Knowledge (XXG)

Microchannel plate detector

Source đź“ť

370:
independent striplines are needed. At both ends the meanders are connected to detector electronics. These electronics convert the measured delays into X- (first layer) and Y-coordinates (second layer). Sometimes a hexagonal grid and 3 coordinates are used. This redundancy reduces the dead space-time by reducing the maximum travel distance and thus the maximum delay, allowing for faster measurements. The microchannel plate detector must not operate over around 60 degree Celsius, otherwise it will degrade rapidly, bakeout without voltage has no influence.
272:). If the DC block is used in the outer conductor, it is aligned in parallel with the larger capacitor in the power supply. Assuming good screening, the only noise is due to current noise from the linear power regulator. Because the current is low in this application and space for large capacitors is available, and because the DC-block capacitor is fast, it is possible to have very low voltage noise, so that even weak MCP signals can be detected. Sometimes the preamplifier is on a potential ( 177:(v-like) shape. In a chevron MCP, the electrons that exit the first plate start the cascade in the next plate. The angle between the channels reduces ion feedback in the device, as well as producing significantly more gain at a given voltage, compared to a straight channel MCP. The two MCPs can either be pressed together to preserve spatial resolution, or have a small gap between them to spread the charge across multiple channels, which further increases the gain. 1324: 296: 288: 268:, that is, a capacitor. Often it is chosen to only have 10-fold capacitance compared to the MCP-anode capacitance and is implemented as a plate capacitor. Rounded, electro-polished metal plates and the ultra high vacuum allow very high field strengths and high capacitance without a dielectric. The bias for the center conductor is applied via resistors hanging through the waveguide (see 361:
electrons through a 30 ÎĽm hole of a grounded sheet of aluminium. Behind that, a cylinder of the same size follows. The electron cloud induces a 300 ps negative pulse when entering the cylinder and a positive when leaving. After that another sheet, a second cylinder follows, and a last sheet follows. Effectively the cylinders are fused into the center-conductor of a
1348: 166: 1336: 27: 202: 144:
Although in many cases the collecting anode functions as the detecting element, the MCP itself can also be used as a detector. The discharging and recharging of the plate produced by the electron cascade, can be decoupled from the high voltage applied to the plate and measured, to directly produce a
136:
A particle or photon that enters one of the channels through a small orifice is guaranteed to hit the wall of the channel, due to the channel being at an angle to the plate. The impact starts a cascade of electrons that propagates through the channel, amplifying the original signal by several orders
303:
The gain of an MCP is very noisy, especially for single particles. With two thick MCPs (>1 mm) and small channels (< 10 ÎĽm), saturation occurs, especially at the ends of the channels after many electron multiplications have taken place. The last stages of the following semiconductor
360:
In a delay line detector the electrons are accelerated to 500 eV between the back of the last MCP and a grid. They then fly for 5 mm and are dispersed over an area of 2 mm. A grid follows. Each element has a diameter of 1 mm and consists of an electrostatic lens focusing arriving
369:
and ringing. These striplines meander across the anode to connect all cylinders, to offer each cylinder 50 Ω impedance, and to generate a position dependent delay. Because the turns in the stripline adversely affect the signal quality their number is limited and for higher resolutions multiple
323:
Because MCPs have a fixed charge that they can amplify in their life, the second MCP especially, has a lifetime problem. It is important to use thin MCPs, low voltage and instead of greater voltage, more sensitive and fast semiconductor amplifiers after the anode. (see:
124:
At non-relativistic energies, single particles generally produce effects too small to enable their direct detection. The microchannel plate functions as a particle amplifier, turning a single impinging particle into a cloud of electrons. By applying a strong
347:
limits the measurement of the time structure of the MCP signal. With fast amplification schemes, however, it is possible to have valuable information on the signal amplitude even at very low signal levels, yet not on the time structure information of the
398:
A 1 GHz real-time display CRT for an analog oscilloscope (the Tektronix 7104) used a microchannel plate placed behind the phosphor screen to intensify the image. Without the plate, the image would be excessively dim, because of the electron-optical
140:
The electrons exit the channels on the opposite side of the plate, where they are collected on an anode. Some anodes are designed to allow spatially resolved ion collection, producing an image of the particles or photons incident on the plate.
