Knowledge (XXG)

Microtubule

Source 📝

1031:
kinetochore, located in the center of each chromosome. Since each centrosome has a K fiber connecting to each pair of chromosomes, the chromosomes become tethered in the middle of the mitotic spindle by the K fibers. K fibers have a much longer half life than interpolar microtubules, at between 4 and 8 minutes. During the end of mitoses, the microtubules forming each K fiber begin to disassociate, thus shorting the K fibers. As the K fibers shorten the pair chromosomes are pulled apart right before cytokinesis. Previously, some researchers believed that K fibers form at their minus end originating from the centrosome just like other microtubules, however, new research has pointed to a different mechanism. In this new mechanism, the K fibers are initially stabilized at their plus end by the kinetochores and grow out from there. The minus end of these K fibers eventually connect to an existing Interpolar microtubule and are eventually connected to the centrosome in this way.
310:
and α-tubulin). So after the heterodimers are formed, they join together to form long chains that rise figuratively in one direction (e.g. upwards). These heterodimers, which are connected in a certain direction, form protofilaments. These long chains (protofilaments) now gradually accumulate next to each other so that a tube-like structure is formed, which has a lumen typical of a tube. Accordingly, mostly 13 protofilaments form the outer wall of the microtubules. The heterodimers consist of a positive and negative end, with alpha-tubulin forming the negative end and beta-tubulin the positive end. Due to the fact that the heterodimers are stacked on top of each other, there is always a negative and positive end. Microtubules grow by an addition of heterodimers at the plus end.
1017:
there they interact with specific motor proteins which create force that pull the microtubules, and thus the entire centrosome towards the cell membrane. As stated above, this helps the centrosomes orient themselves away from each other in the cell. However these astral microtubules do not interact with the mitotic spindle itself. Experiments have shown that without these astral microtubules, the mitotic spindle can form, however its orientation in the cell is not always correct and thus mitosis does not occur as effectively. Another key function of the astral microtubules is to aid in cytokinesis. Astral microtubules interact with motor proteins at the cell membrane to pull the spindle and the entire cell apart once the chromosomes have been replicated.
306:. There are two distinct types of interactions that can occur between the subunits of lateral protofilaments within the microtubule called the A-type and B-type lattices. In the A-type lattice, the lateral associations of protofilaments occur between adjacent α and β-tubulin subunits (i.e. an α-tubulin subunit from one protofilament interacts with a β-tubulin subunit from an adjacent protofilament). In the B-type lattice, the α and β-tubulin subunits from one protofilament interact with the α and β-tubulin subunits from an adjacent protofilament, respectively. Experimental studies have shown that the B-type lattice is the primary arrangement within microtubules. However, in most microtubules there is a seam in which tubulin subunits interact α-β. 566:
on long-lived stable microtubules. Most of these modifications occur on the C-terminal region of alpha-tubulin. This region, which is rich in negatively charged glutamate, forms relatively unstructured tails that project out from the microtubule and form contacts with motors. Thus, it is believed that tubulin modifications regulate the interaction of motors with the microtubule. Since these stable modified microtubules are typically oriented towards the site of cell polarity in interphase cells, this subset of modified microtubules provide a specialized route that helps deliver vesicles to these polarized zones. These modifications include:
1085:
retraction. When dynamics are suppressed, microtubules cannot remodel and, therefore, oppose the contractile forces. The morphology of cells with suppressed microtubule dynamics indicate that cells can extend the front edge (polarized in the direction of movement), but have difficulty retracting their trailing edge. On the other hand, high drug concentrations, or microtubule mutations that depolymerize the microtubules, can restore cell migration but there is a loss of directionality. It can be concluded that microtubules act both to restrain cell movement and to establish directionality.
85: 511:
spontaneously pop out of the polymer. Since tubulin adds onto the end of the microtubule in the GTP-bound state, a cap of GTP-bound tubulin is proposed to exist at the tip of the microtubule, protecting it from disassembly. When hydrolysis catches up to the tip of the microtubule, it begins a rapid depolymerization and shrinkage. This switch from growth to shrinking is called a catastrophe. GTP-bound tubulin can begin adding to the tip of the microtubule again, providing a new cap and protecting the microtubule from shrinking. This is referred to as "rescue".
