Knowledge (XXG)

Metapopulation

Source šŸ“

147:
first, Huffaker experienced difficulties similar to those of Gause in creating a stable predatorā€“prey interaction. By using oranges only, the prey species quickly became extinct followed consequently with predator extinction. However, he discovered that by modifying the spatial structure of the habitat, he could manipulate the population dynamics and allow the overall survival rate for both species to increase. He did this by altering the distance between the prey and oranges (their food), establishing barriers to predator movement, and creating corridors for the prey to disperse. These changes resulted in increased habitat patches and in turn provided more areas for the prey to seek temporary protection. When the prey would become extinct locally at one habitat patch, they were able to reestablish by migrating to new patches before being attacked by predators. This habitat spatial structure of patches allowed for coexistence between the predator and prey species and promoted a stable population oscillation model. Although the term metapopulation had not yet been coined, the environmental factors of
474:, synthetic habitat landscapes have been fabricated on a chip by building a collection of bacterial mini-habitats with nano-scale channels providing them with nutrients for habitat renewal, and connecting them by corridors in different topological arrangements, generating a spatial mosaic of patches of opportunity distributed in time. This can be used for landscape experiments by studying the bacteria metapopulations on the chip, for example their 22: 459: 502:. The seasonal duration of wetlands and the migratory range of the species determines which ponds are connected and if they form a metapopulation. The duration of the life history stages of amphibians relative to the duration of the vernal pool before it dries up regulates the ecological development of metapopulations connecting aquatic patches to terrestrial patches. 394:
Huffaker's studies of spatial structure and species interactions are an example of early experimentation in metapopulation dynamics. Since the experiments of Huffaker and Levins, models have been created which integrate stochastic factors. These models have shown that the combination of environmental
160:
Levins' original model applied to a metapopulation distributed over many patches of suitable habitat with significantly less interaction between patches than within a patch. Population dynamics within a patch were simplified to the point where only presence and absence were considered. Each patch in
151:
and habitat patchiness would later describe the conditions of a metapopulation relating to how groups of spatially separated populations of species interact with one another. Huffaker's experiment is significant because it showed how metapopulations can directly affect the predatorā€“prey interactions
69:
Although individual populations have finite life-spans, the metapopulation as a whole is often stable because immigrants from one population (which may, for example, be experiencing a population boom) are likely to re-colonize habitat which has been left open by the extinction of another population.
88:
Metapopulation theory was first developed for terrestrial ecosystems, and subsequently applied to the marine realm. In fisheries science, the term "sub-population" is equivalent to the metapopulation science term "local population". Most marine examples are provided by relatively sedentary species
57:
A metapopulation is generally considered to consist of several distinct populations together with areas of suitable habitat which are currently unoccupied. In classical metapopulation theory, each population cycles in relative independence of the other populations and eventually goes extinct as a
25:
Metapopulations are important in fisheries. The local population (1.) serves as a source for hybridization with surrounding subspecies populations (1.a, 1.b, and 1.c).The populations are normally spatially separated and independent but spatial overlap between them during breeding times allows for
146:
In order to study predation and population oscillations, Huffaker used mite species, one being the predator and the other being the prey. He set up a controlled experiment using oranges, which the prey fed on, as the spatially structured habitat in which the predator and prey would interact. At
137:
accurately depicted the oscillations predicted by the Lotka-Volterra equation, with the peaks in prey abundance shifted slightly to the left of the peaks of the predator densities. Huffaker's experiments expanded on those of Gause by examining how both the factors of migration and spatial
93:, with both local recruitment and recruitment from other local populations in the larger metapopulation. Kritzer & Sale have argued against strict application of the metapopulation definitional criteria that extinction risks to local populations must be non-negligible. 132:
over time based on the initial densities of predator and prey. Gause's early experiments to prove the predicted oscillations of this theory failed because the predatorā€“prey interactions were not influenced by immigration. However, once immigration was introduced, the
85:, emphasised the importance of connectivity between seemingly isolated populations. Although no single population may be able to guarantee the long-term survival of a given species, the combined effect of many populations may be able to do this. 395:
variability (stochasticity) and relatively small migration rates cause indefinite or unpredictable persistence. However, Huffaker's experiment almost guaranteed infinite persistence because of the controlled immigration variable.
128:, which was formulated in the mid-1920s, but no further application had been conducted. The Lotka-Volterra equation suggested that the relationship between predators and their prey would result in population 282: 336: 423:
in a given time interval. The Levins model cannot address this issue. A simple way to extend the Levins' model to incorporate space and stochastic considerations is by using the
381: 1772: 1025: 1916: 755:
Keymer J.E; P.A. Marquet; J.X. Velasco-HernƔndez; S.A. Levin (November 2000). "Extinction Thresholds and Metapopulation Persistence in Dynamic Landscapes".
