character. Predicting whether a material will be metallic or insulating can be done by taking the ratio
330: 767: 243:, since electrons cannot be seen as noninteracting. Mott considers a lattice model with just one electron per site. Without taking the interaction into account, each site could be occupied by two electrons, one with 238:
for metals, which means metallic behavior is seen for compounds with partially filled bands. However, some compounds have been found which show insulating behavior even for partially filled bands. This is due to the
528: 944: 191:(such as NiO) with a partially filled d-band were poor conductors, often insulating. In the same year, the importance of the electron-electron correlation was stated by 673:
is the static dielectric constant. If we rearrange equation (1) to isolate the number of oscillators per unit volume we get the critical concentration of oscillators (
480:{\displaystyle \epsilon (\omega )=1+{\frac {\frac {Ne^{2}}{\epsilon _{0}m}}{\omega _{0}^{2}-{\frac {Ne^{2}}{3\epsilon _{0}m}}-\omega ^{2}-i{\frac {\omega }{\tau }}}}} 53: 772:
This expression creates a boundary that defines the transition of a material from an insulator to a metal. This phenomenon is known as the polarization catastrophe.
936: 151:(material where conductivity of charges is quickly suppressed). These transitions can be achieved by tuning various ambient parameters such as temperature, 693: 289:: On some occasions, the lattice itself through electron-phonon interactions can give rise to a transition. An example of a Peierls insulator is the 825: 140: 100: 195:. Since then, these materials as well as others exhibiting a transition between a metal and an insulator have been extensively studied, e.g. by 72: 1137: 1069: 1239: 1016: 79: 274:
Mott-Hubbard transition: An extension incorporating the Hubbard model, approaching the transition from the correlated paramagnetic state.
183:
in 1928-1929. It distinguished between conducting metals (with partially filled bands) and nonconducting insulators. However, in 1937
646:{\displaystyle \epsilon _{\mathrm {s} }=1+{\frac {\frac {Ne^{2}}{\epsilon _{0}m}}{\omega _{0}^{2}-{\frac {Ne^{2}}{\epsilon _{0}m}}}}} 1290: 901: 119: 86: 277:
Brinkman-Rice transition: Approaching the transition from the non-interacting metallic state, where each orbital is half-filled.
264:
Metal–insulator transitions (MIT) and models for approximating them can be classified based on the origin of their transition.
68: 846:
Zimmers, A.; Aigouy, L.; Mortier, M.; Sharoni, A.; Wang, Siming; West, K. G.; Ramirez, J. G.; Schuller, Ivan K. (2013-01-29).
57: 280: 915: 1295: 256:
is one simple model commonly used to describe metal-insulator transitions and the formation of a Mott insulator.
223: 93: 188: 46: 240: 160: 148: 304: 1258: 1210: 1113: 1053: 978: 848:"Role of Thermal Heating on the Voltage Induced Insulator-Metal Transition in $ {\mathrm{VO}}_{2}$ " 196: 184: 1129: 1103: 789: 286: 687:
becomes infinite, indicating a metallic solid and the transition from an insulator to a metal.
1235: 1179: 994: 907: 897: 867: 207: 176: 967:"The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals" 1266: 1218: 1171: 1121: 1061: 986: 859: 144: 283:: A theory that accommodates both Mott-Hubbard and Brinbkman-Rice models of the transition. 847: 268: 235: 17: 1262: 1214: 1117: 1057: 982: 808:
is less than 1, the material will have non-metallic, or insulating properties, while an
249: 244: 200: 192: 1091: 1041: 1284: 1133: 990: 253: 156: 1159: 863: 307:: When an insulator behavior in metals arises from distortions and lattice defects. 520:) must be zero by definition, which then gives us the static dielectric constant, 1275: 271:: The most common transition, arising from intense electron-electron correlation. 762:{\displaystyle N_{\mathrm {c} }={\frac {3\epsilon _{0}m\omega _{0}^{2}}{e^{2}}}} 290: 227: 180: 35: 1270: 1125: 1065: 1222: 172: 1183: 998: 966: 939:
Dancing electrons solve a longstanding puzzle in the oldest magnetic material
911: 211: 871: 891: 231: 152: 1175: 509:
is the fundamental oscillation frequency, m is the oscillator mass, and
171:
The basic distinction between metals and insulators was proposed by
1249:
Imada, M.; Fujimori, Tokura (1998). "Metal–insulator transitions".
1108: 136: 1017:"Emergence of Quantum Phases in Novel Materials: Mott Physics" 29: 1201:
Mott, N. F. (1 October 1968). "Metal-Insulator Transition".