672:
Westmacott, G.; Frank, M.; Labov, S. E.; Benner, W. H. (2000). "Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions".
232:
The anode is a 0.4 mm thick plate with an edge of 0.2 mm radius to avoid high field strengths. It is just large enough to cover the active area of the MCP, because the backside of the last MCP, and the anode, together act as a
148:
The gain of an MCP is very noisy, meaning that two identical particles detected in succession will often produce wildly different signal magnitudes. The temporal jitter resulting from the peak height variation can be removed by using a
710:
Gaire, B.; Sayler, A. M.; Wang, P. Q.; Johnson, N. G.; Leonard, M.; Parke, E.; Carnes, K. D.; Ben-Itzhak, I. (2007). "Determining the absolute efficiency of a delay line microchannel-plate detector using molecular dissociation".
464:; Kelleher, J.F.; Vallerga, J.V.; Siegmund, O.H.W.; Feller, W.B. (28 September 2011). "High-Resolution Strain Mapping Through Time-of-Flight Neutron Transmission Diffraction with a Microchannel Plate Neutron Counting Detector". 137:
of magnitude, depending on the electric field strength and the geometry of the microchannel plate. After the cascade, the microchannel takes time to recover (or recharge) before it can detect another signal.
1068: 108:
material (most often glass) 0.5 to 2mm thick with a regular array of tiny tubes (microchannels) leading from one face to the other. The microchannels are typically 5-20
1251: 1246: 998: 264:
The typical 500 volts between the backside of the last MCP and the anode cannot be fed directly into the preamplifier; the inner or the outer conductor needs a
249:
conducts this around the edge of the anode plate. A torus is the optimum compromise between low capacitance and short path and for similar reasons, usually no
1103: 1053: 1241: 1063: 914: 261:
can be used. To save space and make the impedance match less critical, the taper is often reduced to a small 45° cone on the backside of the anode plate.
1078: 1352: 1269: 1159: 316:. That means that the MCP and the preamplifier are used in the linear region (space charge negligible) and the pulse shape is assumed to be due to an 1236: 978: 1304: 205:
A microchannel plate within a Finnigan MAT 900 sector mass spectrometer position-and-time-resolved-ion-counting (PATRIC) scanning array detector
1294: 1058: 983: 559: 988: 217:
to the acceleration optics (for electron detection), each MCP, the gap between the MCPs, the backside of the last MCP, and the collector (
1221: 1018: 1008: 960: 173:
Most modern MCP detectors consist of two microchannel plates with angled channels, rotated 180° from each other - producing a shallow
1299: 1261: 1083: 612: 1284: 1139: 1048: 1013: 694: 1088: 907: 313: 185:
This is an assembly of three microchannel plates with channels aligned in a Z shape. Single MCPs can have gain up to 10,000 (40
150: 153:. Thusly employed, MCPs are capable of measuring particle arrival times with high resolution, making them ideal detectors for 1289: 1274: 771: 1384: 1279: 1226: 624:
Matsuura, S.; Umebayashi, S.; Okuyama, C.; Oba, K. (1985). "Characteristics of the newly developed MCP and its assembly".