1986: 867:
Petranka, J. W. (2007), "Evolution of complex life cycles of amphibians: bridging the gap between metapopulation dynamics and life history evolution",
1523: 450:
nature of extinction and colonisation. Also, in order to apply these models, the extinctions and colonisations of the patches must be asynchronous.
1996: 1724: 446:
purposes, metapopulation models must include (a) the finite nature of metapopulations (how many patches are suitable for habitat), and (b) the
2589: 2001: 1558: 959:
Fahrig, L. 2003. Effects of Habitat Fragmentation on Biodiversity. Annual Review of ecology, evolution, and systematics. 34:1, p. 487.
2189: 1606: 1942: 1765: 1018: 1278: 954: 498:. Alternative ecological strategies have evolved. For example, some salamanders forgo metamorphosis and sexually mature as aquatic 2021: 1734: 1601: 1313: 2279: 2406: 2051: 50:
of insect pests in agricultural fields, but the idea has been most broadly applied to species in naturally or artificially
2452: 2006: 1758: 1011: 536: 424: 1884: 526: 125: 2920: 2241: 1132: 569:
Levins, R. (1969), "Some demographic and genetic consequences of environmental heterogeneity for biological control",
213: 2925: 2306: 2026: 1230: 1127: 2582: 2487: 2099: 1991: 1849: 1834: 1829: 1220: 909:
Bascompte J.; SolƩ R. V. (1996), "Habitat Fragmentation and Extinction Thresholds in spatially explicit models",
416: 2246: 82: 2627: 2477: 2472: 2442: 1709: 1591: 632:
Huffaker, C.B. (1958), "Experimental Studies on Predation: Dispersion factors and predatorā€“prey oscillations",
2321: 2184: 2094: 1962: 1844: 1814: 1671: 1636: 1356: 1323: 1298: 2879: 2713: 2467: 2411: 2346: 2209: 2144: 2079: 1739: 1641: 1429: 1137: 1117: 669: 301: 173: 101: 2708: 2371: 2316: 2179: 2164: 1947: 1904: 1894: 1889: 1646: 1626: 1482: 1472: 1414: 1409: 1245: 1097: 546: 511: 436: 432: 148: 117: 66:
events); the smaller the population, the more chances of inbreeding depression and prone to extinction.
51: 2575: 2497: 2462: 2457: 2381: 2376: 2331: 2229: 2199: 2194: 2046: 1909: 1899: 1444: 1283: 1072: 918: 876: 821: 713: 516: 487: 475: 443: 1003: 674: 70:
They may also emigrate to a small population and rescue that population from extinction (called the
2930: 2547: 2522: 2386: 2356: 2301: 2214: 2104: 2089: 2036: 1869: 1804: 1686: 1616: 1147: 47: 1750: 2651: 2558: 2507: 2502: 2311: 2274: 1972: 1937: 1794: 1719: 1621: 1553: 1543: 1477: 1424: 1235: 1180: 1142: 1067: 980: 934: 892: 790: 729: 687: 447: 2016: 2785: 2780: 2447: 2416: 2204: 2031: 1839: 1704: 1681: 1538: 1419: 1195: 1107: 1092: 1077: 1057: 950: 849: 782: 521: 471: 350: 288: 90: 704:
Kareiva, P. (1987), "Habitat Fragmentation and the Stability of Predatorā€“Prey Interactions",
386:
At equilibrium, therefore, some fraction of the species's habitat will always be unoccupied.
2800: 2617: 2401: 2264: 2256: 2174: 2056: 2041: 1977: 1957: 1874: 1864: 1859: 1824: 1656: 1596: 1467: 1268: 1210: 1122: 1082: 972: 926: 884: 839: 829: 772: 764: 721: 679: 641: 578: 134: 2869: 2844: 2825: 2745: 2537: 2396: 2366: 2361: 2351: 2284: 2269: 2149: 2129: 2011: 1879: 1785: 1676: 1586: 1528: 1513: 1112: 1038: 439:
effects take place in these configurations predicting more drastic extinction thresholds.
78:
may occur because declining populations leave niche opportunities open to the "rescuers".
922: 880: 825: 717: 2864: 2854: 2849: 2795: 2765: 2728: 2718: 2517: 2341: 2294: 2224: 2114: 1981: 1854: 1661: 1651: 1631: 1508: 1434: 1399: 1338: 1215: 1170: 1062: 844: 809: 467: 428: 43: 745:
Janssen, A. et al. 1997. Metapopulation Dynamics of a Persisting Predatorā€“Prey system.