324:) we can describe the dielectric function of a solid as, 206:
The first metal-insulator transition to be found was the
516:
For a material to be a metal, the excitation frequency (
248:
interaction-driven insulating state is referred to as a
1090:
Evers, Ferdinand; Mirlin, Alexander D. (2008-10-17).
696: 531: 333: 60:. Unsourced material may be challenged and removed. 816:value greater than one yields metallic character. 761: 645: 479: 27:Change between conductive and non-conductive state 893:The electronic structure and chemistry of solids 1158:Edwards, Peter P.; Sienko, M. J. (1982-03-01). 1276:http://rmp.aps.org/abstract/RMP/v70/i4/p1039_1 971:Proceedings of the Physical Society. Section A 502:is the number of oscillators per unit volume, 8: 1024:Instituto de Ciencia de Materiales de Madrid 199:, after whom the insulating state is named 301:, which undergoes transition at T = 180 K. 1107: 751: 740: 735: 722: 712: 702: 701: 695: 628: 616: 606: 597: 592: 576: 564: 553: 537: 536: 530: 464: 452: 433: 418: 408: 399: 394: 378: 366: 355: 332: 120:Learn how and when to remove this message 828: – Type of quantum phase transition 838: 1160:"The transition to the metallic state" 1042:"The dynamics of charge-density waves" 135:are transitions of a material from a 7: 1035: 1033: 1010: 1008: 896:. Oxford : Oxford University Press. 885: 883: 881: 800:is the molar volume. In cases where 522: 226:of solid state physics predicts the 187:and Evert Verwey reported that many 58:adding citations to reliable sources 826:Superconductor–insulator transition 703: 538: 317:every oscillator has a frequency ( 25: 34: 1140:from the original on 2023-04-03 1072:from the original on 2023-04-03 947:from the original on 2022-09-30 918:from the original on 2023-04-03 45:needs additional citations for 864:10.1103/PhysRevLett.110.056601 498:) is the dielectric function, 343: 337: 1: 1164:Accounts of Chemical Research 513:is the excitation frequency. 241:electron-electron correlation 1234:. Taylor & Francis Ltd. 69:"Metal–insulator transition" 1232:Metal–Insulator Transitions 792:, sometimes represented by 281:Dynamical mean-field theory 133:Metal–insulator transitions 1312: 1271:10.1103/revmodphys.70.1039 1126:10.1103/RevModPhys.80.1355 1066:10.1103/RevModPhys.60.1129 991:10.1088/0370-1298/62/7/303 234:for insulators and in the 18:Metal-insulator transition 1223:10.1103/RevModPhys.40.677 1203:Reviews of Modern Physics 1096:Reviews of Modern Physics 1046:Reviews of Modern Physics 1040:Grüner, G. (1988-10-01). 965:Mott, N. F. (July 1949). 1291:Condensed matter physics 312:Polarization catastrophe 1015:Bascones, Leni (2021). 852:Physical Review Letters 218:Theoretical description 189:transition-metal oxides 141:electrical conductivity 1092:"Anderson transitions" 763: 647: 481: 764: 648: 482: 260:Elementary mechanisms 694: 529: 331: 139:(material with good 54:improve this article 1263:1998RvMP...70.1039I 1215:1968RvMP...40..677M 1176:10.1021/ar00075a004 1118:2008RvMP...80.1355E 1058:1988RvMP...60.1129G 983:1949PPSA...62..416M 890:Cox, P. A. (1987). 745: 602: 404: 305:Anderson transition 185:Jan Hendrik de Boer 790:molar refractivity 759: 731: 643: 588: 477: 390: 287:Peierls transition 1296:Phase transitions 1241:978-0-85066-079-1 1230:Mott, N. (1974). 