1040:
are addition means of microtubule nucleation during mitosis. One of the most important of these additional means of microtubule nucleation is the RAN-GTP pathway. RAN-GTP associates with chromatin during mitosis to create a gradient that allows for local nucleation of microtubules near the chromosomes. Furthermore, a second pathway known as the augmin/HAUS complex (some organisms use the more studied augmin complex, while others such as humans use an analogous complex called HAUS) acts an additional means of microtubule nucleation in the mitotic spindle.
427:(MTOCs). Contained within the MTOC is another type of tubulin, γ-tubulin, which is distinct from the α- and β-subunits of the microtubules themselves. The γ-tubulin combines with several other associated proteins to form a lock washer-like structure known as the "γ-tubulin ring complex" (γ-TuRC). This complex acts as a template for α/β-tubulin dimers to begin polymerization; it acts as a cap of the (−) end while microtubule growth continues away from the MTOC in the (+) direction. 879: 664:. However, there are data to suggest that interference of microtubule dynamics is insufficient to block the cells undergoing mitosis. These studies have demonstrated that suppression of dynamics occurs at concentrations lower than those needed to block mitosis. Suppression of microtubule dynamics by tubulin mutations or by drug treatment have been shown to inhibit cell migration. Both microtubule stabilizers and destabilizers can suppress microtubule dynamics. 554: 31: 726:
microtubules increases the concentration of drug that is needed to suppress dynamics and inhibit cell migration. Thus, tumors that express β3-tubulin are not only resistant to the cytotoxic effects of microtubule targeted drugs, but also to their ability to suppress tumor metastasis. Moreover, expression of β3-tubulin also counteracts the ability of these drugs to inhibit angiogenesis which is normally another important facet of their action.
528:
microtubules, which have a half-life of 5–10 minutes, the captured microtubules can last for hours. This idea is commonly known as the "search and capture" model. Indeed, work since then has largely validated this idea. At the kinetochore, a variety of complexes have been shown to capture microtubule (+)-ends. Moreover, a (+)-end capping activity for interphase microtubules has also been described. This later activity is mediated by
294:
have the β-subunits exposed. These ends are designated the (−) and (+) ends, respectively. The protofilaments bundle parallel to one another with the same polarity, so, in a microtubule, there is one end, the (+) end, with only β-subunits exposed, while the other end, the (−) end, has only α-subunits exposed. While microtubule elongation can occur at both the (+) and (−) ends, it is significantly more rapid at the (+) end.
789:. MAP-2 proteins are located in the dendrites and in the body of neurons, where they bind with other cytoskeletal filaments. The MAP-4 proteins are found in the majority of cells and stabilize microtubules. In addition to MAPs that have a stabilizing effect on microtubule structure, other MAPs can have a destabilizing effect either by cleaving or by inducing depolymerization of microtubules. Three proteins called 769:, tau proteins have been shown to directly bind microtubules, promote nucleation and prevent disassembly, and to induce the formation of parallel arrays. Additionally, tau proteins have also been shown to stabilize microtubules in axons and have been implicated in Alzheimer's disease. The second class is composed of MAPs with a molecular weight of 200-1000 kDa, of which there are four known types: MAP-1, 1005: 253: 1204: 380: 887: 965: 348:, another component of the cytoskeleton. A microtubule is capable of growing and shrinking in order to generate force, and there are motor proteins that allow organelles and other cellular components to be carried along a microtubule. This combination of roles makes microtubules important for organizing and moving intracellular constituents. 613:: the addition of a glutamate polymer (typically 4-6 residues long) to the gamma-carboxyl group of any one of five glutamates found near the end of alpha-tubulin. Enzymes related to TTL add the initial branching glutamate (TTL4,5 and 7), while other enzymes that belong to the same family lengthen the polyglutamate chain (TTL6,11 and 13). 1024:
microtubules in the mitotic spindle can be characterized as interpolar. Furthermore, the half life of these microtubules is extremely short as it is less than one minute. Interpolar microtubules that do not attach to the kinetochores can aid in chromosome congregation through lateral interaction with the kinetochores.