2914: 2815: 2790: 2770: 2760: 2740: 2733: 2723: 2703: 2671: 2656: 2639: 2634: 2612: 2598: 2542: 1518: 1492: 1449: 1439: 1394: 1381: 1361: 1253: 1087: 1042: 491: 404: 75: 984: 896: 691: 486:
Metapopulation models have been used to explain life-history evolution, such as the
458: 2834: 2755: 2698: 2676: 2527: 2512: 2169: 2139: 2084: 1967: 1932: 1809: 1308: 794: 733: 495: 129: 121: 97: 21: 81:
The development of metapopulation theory, in conjunction with the development of
2889: 2884: 2874: 2820: 2775: 2688: 1819: 1548: 1366: 1328: 1303: 1293: 1258: 1205: 1185: 531: 63: 411:. Metapopulations are particularly useful when discussing species in disturbed 2894: 2859: 2805: 2693: 2666: 2644: 2532: 2109: 2074: 1714: 1666: 1611: 1581: 1487: 1404: 1348: 1225: 1175: 888: 660:
Legendre, P.; Fortin, M.J. (1989), "Spatial pattern and ecological analysis",
408: 59: 2899: 2810: 2750: 2622: 2437: 2391: 2119: 1563: 1533: 1333: 1288: 1263: 1200: 1190: 1165: 1157: 1102: 834: 646: 582: 541: 199:, each unoccupied patch can become occupied with a colonization probability 188: 113: 27: 853: 786: 998: 2681: 2661: 2492: 2421: 1952: 1459: 1371: 1318: 1273: 412: 808:
Keymer J.E.; P. Galajda; C. Muldoon R. & R. Austin (November 2006).
777: 2482: 2289: 2159: 2154: 1781: 1729: 1389: 1034: 683: 499: 420: 39: 54:. In Levins' own words, it consists of "a population of populations". 725: 938: 42:
which interact at some level. The term metapopulation was coined by
976: 768: 168:
be the fraction of patches occupied at a given time. During a time
38:
consists of a group of spatially separated populations of the same
457: 20: 930: 141: 2571: 1754: 1007: 427:. Simple modifications to this model can also incorporate for 963:
Levin S.A. (1974), "Dispersion and Population Interactions",
203:. Accordingly, the time rate of change of occupied patches, 142:
Huffaker's experiments on predatorā€“prey interactions (1958)
454:
Microhabitat patches (MHPs) and bacterial metapopulations
16:
Group of separated yet interacting ecological populations
2567: 810:"Bacterial metapopulations in nanofabricated landscapes" 615:
Foundations of Ecology: Classic papers with commentaries
183:
of the patches are unoccupied. Assuming a constant rate
407:, whereas the fundamental metapopulation processes are 104:
was an important contributor to metapopulation theory.
403:
One major drawback of the Levins model is that it is
353: 304: 216: 172:, each occupied patch can become unoccupied with an 2605: 2430: 2330: 2255: 2128: 2065: 1925: 1793: 1695: 1574: 1501: 1458: 1380: 1347: 1244: 1156: 1050: 375: 330: 287:This equation is mathematically equivalent to the 276: 138:heterogeneity lead to predatorā€“prey oscillations. 571:Bulletin of the Entomological Society of America 62:(fluctuations in population size due to random 627: 625: 623: 597:Kritzer, J. P. & Sale, P. F. (eds) (2006) 277:{\displaystyle {\frac {dN}{dt}}=cN(1-N)-eN.\,} 2583: 1766: 1019: 8: 564: 562: 617:. The University of Chicago Press, Chicago. 593: 591: 152:and in turn influence population dynamics. 2590: 2576: 2568: 1987:Latitudinal gradients in species diversity 1773: 1759: 1751: 1026: 1012: 1004: 613:Real, Leslie A. and Brown, James H. 1991. 843: 833: 776: 673: 645: 399:Stochastic patch occupancy models (SPOMs) 372: 352: 327: 317: 303: 273: 217: 215: 1885:Predatorā€“prey (Lotkaā€“Volterra) equations 1524:Tritrophic interactions in plant defense 609: 607: 1917:Random generalized Lotkaā€“Volterra model 558: 1725:Herbivore adaptations to plant defense 419:, i.e., how likely they are to become 161:his model is either populated or not. 7: 1740:Predator avoidance in schooling fish 331:{\displaystyle K=1-{\frac {e}{c}}\,} 2190:Intermediate disturbance hypothesis 1943:Ecological effects of biodiversity 14: 1279:Generalist and specialist species 462:E. coli metapopulation on a chip. 390:Stochasticity and metapopulations 2002:Occupancyā€“abundance relationship 999:Helsinki-science: Metapopulation 195:occupied patches, during a time 2022:Relative abundance distribution 1735:Plant defense against herbivory 1602:Competitive exclusion principle 1314:Mesopredator release hypothesis 949:Oxford University Press. 