575:
S-O Flyckt and C. Marmonier, Photomultiplier Tubes — Principles and Applications. Photonis, Brive, France, 2002, page 1-20
1200: 882: 1309: 1003: 1340: 1399: 440: 340: 116:). Plates are often round disks, but can be cut to any shape from sizes 10mm up to 200mm. They may also be curved. 402:
MCP detectors are often employed in instrumentation for physical research, and they can be found in devices such as
1374: 1328: 955: 900: 309: 588: 1389: 1231: 1216: 1144: 1129: 934: 365:. The sheets minimize cross talk between the layers and adjacent lines in the same layer, which would lead to 1394: 1028: 1379: 1098: 516: 226: 1033: 403: 105: 96:. Because a microchannel plate detector has many separate channels, it can provide spatial resolution. 887: 806: 720: 682: 633: 551: 508: 388: 253:(Markor) is placed into this region. After a 90° turn of the torus it is possible to attach a large 112:
in diameter, parallel to each other and enter the plate at a small angle to the surface (8-13° from
1180: 1149: 1023: 993: 797: 521: 430: 366: 130: 85: 44: 1108: 783: 649: 481: 325: 174: 93: 304:
amplifier chain also go into saturation. A pulse of varying length, but stable height and a low
923: 775: 746: 698: 555: 545: 435: 420: 407: 384: 291:
Fast MCP electronics featuring a high voltage UHV capacitor (the grey line from bottom to top)
154: 113: 1093: 1073: 1038: 814: 767: 736: 728: 690: 641: 526: 473: 317: 758:
Richards, P.; Lees, J. (2002). "Functional proteomics using microchannel plate detectors".
574: 461: 339:), pulses overlap. In this case, a high impedance (slow, but less noisy) amplifier and an 336: 210: 299:
Almost as fast MCP electronics featuring a high voltage UHV capacitor and minimum ceramic
810: 724: 686: 637: 512: 1043: 343:
are used. Since the output signal from the MCP is generally small, the presence of the
222: 126: 818: 1368: 1190: 950: 530: 485: 477: 425: 391:, which amplify visible and invisible light to make dark surroundings visible to the 344: 281: 258: 254: 40: 787: 653: 1154: 1195: 1134: 1113: 380: 287: 277: 238: 77: 970: 868: 861: 854: 847: 840: 833: 826: 295: 250: 242: 109: 645: 392: 362: 234: 779: 750: 702: 165: 795:
Michael Lampton (November 1, 1981). "The Microchannel Image Intensifier".
1164: 349: 332: 269: 265: 129:
across the MCP, each individual microchannel becomes a continuous-dynode
89: 88:, as both intensify single particles or photons by the multiplication of 61: 695:
10.1002/1097-0231(20001015)14:19<1854::AID-RCM102>3.0.CO;2-M
190: 186: 69: 741: 732: 305: 81: 73: 892: 772:
10.1002/1615-9861(200203)2:3<256::AID-PROT256>3.0.CO;2-K
294: 286: 246: 218: 201: 200: 164: 26: 320:, with variable height but fixed shape, from a single particle. 214: 896: 939: 65: 460:
Tremsin, A.S.; McPhate, J.B.; Steuwer, A.; Kockelmann, W.;
189:) but this system can provide gain more than 10 million (70 31:
Schematic diagram of the operation of a microchannel plate
544:
Wolfgang Göpel; Joachim Hesse; J. N. Zemel (2008-09-26).
245:
positive charge in the backside metalization. A hollow
241:
slows down the signal. The positive charge in the MCP
145:
signal corresponding to a single particle or photon.