757: 663: 662: 641: 638: 586: 475: 472: 443: 388: 208:Verwey transition 177:Arnold Sommerfeld 155:or, in case of a 130: 129: 122: 104: 16:(Redirected from 1303: 1274: 1245: 1226: 1188: 1187: 1155: 1149: 1148: 1146: 1145: 1111: 1102:(4): 1355–1417. 1087: 1081: 1080: 1078: 1077: 1052:(4): 1129–1181. 1037: 1028: 1027: 1021: 1012: 1003: 1002: 962: 956: 955: 953: 952: 933: 927: 926: 924: 923: 887: 876: 875: 843: 768: 766: 765: 760: 758: 756: 755: 746: 744: 739: 727: 726: 713: 708: 707: 706: 652: 650: 649: 644: 642: 640: 639: 637: 633: 632: 622: 621: 620: 607: 601: 596: 585: 581: 580: 570: 569: 568: 555: 554: 543: 542: 541: 523: 486: 484: 483: 478: 476: 474: 473: 465: 457: 456: 444: 442: 438: 437: 424: 423: 422: 409: 403: 398: 387: 383: 382: 372: 371: 370: 357: 356: 145:electric charges 125: 118: 114: 111: 105: 103: 62: 38: 30: 21: 1311: 1310: 1306: 1305: 1304: 1302: 1301: 1300: 1281: 1280: 1248: 1242: 1229: 1200: 1197: 1195:Further reading 1192: 1191: 1157: 1156: 1152: 1143: 1141: 1089: 1088: 1084: 1075: 1073: 1039: 1038: 1031: 1019: 1014: 1013: 1006: 964: 963: 959: 950: 948: 935: 934: 930: 921: 919: 904: 889: 888: 879: 845: 844: 840: 835: 822: 747: 718: 714: 697: 692: 691: 686: 679: 672: 665: 624: 623: 612: 608: 587: 572: 571: 560: 556: 532: 527: 526: 508: 448: 429: 425: 414: 410: 389: 374: 373: 362: 358: 329: 328: 323: 314: 300: 296: 269:Mott transition 262: 236:conduction band 220: 197:Sir Nevill Mott 169: 126: 115: 109: 106: 63: 61: 51: 39: 28: 23: 22: 15: 12: 11: 5: 1309: 1307: 1299: 1298: 1293: 1283: 1282: 1279: 1278: 1251:Rev. Mod. Phys 1246: 1240: 1227: 1209:(4): 677–683. 1196: 1193: 1190: 1189: 1150: 1082: 1029: 1004: 977:(7): 416–422. 957: 928: 902: 877: 837: 836: 834: 831: 830: 829: 821: 818: 770: 769: 754: 750: 743: 738: 734: 730: 725: 721: 717: 711: 705: 700: 684: 677: 670: 661: 660: 655: 653: 636: 631: 627: 619: 615: 611: 605: 600: 595: 591: 584: 579: 575: 567: 563: 559: 552: 549: 546: 540: 535: 506: 488: 487: 471: 468: 463: 460: 455: 451: 447: 441: 436: 432: 428: 421: 417: 413: 407: 402: 397: 393: 386: 381: 377: 369: 365: 361: 354: 351: 348: 345: 342: 339: 336: 321: 313: 310: 309: 308: 302: 298: 294: 284: 278: 275: 272: 261: 258: 250:Mott insulator 224:band structure 222:The classical 219: 216: 214:in the 1940s. 201:Mott insulator 193:Rudolf Peierls 168: 165: 128: 127: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1308: 1297: 1294: 1292: 1289: 1288: 1286: 1277: 1272: 1268: 1264: 1260: 1256: 1252: 1247: 1243: 1237: 1233: 1228: 1224: 1220: 1216: 1212: 1208: 1204: 1199: 1198: 1194: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1154: 1151: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1110: 1105: 1101: 1097: 1093: 1086: 1083: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1036: 1034: 1030: 1025: 1018: 1011: 1009: 1005: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 961: 958: 946: 942: 940: 932: 929: 917: 913: 909: 905: 903:0-19-855204-1 899: 895: 894: 886: 884: 882: 878: 873: 869: 865: 861: 858:(5): 056601. 857: 853: 849: 842: 839: 832: 827: 824: 823: 819: 817: 815: 811: 807: 803: 799: 795: 791: 787: 783: 779: 773: 752: 748: 741: 736: 732: 728: 723: 719: 715: 709: 698: 690: 689: 688: 683: 676: 669: 659: 656: 654: 634: 629: 625: 617: 613: 609: 603: 598: 593: 589: 582: 577: 573: 565: 561: 557: 550: 547: 544: 533: 525: 524: 521: 519: 514: 512: 505: 501: 497: 493: 469: 466: 461: 458: 453: 449: 445: 439: 434: 430: 426: 419: 415: 411: 405: 400: 395: 391: 384: 379: 375: 367: 363: 359: 352: 349: 346: 340: 334: 327: 326: 325: 320: 311: 306: 303: 292: 288: 285: 282: 279: 276: 273: 270: 267: 266: 265: 259: 257: 255: 254:Hubbard model 251: 246: 242: 237: 233: 229: 225: 217: 215: 213: 209: 204: 202: 198: 194: 190: 186: 182: 178: 174: 166: 164: 162: 158: 157:semiconductor 154: 150: 146: 142: 138: 134: 124: 121: 113: 102: 99: 95: 92: 88: 85: 81: 78: 74: 71: –  70: 66: 65:Find sources: 59: 55: 49: 48: 43:This article 41: 37: 32: 31: 19: 1254: 1250: 1231: 1206: 1202: 1170:(3): 87–93. 