1999. 46:in 1969 to describe a model of 1607:Consumerā€“resource interactions 417:viability of their populations 258: 246: 179:. Additionally, 1 āˆ’  1: 2453:Biological data visualization 2280:Environmental niche modelling 2007:Population viability analysis 537:Population viability analysis 1938:Density-dependent inhibition 191:generation from each of the 2407:Liebig's law of the minimum 2242:Resource selection function 1133:Metabolic theory of ecology 601:, Academic Press, New York. 291:, with a carrying capacity 124:in the 1930s, based on the 112:The first experiments with 58:consequence of demographic 2947: 2307:Niche apportionment models 2027:Relative species abundance 1231:Primary nutritional groups 1128:List of feeding behaviours 108:Predation and oscillations 2556: 2488:Ecosystem based fisheries 2100:Interspecific competition 1992:Minimum viable population 1850:Maximum sustainable yield 1835:Intraspecific competition 1830:Effective population size 1710:Anti-predator adaptations 1221:Photosynthetic efficiency 911:Journal of Animal Ecology 889:10.1007/s10682-006-9149-1 2478:Ecological stoichiometry 2443:Alternative stable state 527:Lotkaā€“Volterra equations 376:{\displaystyle r=c-e.\,} 30:between the populations. 2322:Ontogenetic niche shift 2185:Ideal free distribution 2095:Ecological facilitation 1845:Malthusian growth model 1815:Consumer-resource model 1672:Paradox of the plankton 1637:Energy systems language 1357:Chemoorganoheterotrophy 1324:Optimal foraging theory 1299:Heterotrophic nutrition 965:The American Naturalist 835:10.1073/pnas.0607971103 757:The American Naturalist 647:10.3733/hilg.v27n14p343 492:amphibian metamorphosis 126:Lotkaā€“Volterra equation 2468:Ecological forecasting 2412:Marginal value theorem 2210:Landscape epidemiology 2145:Cross-boundary subsidy 2080:Biological interaction 1430:Microbial intelligence 1118:Green world hypothesis 947:Metapopulation Ecology 599:Marine metapopulations 482:Life history evolution 463: 377: 332: 278: 174:extinction probability 102:University of Helsinki 31: 2473:Ecological humanities 2372:Ecological energetics 2317:Niche differentiation 2180:Habitat fragmentation 1948:Ecological extinction 1895:Small population size 1647:Feed conversion ratio 1627:Ecological succession 1559:San Francisco Estuary 1473:Ecological efficiency 1415:Microbial cooperation 583:10.1093/besa/15.3.237 547:Spatial heterogeneity 512:Competition (biology) 461: 437:habitat fragmentation 433:percolation threshold 378: 333: 279: 149:spatial heterogeneity 118:spatial heterogeneity 24: 2498:Evolutionary ecology 2463:Ecological footprint 2458:Ecological economics 2382:Ecological threshold 2377:Ecological indicator 2247:Sourceā€“sink dynamics 2200:Land change modeling 2195:Insular biogeography 2047:Species distribution 1786:Modelling ecosystems 1445:Microbial metabolism 1284:Intraguild predation 1073:Biogeochemical cycle 1039:Modelling ecosystems 869:Evolutionary Ecology 517:Conservation biology 488:ecological stability 476:evolutionary ecology 444:conservation biology 351: 302: 214: 83:sourceā€“sink dynamics 2606:Domains and methods 2548:Theoretical ecology 2523:Natural environment 2387:Ecosystem diversity 2357:Ecological collapse 2347:Bateman's principle 2302:Limiting similarity 2215:Landscape limnology 2037:Species homogeneity 1875:Population modeling 1870:Population dynamics 1687:Trophic state index 923:1996JAnEc..65..465B 881:2007EvEco..21..751P 826:2006PNAS..10317290K 718:1987Natur.326..388K 89:occupying discrete 52:fragmented habitats 48:population dynamics 2921:Population ecology 2652:Meta-communication 2559:Outline