1260: 1209: 1173: 1122: 969: 331:With high count rates or slow detectors (MCPs with 276:) and gets its power through a low-power isolation 257:. A taper permits minimizing the radius so that an 36: 312:. The jitter can be further reduced by means of a 499:Wiza, J. (1979). "Microchannel plate detectors". 908: 8: 19: 326:Secondary emission#Special amplifying tubes 915: 901: 893: 883:Microchannel Plate Principles of Operation 169:Dual microchannel plate detector schematic 25: 740: 675:Rapid Communications in Mass Spectrometry 520: 383:application of microchannel plates is in 104:A microchannel plate is a slab made from 452: 237:with 2 mm separation - and large 225:of the electrons and in this way, the 60:) is used to detect single particles ( 18: 587:Gemmeke, Hartmut (11 November 1998). 7: 1335: 626:IEEE Transactions on Nuclear Science 16:Detection single parties and photons 1347: 14: 819:10.1038/scientificamerican1181-62 221:). The last voltage dictates the 1346: 1334: 1323: 1322: 713:Review of Scientific Instruments 613:Internet Archive Wayback Machine 478:10.1111/j.1475-1305.2011.00823.x 501:Nuclear Instruments and Methods 314:constant fraction discriminator 151:constant fraction discriminator 84:). It is closely related to an 1: 531:10.1016/0029-554X(79)90734-1 308:leading edge is sent to the 1186:Microchannel plate detector 888:NASA's Imagine the Universe 441:Nanochannel glass materials 20:Microchannel plate detector 1416: 1318: 930: 589:"Memo on photomultiplier" 310:time to digital converter 24: 1201:Langmuir–Taylor detector 646:10.1109/TNS.1985.4336854 547:Sensors, Optical Sensors 385:image intensifier tubes 280:and outputs its signal 1145:Quadrupole mass filter 719:(2): 024503–024503–5. 300: 292: 206: 170: 869:U.S. patent 4,780,395 862:U.S. patent 7,990,032 855:U.S. patent 4,153,855 848:U.S. patent 3,979,621 841:U.S. patent 7,420,147 834:U.S. patent 5,265,327 827:U.S. patent 5,565,729 552:John Wiley & Sons 298: 290: 213:is used to apply 100 204: 168: 1385:Laboratory equipment 593:web.physics.utah.edu 389:night vision goggles 1181:Electron multiplier 1150:Quadrupole ion trap 811:1981SciAm.245e..62L 798:Scientific American 725:2007RScI...78b4503G 687:2000RCMS...14.1854W 638:1985ITNS...32..350M 513:1979NucIM.162..587L 431:Night vision device 356:Delay line detector 335:screen or discrete 131:electron multiplier 86:electron multiplier 45:Electron multiplier 21: 1400:Physical chemistry 408:mass spectrometers 301: 293: 207: 171: 155:mass spectrometers 94:secondary emission 54:microchannel plate 1375:Mass spectrometry 1362: 1361: 924:Mass spectrometry 733:10.1063/1.2671497 681:(19): 1854–1861. 561:978-3-527-26772-9 554:. pp. 260–. 436:Image intensifier 421:Particle detector 367:signal dispersion 255:coaxial waveguide 50: 49: 1407: 1350: 1349: 1338: 1337: 1326: 1325: 917: 910: 903: 894: 871: 864: 857: 850: 843: 836: 829: 822: 791: 754: 744: 706: 658: 657: 621: 615: 610: 604: 603: 601: 599: 584: 578: 572: 566: 565: 541: 535: 534: 524: 507:(1–3): 587–601. 