Knowledge (XXG)

Electron multiplier

Source 📝

17: 77: 118: 114:(MCP). It may be considered a 2-dimensional parallel array of very small continuous-dynode electron multipliers, built together and powered in parallel. Each microchannel is generally parallel-walled, not tapered or funnel-like. MCPs are constructed from lead glass and carry a resistance of 10 Ω between each electrode. Each channel has a diameter of 10-100 μm. The electron gain for one microchannel plate can be around 10-10 electrons. 849: 98: 873: 861: 156:
Microchannel plates are also used in night-vision goggles. As electrons hit the millions of channels, they release thousands of secondary electrons. These electrons then hit a phosphor screen where they are amplified and converted back into light. The resulting image patterns the original and allows
72:
Secondary electron emission begins when one electron hits a dynode inside a vacuum chamber and ejects electrons that cascade onto more dynodes and repeats the process over again. The dynodes are set up so that each time an electron hits the next one it will have an increase of about 100 electron
93:
materials. The electrodes have increasing resistance to allow secondary emission. Continuous dynodes use a negative high voltage in the wider end and goes to a positive near ground at the narrow end. The first device of this kind was called a Channel Electron Multiplier (CEM). CEMs required 2-4
64:, or secondary electron emitters, in a single tube to remove secondary electrons by increasing the electric potential through the device. The electron multiplier can use any number of dynodes in total, which use a coefficient, σ, and created a gain of σ where n is the number of emitters. 139:
electron multipliers are often used as a detector of ions that have been separated by a mass analyzer of some sort. They can be the continuous-dynode type and may have a curved horn-like funnel shape or can have discrete dynodes as in a
593: 48:
of still more electrons. This can be repeated a number of times, resulting in a large shower of electrons all collected by a metal anode, all having been triggered by just one.
271:
Tao, S., Chan, H., & van der Graaf, H. (2016). Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review. Materials, 9(12), 1017.
73:
Volts greater than the last dynode. Some advantages of using this include a response time in the picoseconds, a high sensitivity, and an electron gain of about 10 electrons.
776: 771: 523: 628: 578: 766: 588: 439: 603: 877: 794: 684: 412: 761: 145: 503: 829: 819: 583: 508: 513: 746: 407: 543: 533: 485: 824: 786: 608: 144:. Continuous dynode electron multipliers are also used in NASA missions and are coupled to a gas chromatography mass spectrometer ( 809: 664: 573: 538: 613: 432: 44:
is applied between this metal plate and yet another, the emitted electrons will accelerate to the next metal plate and induce
899: 814: 799: 919: 804: 751: 386: 725: 834: 528: 865: 710: 909: 904: 853: 480: 425: 756: 741: 669: 654: 459: 148:) which allows scientists to determine the amount and types of gasses present on Titan, Saturn's largest moon. 553: 16: 623: 338: 558: 186: 181: 157:
for better vision in the dark, while only using a small battery pack to provide a voltage for the MCP.
76: 330: 293: 226: 674: 548: 518: 343: 196: 117: 633: 111: 45: 41: 29: 284:
Burroughs, E. G. (1969), "Collection Efficiency of Continuous Dynode Electron Multiple Arrays",