of ecology 2508:Industrial ecology 2503:Functional ecology 2367:Ecological deficit 2312:Niche construction 2275:Ecosystem engineer 2052:Speciesā€“area curve 1973:Introduced species 1788:: Other components 1720:Deimatic behaviour 1622:Ecological network 1554:North Pacific Gyre 1539:hydrothermal vents 1478:Ecological pyramid 1425:Microbial food web 1236:Primary production 1181:Foundation species 684:10.1007/BF00048036 464: 373: 328: 274: 120:were conducted by 96:Finnish biologist 91:patches of habitat 32: 2926:Landscape ecology 2908: 2907: 2786:Meta-organization 2781:Meta-optimization 2565: 2564: 2448:Balance of nature 2205:Landscape ecology 2090:Community ecology 2032:Species diversity 1968:Indicator species 1963:Gradient analysis 1840:Logistic function 1748: 1747: 1705:Animal coloration 1682:Trophic mutualism 1420:Microbial ecology 1211:Photoheterotrophs 1196:Myco-heterotrophy 1108:Ecosystem ecology 1093:Carrying capacity 1058:Abiotic component 820:(46): 17290ā€“295. 712:(6111): 388ā€“390, 522:Landscape ecology 472:landscape ecology 325: 235: 135:population cycles 2938: 2801:Metaepistemology 2618:Metabibliography 2592: 2585: 2578: 2569: 2265:Ecological niche 2237:selection theory 2057:Umbrella species 2042:Species richness 1978:Invasive species 1958:Flagship species 1865:Population cycle 1860:Overexploitation 1825:Ecological yield 1775: 1768: 1761: 1752: 1657:Mesotrophic soil 1597:Climax community 1529:Marine food webs 1468:Biomagnification 1269:Chemoorganotroph 1123:Keystone species 1083:Biotic component 1028: 1021: 1014: 1005: 988: 942: 901: 900: 864: 858: 857: 847: 837: 805: 799: 798: 780: 752: 746: 743: 737: 736: 726:10.1038/326388a0 701: 695: 694: 677: 657: 651: 650: 649: 640:(343): 343ā€“383, 629: 618: 611: 602: 595: 586: 585: 566: 382: 380: 379: 374: 341:and growth rate 337: 335: 334: 329: 326: 318: 283: 281: 280: 275: 236: 234: 226: 218: 156:The Levins model 2946: 2945: 2941: 2940: 2939: 2937: 2936: 2935: 2911: 2910: 2909: 2904: 2870:Meta-regulation 2845:Metaprogramming 2826:Metametaphysics 2746:Metamathematics 2601: 2596: 2566: 2561: 2552: 2538:Systems ecology 2426: 2397:Extinction debt 2362:Ecological debt 2352:Bioluminescence 2333: 2326: 2295:marine habitats 2270:Ecological trap 2251: 2131: 2124: 2067: 2061: 2017:Rapoport's rule 2012:Priority effect 1953:Endemic species 1921: 1880:Population size 1796: 1789: 1779: 1749: 1744: 1697: 1691: 1677:Trophic cascade 1587:Bioaccumulation 1570: 1497: 1454: 1376: 1343: 1240: 1152: 1113:Ecosystem model 1046: 1032: 995: 962: 908: 905: 904: 866: 865: 861: 807: 806: 802: 763:(5): 478ā€“4945. 754: 753: 749: 744: 740: 703: 702: 698: 675:10.1.1.330.8940 659: 658: 654: 631: 630: 621: 612: 605: 596: 589: 568: 567: 560: 555: 508: 484: 456: 425:contact process 401: 392: 349: 348: 300: 299: 227: 219: 212: 211: 158: 144: 110: 17: 12: 11: 5: 2944: 2942: 2934: 2933: 2928: 2923: 2913: 2912: 2906: 2905: 2903: 2902: 2897: 2892: 2887: 2882: 2877: 2872: 2867: 2865:Meta-reference 2862: 2857: 2855:Metapsychology 2852: 2850:Metapsychiatry 2847: 2842: 2840:Metapopulation 2837: 2832: 2831: 2830: 2829: 2828: 2818: 2813: 2808: 2803: 2796:Metaphilosophy 2793: 2788: 2783: 2778: 2773: 2768: 2766:Metamotivation 2763: 2758: 2753: 2748: 2743: 2738: 2737: 2736: 2731: 2729:Metapragmatics 2721: 2719:Meta-knowledge 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2685: 2684: 2674: 2669: 2664: 2659: 2654: 2649: 2648: 2647: 2642: 2632: 2631: 2630: 2620: 2615: 2609: 2607: 2603: 2602: 2597: 2595: 2594: 2587: 2580: 2572: 2563: 2562: 2557: 2554: 2553: 2551: 2550: 2545: 2540: 2535: 2530: 2525: 2520: 2518:Microecosystem 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2445: 2440: 2434: 2432: 2428: 2427: 2425: 2424: 2419: 2417:Thorson's rule 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2342:Assembly rules 2338: 2336: 2328: 2327: 2325: 2324: 2319: 2314: 2309: 2304: 2299: 2298: 2297: 2287: 2282: 2277: 