496: 490: 489: 462:Paradowska, A.M. 457: 337:photomultipliers 318:impulse response 29: 22: 1415: 1414: 1410: 1409: 1408: 1406: 1405: 1404: 1390:Optical devices 1365: 1364: 1363: 1358: 1314: 1256: 1205: 1169: 1118: 965: 926: 921: 879: 874: 867: 860: 853: 846: 839: 832: 825: 794: 757: 709: 671: 667: 662: 661: 623: 622: 618: 611: 607: 597: 595: 586: 585: 581: 573: 569: 562: 543: 542: 538: 498: 497: 493: 459: 458: 454: 449: 417: 376: 374:Examples of use 358: 211:voltage divider 199: 183: 163: 122: 102: 43: 32: 17: 12: 11: 5: 1413: 1411: 1403: 1402: 1397: 1395:Photodetectors 1392: 1387: 1382: 1377: 1367: 1366: 1360: 1359: 1357: 1356: 1344: 1332: 1319: 1316: 1315: 1313: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1266: 1264: 1258: 1257: 1255: 1254: 1249: 1244: 1239: 1234: 1229: 1224: 1219: 1213: 1211: 1210:MS combination 1207: 1206: 1204: 1203: 1198: 1193: 1188: 1183: 1177: 1175: 1171: 1170: 1168: 1167: 1162: 1157: 1152: 1147: 1142: 1140:Time-of-flight 1137: 1132: 1126: 1124: 1120: 1119: 1117: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1071: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 986: 981: 975: 973: 967: 966: 964: 963: 958: 953: 948: 937: 931: 928: 927: 922: 920: 919: 912: 905: 897: 891: 890: 885: 878: 877:External links 875: 873: 872: 865: 858: 851: 844: 837: 830: 823: 792: 766:(3): 256–261. 755: 707: 668: 666: 663: 660: 659: 632:(1): 350–354. 616: 605: 579: 567: 560: 536: 522:10.1.1.119.933 491: 472:(4): 296–305. 451: 450: 448: 445: 444: 443: 438: 433: 428: 423: 416: 413: 412: 411: 400: 396: 375: 372: 357: 354: 223:time of flight 198: 195: 182: 179: 162: 159: 127:electric field 121: 120:Operating mode 118: 101: 98: 80:radiation and 48: 47: 38: 34: 33: 30: 15: 13: 10: 9: 6: 4: 3: 2: 1412: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1380:Image sensors 1378: 1376: 1373: 1372: 1370: 1355: 1354: 1345: 1343: 1342: 1333: 1331: 1330: 1321: 1320: 1317: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1267: 1265: 1263: 1262:Fragmentation 1259: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1214: 1212: 1208: 1202: 1199: 1197: 1194: 1192: 1191:Daly detector 1189: 1187: 1184: 1182: 1179: 1178: 1176: 1172: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1127: 1125: 1123:Mass analyzer 1121: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1002: 1000: 997: 995: 992: 990: 987: 985: 982: 980: 977: 976: 974: 972: 968: 962: 959: 957: 954: 952: 951:Mass spectrum 949: 947: 946: 942: 938: 936: 933: 932: 929: 925: 918: 913: 911: 906: 904: 899: 898: 895: 889: 886: 884: 881: 880: 876: 870: 866: 863: 859: 856: 852: 849: 845: 842: 838: 835: 831: 828: 824: 820: 816: 812: 808: 804: 800: 799: 793: 789: 785: 781: 777: 773: 769: 765: 761: 756: 752: 748: 743: 738: 734: 730: 726: 722: 718: 714: 708: 704: 700: 696: 692: 688: 684: 680: 676: 670: 669: 664: 655: 651: 647: 643: 639: 635: 631: 627: 620: 617: 614: 609: 606: 594: 590: 583: 580: 576: 571: 568: 563: 557: 553: 549: 548: 540: 537: 532: 528: 523: 518: 514: 510: 506: 502: 495: 492: 487: 483: 479: 475: 471: 467: 463: 456: 453: 446: 442: 439: 437: 434: 432: 429: 427: 426:Photodetector 424: 422: 419: 418: 414: 409: 405: 401: 397: 394: 390: 386: 382: 378: 377: 373: 371: 368: 364: 355: 353: 351: 346: 345:thermal noise 342: 338: 334: 329: 327: 321: 319: 315: 311: 307: 297: 289: 285: 283: 279: 275: 271: 267: 262: 260: 259:SMA connector 256: 252: 248: 244: 240: 236: 230: 228: 224: 220: 216: 212: 203: 196: 194: 192: 188: 180: 178: 176: 167: 160: 158: 156: 152: 146: 142: 138: 134: 132: 128: 119: 117: 115: 111: 107: 99: 97: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 46: 42: 41:Daly detector 39: 37:Related items 35: 28: 23: 1351: 1339: 1327: 1185: 1155:Penning trap 944: 940: 805:(5): 62–71. 