1167: 1163: 1153: 1142:. Retrieved 1099: 1095: 1085: 1074:. Retrieved 1049: 1045: 1023: 974: 970: 960: 949:. Retrieved 938: 931: 920:. Retrieved 892: 855: 851: 841: 813: 809: 805: 801: 797: 793: 785: 781: 777: 774: 771: 681: 674: 667: 664: 657: 517: 515: 510: 503: 499: 495: 491: 489: 318: 315: 263: 230:to lie in a 221: 205: 170: 132: 131: 116: 107: 97: 90: 83: 76: 64: 52:Please help 47:verification 44: 1257:(4): 1039. 680:) at which 291:blue bronze 228:Fermi level 181:Felix Bloch 1285:Categories 1144:2023-04-03 1076:2023-04-03 951:2023-04-03 922:2023-04-03 833:References 173:Hans Bethe 110:March 2020 80:newspapers 1184:0001-4842 1134:119165035 1109:0707.4378 999:0370-1298 733:ω 720:ϵ 626:ϵ 604:− 590:ω 574:ϵ 534:ϵ 470:τ 467:ω 459:− 450:ω 446:− 431:ϵ 406:− 392:ω 376:ϵ 341:ω 335:ϵ 212:magnetite 149:insulator 1138:Archived 1070:Archived 945:Archived 916:Archived 912:14213060 872:23414038 820:See also 784:, where 232:band gap 153:pressure 147:) to an 1259:Bibcode 1211:Bibcode 1114:Bibcode 1054:Bibcode 979:Bibcode 788:is the 167:History 94:scholar 1238:  1182:  1132:  997:  910:  900:  870:  796:, and 666:where 490:where 252:. The 161:doping 96:  89:  82:  75:  67:  1130:S2CID 1104:arXiv 1020:(PDF) 137:metal 101:JSTOR 87:books 1236:ISBN 1180:ISSN 995:ISSN 908:OCLC 898:ISBN 868:PMID 245:spin 179:and 73:news 1267:doi 1219:doi 1172:doi 1122:doi 1062:doi 987:doi 860:doi 856:110 658:(1) 297:MoO 295:0.3 210:of 143:of 56:by 1287:: 1265:. 1255:70 1253:. 1217:. 1207:40 1205:. 1178:. 1168:15 1166:. 1162:. 1136:. 1128:. 1120:. 1112:. 1100:80 1098:. 1094:. 1068:. 1060:. 1050:60 1048:. 1044:. 1032:^ 1022:. 1007:^ 993:. 985:. 975:62 973:. 969:. 943:. 914:. 906:. 880:^ 866:. 854:. 850:. 203:. 175:, 163:. 159:, 1273:. 1269:: 1261:: 1244:. 1225:. 1221:: 1213:: 1186:. 1174:: 1147:. 1124:: 1116:: 1106:: 1079:. 1064:: 1056:: 1026:. 1001:. 989:: 981:: 954:. 941:" 937:" 925:. 874:. 862:: 814:V 812:/ 810:R 806:V 804:/ 802:R 798:V 794:A 786:R 782:V 780:/ 778:R 753:2 749:e 742:2 737:0 729:m 724:0 716:3 710:= 704:c 699:N 685:s 682:ε 678:c 675:N 671:s 668:ε 635:m 630:0 618:2 614:e 610:N 599:2 594:0 583:m 578:0 566:2 562:e 558:N 551:+ 548:1 545:= 539:s 518:ω 511:ω 507:0 504:ω 500:N 496:ω 494:( 492:ε 462:i 454:2 440:m 435:0 427:3 420:2 416:e 412:N 401:2 396:0 385:m 380:0 368:2 364:e 360:N 353:+ 350:1 347:= 344:) 338:( 322:0 319:ω 299:3 293:K 123:) 117:( 112:) 108:( 98:· 91:· 84:· 77:· 50:. 20:)

Index

Metal-insulator transition

verification
improve this article
adding citations to reliable sources
"Metal–insulator transition"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
metal
electrical conductivity
electric charges
insulator
pressure
semiconductor
doping
Hans Bethe
Arnold Sommerfeld
Felix Bloch
Jan Hendrik de Boer
transition-metal oxides
Rudolf Peierls
Sir Nevill Mott
Mott insulator
Verwey transition
magnetite
band structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.