2272: 2267: 2261: 2259: 2253: 2252: 2250: 2249: 2244: 2239: 2227: 2225:Patch dynamics 2222: 2220:Metapopulation 2217: 2212: 2207: 2202: 2197: 2192: 2187: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2147: 2142: 2136: 2134: 2126: 2125: 2123: 2122: 2117: 2115:Storage effect 2112: 2107: 2102: 2097: 2092: 2087: 2082: 2077: 2071: 2069: 2063: 2062: 2060: 2059: 2054: 2049: 2044: 2039: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 1999: 1997:Neutral theory 1994: 1989: 1984: 1982:Native species 1975: 1970: 1965: 1960: 1955: 1950: 1945: 1940: 1935: 1929: 1927: 1923: 1922: 1920: 1919: 1914: 1913: 1912: 1907: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1855:Overpopulation 1852: 1847: 1842: 1837: 1832: 1827: 1822: 1817: 1812: 1807: 1801: 1799: 1791: 1790: 1780: 1778: 1777: 1770: 1763: 1755: 1746: 1745: 1743: 1742: 1737: 1732: 1727: 1722: 1717: 1712: 1707: 1701: 1699: 1693: 1692: 1690: 1689: 1684: 1679: 1674: 1669: 1664: 1662:Nutrient cycle 1659: 1654: 1652:Feeding frenzy 1649: 1644: 1639: 1634: 1632:Energy quality 1629: 1624: 1619: 1614: 1609: 1604: 1599: 1594: 1592:Cascade effect 1589: 1584: 1578: 1576: 1572: 1571: 1569: 1568: 1567: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1526: 1521: 1516: 1511: 1505: 1503: 1499: 1498: 1496: 1495: 1490: 1485: 1480: 1475: 1470: 1464: 1462: 1456: 1455: 1453: 1452: 1447: 1442: 1437: 1435:Microbial loop 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1400:Lithoautotroph 1397: 1392: 1386: 1384: 1382:Microorganisms 1378: 1377: 1375: 1374: 1369: 1364: 1359: 1353: 1351: 1345: 1344: 1342: 1341: 1339:Prey switching 1336: 1331: 1326: 1321: 1316: 1311: 1306: 1301: 1296: 1291: 1286: 1281: 1276: 1271: 1266: 1261: 1256: 1250: 1248: 1242: 1241: 1239: 1238: 1233: 1228: 1223: 1218: 1216:Photosynthesis 1213: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1171:Chemosynthesis 1168: 1162: 1160: 1154: 1153: 1151: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1063:Abiotic stress 1060: 1054: 1052: 1048: 1047: 1033: 1031: 1030: 1023: 1016: 1008: 1002: 1001: 994: 993:External links 991: 990: 989: 977:10.1086/282900 960: 957: 943: 917:(4): 465ā€“473, 903: 902: 875:(6): 751ā€“764, 859: 800: 769:10.1086/303407 747: 738: 696: 652: 619: 603: 587: 577:(3): 237ā€“240, 557: 556: 554: 551: 550: 549: 544: 539: 534: 529: 524: 519: 514: 507: 504: 483: 480: 468:nanotechnology 455: 452: 429:patch dynamics 400: 397: 391: 388: 384: 383: 371: 368: 365: 362: 359: 356: 339: 338: 324: 321: 316: 313: 310: 307: 289:logistic model 285: 284: 272: 269: 266: 263: 260: 257: 254: 251: 248: 245: 242: 239: 233: 230: 225: 222: 157: 154: 143: 140: 109: 106: 44:Richard Levins 36:metapopulation 15: 13: 10: 9: 6: 4: 3: 2: 2943: 2932: 2929: 2927: 2924: 2922: 2919: 2918: 2916: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2880:Metasociology 2878: 2876: 2873: 2871: 2868: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2833: 2827: 2824: 2823: 2822: 2819: 2817: 2816:Meta-ontology 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2798: 2797: 2794: 2792: 2791:Metaphenomics 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2771:Metanarrative 2769: 2767: 2764: 2762: 2761:Metamodernism 2759: 2757: 2754: 2752: 2749: 2747: 2744: 2742: 2741:Metamaterials 2739: 2735: 2734:Metasemantics 2732: 2730: 2727: 2726: 2725: 2724:Meta-language 2722: 2720: 2717: 2715: 2712: 2710: 2707: 2705: 2704:Metaheuristic 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2683: 2680: 2679: 2678: 2675: 2673: 2672:Metadiscourse 2670: 2668: 2665: 2663: 2660: 2658: 2657:Metacomputing 2655: 2653: 2650: 2646: 2643: 2641: 2640:Meta-learning 2638: 2637: 2636: 2635:Metacognition 2633: 2629: 2626: 2625: 2624: 2621: 2619: 2616: 2614: 2613:Meta-analysis 2611: 2610: 2608: 2604: 2600: 2593: 2588: 2586: 2581: 2579: 2574: 2573: 2570: 2560: 2555: 2549: 2546: 2544: 2543:Urban ecology 2541: 2539: 2536: 2534: 2531: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2435: 