914: 448: 136: 618: 598: 563: 367: 348: 301: 234: 141: 89:
A continuous dynode system uses a horn-shaped funnel of glass coated with a thin film of
334: 297: 230: 56:
In 1930, Russian physicist Leonid Aleksandrovitch Kubetsky proposed a device which used
568: 90: 253: 36:
can, when bombarded on secondary-emissive material, induce emission of roughly 1 to 3
893: 715: 475: 352: 171: 97: 679: 57: 28:
is a vacuum-tube structure that multiplies incident charges. In a process called
720: 659: 638: 166: 495: 191: 20:
Contrasting differences between discrete and continuous electron multipliers.
217:
Allen, James S. (1947), "An Improved Electron Multiplier Particle Counter",
176: 689: 37: 33: 110:
Another geometry of continuous-dynode electron multiplier is called the
305: 238: 61: 417: 272: 116: 96: 75: 15: 421: 464: 321:
Wiza, Joseph L. (1979), "Microchannel plate detectors",
387:"Image Intensification: The Technology of Night Vision" 94:
kilovolts in order to achieve a gain of 10 electrons.
261:. CERN. Institute for Nuclear Research of RAS: CERN. 785: 734: 698: 647: 494: 255:On the history of photomultiplier tube invention 433: 413:How Discrete Dynode Electron Multipliers work 8: 440: 426: 418: 342: 209: 316: 314: 101:Continuous-dynode electron multiplier 7: 860: 872: 14: 273:https://doi.org/10.3390/ma9121017 121:Microchannel plate with breakdown 871: 859: 848: 847: 286:Review of Scientific Instruments 219:Review of Scientific Instruments 323:Nuclear Instruments and Methods 80:A discrete electron multiplier 1: 368:"Mass Spectrometer: Detector" 353:10.1016/0029-554X(79)90734-1 252:Lubsandorzhiev, B.K. (ed.). 711:Microchannel plate detector 936: 843: 455: 726:Langmuir–Taylor detector 670:Quadrupole mass filter 122: 102: 81: 21: 900:Measuring instruments 187:Scintillation counter 182:Photo-multiplier tube 120: 100: 79: 19: 920:Analytical chemistry 706:Electron multiplier 675:Quadrupole ion trap 335:1979NucIM.162..587L 298:1969RScI...40...35B 231:1947RScI...18..739A 26:electron multiplier 123: 112:microchannel plate 106:Microchannel plate 103: 82: 46:secondary emission 42:electric potential 30:secondary emission 22: 910:Mass spectrometry 905:Radio electronics 887: 886: 449:Mass spectrometry 306:10.1063/1.1683743 239:10.1063/1.1740838 137:mass spectrometry 85:Continuous dynode 927: 875: 874: 863: 862: 851: 850: 442: 435: 428: 419: 408:Olympus Tutorial 395: 394: 385:Montoro, Harry. 382: 376: 375: 363: 357: 355: 346: 329:(1–3): 587–601, 318: 309: 308: 281: 275: 269: 263: 262: 260: 249: 243: 241: 214: 197:Zoltán Lajos Bay 935: 934: 930: 929: 928: 926: 925: 924: 890: 889: 888: 883: 839: 781: 730: 694: 643: 490: 451: 446: 404: 399: 398: 384: 383: 379: 366:Mahaffy, Paul. 365: 364: 360: 320: 319: 312: 283: 282: 278: 270: 266: 258: 251: 250: 246: 225:(10): 739–749, 216: 215: 211: 206: 163: 154: 142:photomultiplier 133: 128: 108: 87: 70: 68:Discrete dynode 54: 12: 11: 5: 933: 931: 923: 922: 917: 912: 907: 902: 892: 891: 885: 884: 882: 881: 869: 857: 844: 841: 840: 838: 837: 832: 827: 822: 817: 812: 807: 802: 797: 791: 789: 783: 782: 780: 779: 774: 769: 764: 759: 754: 749: 744: 738: 736: 735:MS combination 732: 731: 729: 728: 723: 718: 713: 708: 702: 700: 696: 695: 693: 692: 687: 682: 677: 672: 667: 665:Time-of-flight 662: 657: 651: 649: 645: 644: 642: 641: 636: 631: 626: 621: 616: 611: 606: 601: 596: 591: 586: 581: 576: 571: 566: 561: 556: 551: 546: 541: 536: 531: 526: 521: 516: 511: 506: 500: 498: 492: 