802: 796: 763: 759: 716: 712: 678: 674: 665:Bibliography 629: 625: 619: 608: 596:. Retrieved 592: 582: 570: 546: 539: 504: 500: 494: 469: 465: 455: 359: 330: 322: 302: 273: 263: 231: 209:An external 208: 197:The detector 184: 172: 147: 143: 139: 135: 123: 103: 100:Basic design 57: 53: 51: 1353:WikiProject 1196:Faraday cup 1135:Wien filter 956:MS software 381:mass-market 278:transformer 239:capacitance 227:pulse-width 181:Z stack MCP 161:Chevron MCP 110:micrometers 78:ultraviolet 1369:Categories 971:Ion source 760:Proteomics 742:2097/43729 598:5 November 447:References 274:off ground 251:dielectric 243:influences 1232:Hybrid MS 517:CiteSeerX 486:136775629 393:human eye 363:stripline 352:signals. 282:optically 235:capacitor 106:resistive 90:electrons 62:electrons 1329:Category 1174:Detector 1165:Orbitrap 961:Acronyms 788:44466566 780:11921441 751:17578132 703:11006596 654:37395966 415:See also 404:electron 350:wideband 333:phosphor 270:bias tee 266:DC block 70:neutrons 1341:Commons 1069:MALDESI 807:Bibcode 721:Bibcode 683:Bibcode 634:Bibcode 509:Bibcode 399:design. 175:chevron 74:photons 1247:IMS/MS 1160:FT-ICR 1130:Sector 786:  778:  749:  701:  652:  558:  519:  484:  466:Strain 306:jitter 114:normal 82:X-rays 72:) and 1300:IRMPD 1252:CE-MS 1242:LC/MS 1237:GC/MS 1217:MS/MS 1104:SELDI 1064:MALDI 1059:LAESI 999:DAPPI 784:S2CID 650:S2CID 482:S2CID 247:torus 219:anode 215:volts 1305:NETD 1270:BIRD 1089:SIMS 1084:SESI 1019:EESI 1014:DIOS 1009:DESI 1004:DART 989:APPI 984:APLI 979:APCI 935:Mass 776:PMID 747:PMID 699:PMID 600:2023 556:ISBN 406:and 379:The 328:,). 92:via 68:and 66:ions 1310:SID 1295:HCD 1290:ETD 1285:EDD 1280:ECD 1275:CID 1227:AMS 1222:QqQ 1099:SSI 1079:PTR 1074:MIP 1054:ICP 1034:FAB 1029:ESI 815:doi 803:245 768:doi 737:hdl 729:doi 691:doi 642:doi 527:doi 505:162 474:doi 387:of 341:ADC 193:). 58:MCP 1371:: 1114:TS 1109:TI 1094:SS 1049:IA 1044:GD 1039:FD 1024:EI 994:CI 813:. 801:. 782:. 774:. 762:. 745:. 735:. 727:. 717:78 715:. 697:. 689:. 679:14 677:. 648:. 640:. 630:32 628:. 591:. 550:. 525:. 515:. 503:. 480:. 470:48 468:. 284:. 229:. 191:dB 187:dB 157:. 133:. 64:, 52:A 945:z 943:/ 941:m 916:e 909:t 902:v 821:. 817:: 809:: 790:. 770:: 764:2 753:. 739:: 731:: 723:: 705:. 693:: 685:: 656:. 644:: 636:: 602:. 577:. 564:. 533:. 529:: 511:: 488:. 476:: 410:. 395:. 76:( 56:(

Index


Daly detector
Electron multiplier
electrons
ions
neutrons
photons
ultraviolet
X-rays
electron multiplier
electrons
secondary emission
resistive
micrometers
normal
electric field
electron multiplier
constant fraction discriminator
mass spectrometers

chevron
dB
dB

voltage divider
volts
anode
time of flight
pulse-width
capacitor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