2433: 2429: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2402:Kleiber's law 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2339: 2337: 2335: 2329: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2296: 2293: 2292: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2262: 2260: 2258: 2254: 2248: 2245: 2243: 2240: 2238: 2236: 2232: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2175:Foster's rule 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2138: 2137: 2135: 2133: 2127: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2096: 2093: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2072: 2070: 2064: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1930: 1928: 1924: 1918: 1915: 1911: 1908: 1906: 1903: 1902: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1802: 1800: 1798: 1792: 1787: 1783: 1776: 1771: 1769: 1764: 1762: 1757: 1756: 1753: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1702: 1700: 1694: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1579: 1577: 1573: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1531: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1506: 1504: 1500: 1494: 1493:Trophic level 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1465: 1463: 1461: 1457: 1451: 1450:Phage ecology 1448: 1446: 1443: 1441: 1440:Microbial mat 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1395:Bacteriophage 1393: 1391: 1388: 1387: 1385: 1383: 1379: 1373: 1370: 1368: 1365: 1363: 1362:Decomposition 1360: 1358: 1355: 1354: 1352: 1350: 1346: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1310: 1309:Mesopredators 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1290: 1287: 1285: 1282: 1280: 1277: 1275: 1272: 1270: 1267: 1265: 1262: 1260: 1257: 1255: 1254:Apex predator 1252: 1251: 1249: 1247: 1243: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1163: 1161: 1159: 1155: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1088:Biotic stress 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1055: 1053: 1049: 1044: 1040: 1036: 1029: 1024: 1022: 1017: 1015: 1010: 1009: 1006: 1000: 997: 996: 992: 986: 982: 978: 974: 970: 966: 961: 958: 956: 955:0-19-854065-5 952: 948: 944: 940: 936: 932: 928: 924: 920: 916: 912: 907: 906: 898: 894: 890: 886: 882: 878: 874: 870: 863: 860: 855: 851: 846: 841: 836: 831: 827: 823: 819: 815: 811: 804: 801: 796: 792: 788: 784: 779: 774: 770: 766: 762: 758: 751: 748: 742: 739: 735: 731: 727: 723: 719: 715: 711: 707: 700: 697: 693: 689: 685: 681: 676: 671: 667: 663: 662:Plant Ecology 656: 653: 648: 643: 639: 635: 628: 626: 624: 620: 616: 610: 608: 604: 600: 594: 592: 588: 584: 580: 576: 572: 565: 563: 559: 552: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 509: 505: 503: 501: 497: 493: 489: 481: 479: 477: 473: 469: 460: 453: 451: 449: 448:probabilistic 445: 440: 438: 434: 431:. At a given 430: 426: 422: 418: 414: 410: 406: 405:deterministic 398: 396: 389: 387: 369: 366: 363: 360: 357: 354: 347: 346: 345: 344: 322: 319: 314: 311: 308: 305: 298: 297: 296: 294: 290: 270: 267: 264: 261: 255: 252: 249: 243: 240: 237: 231: 228: 223: 220: 210: 209: 208: 206: 202: 198: 194: 190: 186: 182: 178: 175: 171: 167: 162: 155: 153: 150: 139: 136: 131: 127: 123: 119: 115: 107: 105: 103: 99: 94: 92: 86: 84: 79: 77: 76:rescue effect 73: 72:rescue effect 67: 65: 61: 60:stochasticity 55: 53: 49: 45: 41: 37: 29: 23: 19: 2839: 2835:Metapolitics 2756:Metamodeling 2699:Metagenomics 2677:Meta-emotion 2628:Semantic Web 2528:Regime shift 2513:Macroecology 2234: 2230: 2219: 2170:Edge effects 2140:Biogeography 2085:Commensalism 1933:Biodiversity 1810:Allee effect 1549:kelp forests 1502:Example webs 1367:Detritivores 1206:Organotrophs 1186:Kinetotrophs 1138:Productivity 971:(960): 207, 968: 964: 946: 931:10.2307/5781 914: 910: 872: 868: 862: 817: 813: 803: 778:10533/172124 760: 756: 750: 741: 709: 705: 699: 665: 661: 655: 