491: 489: 488: 483: 478: 473: 462: 456: 453: 452: 447: 445: 444: 437: 430: 422: 416: 415: 410: 403: 402:External links 400: 397: 396: 377: 358: 344:10.1.1.119.933 310: 276: 264: 244: 208: 207: 205: 202: 201: 200: 194: 189: 184: 179: 174: 169: 162: 159: 153: 150: 132: 129: 127: 124: 107: 104: 91:semiconducting 86: 83: 69: 66: 60:combined with 53: 50: 13: 10: 9: 6: 4: 3: 2: 932: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 897: 895: 880: 879: 870: 868: 867: 858: 856: 855: 846: 845: 842: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 792: 790: 788: 787:Fragmentation 784: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 739: 737: 733: 727: 724: 722: 719: 717: 716:Daly detector 714: 712: 709: 707: 704: 703: 701: 697: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 652: 650: 648:Mass analyzer 646: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 615: 612: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 535: 532: 530: 527: 525: 522: 520: 517: 515: 512: 510: 507: 505: 502: 501: 499: 497: 493: 487: 484: 482: 479: 477: 476:Mass spectrum 474: 472: 471: 467: 463: 461: 458: 457: 454: 450: 443: 438: 436: 431: 429: 424: 423: 420: 414: 411: 409: 406: 405: 401: 392: 388: 381: 378: 373: 369: 362: 359: 354: 350: 345: 340: 336: 332: 328: 324: 317: 315: 311: 307: 303: 299: 295: 291: 287: 280: 277: 274: 268: 265: 257: 256: 248: 245: 240: 236: 232: 228: 224: 220: 213: 210: 203: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 172:Daly detector 170: 168: 165: 164: 160: 158: 151: 149: 147: 143: 138: 130: 125: 119: 115: 113: 105: 99: 95: 92: 84: 78: 74: 67: 65: 63: 59: 58:photocathodes 51: 49: 47: 43: 39: 35: 31: 27: 18: 876: 864: 852: 705: 680:Penning trap 469: 465: 390: 380: 371: 361: 326: 322: 292:(1): 35–37, 289: 285: 279: 267: 254: 247: 222: 218: 212: 155: 152:Night-vision 134: 126:Applications 109: 88: 71: 55: 25: 23: 878:WikiProject 721:Faraday cup 660:Wien filter 481:MS software 199:(developer) 167:Faraday cup 131:Instruments 32:, a single 894:Categories 496:Ion source 204:References 192:Lucas cell 757:Hybrid MS 391:Photonics 339:CiteSeerX 177:Phototube 38:electrons 915:Electron 854:Category 699:Detector 690:Orbitrap 486:Acronyms 161:See also 40:. If an 34:electron 866:Commons 594:MALDESI 331:Bibcode 294:Bibcode 227:Bibcode 62:dynodes 52:History 772:IMS/MS 685:FT-ICR 655:Sector 341:  825:IRMPD 777:CE-MS 767:LC/MS 762:GC/MS 742:MS/MS 629:SELDI 589:MALDI 584:LAESI 524:DAPPI 259:(PDF) 146:GC-MS 830:NETD 795:BIRD 614:SIMS 609:SESI 544:EESI 539:DIOS 534:DESI 529:DART 514:APPI 509:APLI 504:APCI 460:Mass 372:NASA 835:SID 820:HCD 815:ETD 810:EDD 805:ECD 800:CID 752:AMS 747:QqQ 624:SSI 604:PTR 599:MIP 579:ICP 559:FAB 554:ESI 349:doi 327:162 302:doi 235:doi 135:In 24:An 896:: 639:TS 634:TI 619:SS 574:IA 569:GD 564:FD 549:EI 519:CI 389:. 370:. 347:, 337:, 325:, 313:^ 300:, 290:40 288:, 233:, 223:18 221:, 470:z 468:/ 466:m 441:e 434:t 427:v 393:. 374:. 356:. 351:: 333:: 304:: 296:: 242:. 237:: 229::

Index


secondary emission
electron
electrons
electric potential
secondary emission
photocathodes
dynodes

semiconducting

microchannel plate

mass spectrometry
photomultiplier
GC-MS
Faraday cup
Daly detector
Phototube
Photo-multiplier tube
Scintillation counter
Lucas cell
Zoltán Lajos Bay
Bibcode
1947RScI...18..739A
doi
10.1063/1.1740838
On the history of photomultiplier tube invention
https://doi.org/10.3390/ma9121017
Bibcode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.