637: 633: 614: 598: 574: 570: 496:vernal ponds 485: 465: 441: 402: 393: 385: 342: 340: 292: 286: 204: 200: 196: 192: 184: 180: 176: 169: 165: 163: 159: 145: 130:oscillations 111: 98:Ilkka Hanski 95: 87: 80: 71: 68: 56: 35: 33: 18: 2890:Metatheorem 2885:Meta-system 2875:Metascience 2821:Metaphysics 2776:Meta-object 2709:Metahistory 2689:Metafiction 2165:Disturbance 2068:interaction 1890:Recruitment 1820:Depensation 1612:Copiotrophs 1483:Energy flow 1405:Lithotrophy 1349:Decomposers 1329:Planktivore 1304:Insectivore 1294:Heterotroph 1259:Bacterivore 1226:Phototrophs 1176:Chemotrophs 1148:Restoration 1098:Competition 945:Hanski, I. 532:Oscillation 122:G. F. Gause 64:demographic 2931:Population 2915:Categories 2895:Metatheory 2860:Metapuzzle 2806:Metaethics 2694:Metagaming 2667:Metadesign 2645:Metamemory 2533:Sexecology 2110:Parasitism 2075:Antibiosis 1910:Resistance 1905:Resilience 1795:Population 1715:Camouflage 1667:Oligotroph 1582:Ascendency 1544:intertidal 1534:cold seeps 1488:Food chain 1289:Herbivores 1264:Carnivores 1191:Mixotrophs 1166:Autotrophs 1045:components 668:(2): 107, 553:References 466:Combining 415:, and the 409:stochastic 74:). Such a 2900:Metaverse 2811:Metalogic 2751:Metamedia 2714:Metahumor 2623:Metaclass 2438:Allometry 2392:Emergence 2120:Symbiosis 2105:Mutualism 1900:Stability 1805:Abundance 1617:Dominance 1575:Processes 1564:tide pool 1460:Food webs 1334:Predation 1319:Omnivores 1246:Consumers 1201:Mycotroph 1158:Producers 1103:Ecosystem 1068:Behaviour 670:CiteSeerX 634:Hilgardia 542:Predation 494:in small 364:− 315:− 295:given by 262:− 253:− 189:propagule 114:predation 28:gene flow 2682:Metamood 2662:Metadata 2493:Endolith 2422:Xerosere 2334:networks 2150:Ecocline 1696:Defense, 1372:Detritus 1274:Foraging 1143:Resource 985:83630608 897:38832436 854:17090676 787:29587508 692:17101938 506:See also 500:neotenes 413:habitats 2483:Ecopath 2290:Habitat 2160:Ecotype 2155:Ecotone 2132:ecology 2130:Spatial 2066:Species 1926:Species 1797:ecology 1782:Ecology 1730:Mimicry 1698:counter 1642:f-ratio 1390:Archaea 1078:Biomass 1051:General 1043:Trophic 1035:Ecology 919:Bibcode 877:Bibcode 845:1635019 822:Bibcode 795:4385886 734:4335135 714:Bibcode 421:extinct 100:of the 40:species 1514:Rivers 1410:Marine 983:  953:  937:  895:  852:  842:  793:  785:  732:  706:Nature 690:  672:  2599:Meta- 2431:Other 2332:Other 2285:Guild 2257:Niche 1509:Lakes 981:S2CID 935:JSTOR 893:S2CID 791:S2CID 730:S2CID 688:S2CID 470:with 207:, is 205:dN/dt 1519:Soil 951:ISBN 939:5781 850:PMID 814:PNAS 783:PMID 442:For 201:cNdt 164:Let 116:and 973:doi 969:108 927:doi 885:doi 840:PMC 830:doi 818:103 773:hdl 765:doi 761:156 722:doi 710:326 680:doi 642:doi 579:doi 490:of 187:of 177:edt 2917:: 1980:/ 1784:: 1041:: 1037:: 979:, 967:, 933:, 925:, 915:65 913:, 891:, 883:, 873:21 871:, 848:. 838:. 828:. 816:. 812:. 789:. 781:. 771:. 759:. 728:, 720:, 708:, 686:, 678:, 666:80 664:, 638:27 636:, 622:^ 606:^ 590:^ 575:15 573:, 561:^ 478:. 435:, 197:dt 170:dt 34:A 2591:e 2584:t 2577:v 2235:K 2233:/ 2231:r 1774:e 1767:t 1760:v 1027:e 1020:t 1013:v 987:. 975:: 941:. 929:: 921:: 899:. 887:: 879:: 856:. 832:: 824:: 797:. 775:: 767:: 724:: 716:: 682:: 644:: 581:: 370:. 367:e 361:c 358:= 355:r 343:r 323:c 320:e 312:1 309:= 306:K 293:K 271:. 268:N 265:e 259:) 256:N 250:1 247:( 244:N 241:c 238:= 232:t 229:d 224:N 221:d 193:N 185:c 181:N 166:N

Index


gene flow
species
Richard Levins
population dynamics
fragmented habitats
stochasticity
demographic
rescue effect
sourceā€“sink dynamics
patches of habitat
Ilkka Hanski
University of Helsinki
predation
spatial heterogeneity
G. F. Gause
Lotkaā€“Volterra equation
oscillations
population cycles
spatial heterogeneity
extinction probability
propagule
logistic model
deterministic
stochastic
habitats
viability of their populations
extinct
contact process
patch dynamics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