1101:. Cilia and flagella always extend directly from a MTOC, in this case termed the basal body. The action of the dynein motor proteins on the various microtubule strands that run along a cilium or flagellum allows the organelle to bend and generate force for swimming, moving extracellular material, and other roles. 468:
which there is no longer any net assembly or disassembly at the end of the microtubule. If the dimer concentration is greater than the critical concentration, the microtubule will polymerize and grow. If the concentration is less than the critical concentration, the length of the microtubule will decrease.
915:
hydrolysis occurs in the globular head domains, which share similarities with the AAA+ (ATPase associated with various cellular activities) protein family. ATP hydrolysis in these domains is coupled to movement along the microtubule via the microtubule-binding domains. Dynein transports vesicles and
894:
Microtubules can act as substrates for motor proteins that are involved in important cellular functions such as vesicle trafficking and cell division. Unlike other microtubule-associated proteins, motor proteins utilize the energy from ATP hydrolysis to generate mechanical work that moves the protein
565:
on their tubulin subunits by the action of microtubule-bound enzymes. However, once the microtubule depolymerizes, most of these modifications are rapidly reversed by soluble enzymes. Since most modification reactions are slow while their reverse reactions are rapid, modified tubulin is only detected
309:
The sequence and exact composition of molecules during microtubule formation can thus be summarised as follows: A β-tubulin connects in the context of a non-existent covalent bond with an α-tubulin, which in connected form are a heterodimer, since they consist of two different polypeptides (β-tubulin
1039:
Most of the microtubules that form the mitotic spindle originate from the centrosome. Originally it was thought that all of these microtubules originated from the centrosome via a method called search and capture, described in more detail in a section above, however new research has shown that there
995:
A final important note about the centrosomes and microtubules during mitosis is that while the centrosome is the MTOC for the microtubules necessary for mitosis, research has shown that once the microtubules themselves are formed and in the correct place the centrosomes themselves are not needed for
598:
group to lysine 40 of alpha-tubulin. This modification occurs on a lysine that is accessible only from the inside of the microtubule, and it remains unclear how enzymes access the lysine residue. The nature of the tubulin acetyltransferase remains controversial, but it has been found that in mammals
293:
Microtubules have a distinct polarity that is critical for their biological function. Tubulin polymerizes end to end, with the β-subunits of one tubulin dimer contacting the α-subunits of the next dimer. Therefore, in a protofilament, one end will have the α-subunits exposed while the other end will
725:
Expression of β3-tubulin has been reported to alter cellular responses to drug-induced suppression of microtubule dynamics. In general the dynamics are normally suppressed by low, subtoxic concentrations of microtubule drugs that also inhibit cell migration. However, incorporating β3-tubulin into
510:
shortly after assembly. The assembly properties of GDP-tubulin are different from those of GTP-tubulin, as GDP-tubulin is more prone to depolymerization. A GDP-bound tubulin subunit at the tip of a microtubule will tend to fall off, although a GDP-bound tubulin in the middle of a microtubule cannot
450:
can serve as an important platform for the nucleation of microtubules. Because nucleation from the centrosome is inherently symmetrical, Golgi-associated microtubule nucleation may allow the cell to establish asymmetry in the microtubule network. In recent studies, the Vale group at UCSF identified
285:
that associate laterally to form a single microtubule, which can then be extended by the addition of more α/β-tubulin dimers. Typically, microtubules are formed by the parallel association of thirteen protofilaments, although microtubules composed of fewer or more protofilaments have been observed
239:
are researched by fluorescently tagging a microtubule and fixing either the microtubule or motor proteins to a microscope slide, then visualizing the slide with video-enhanced microscopy to record the travel of the motor proteins. This allows the movement of the motor proteins along the microtubule
1084:
disassembly, which is necessary for migration. It has been found that microtubules act as "struts" that counteract the contractile forces that are needed for trailing edge retraction during cell movement. When microtubules in the trailing edge of cell are dynamic, they are able to remodel to allow
1016:
are a subclass of microtubules which only exist during and around mitosis. They originate from the centrosome, but do not interact with the chromosomes, kinetochores, or with the microtubules originating from the other centrosome. Instead their microtubules radiate towards the cell membrane. Once
991:
Most cells only have one centrosome for most of their cell cycle, however, right before mitosis, the centrosome duplicates, and the cell contains two centrosomes. Some of the microtubules that radiate from the centrosome grow directly away from the sister centrosome. These microtubules are called
829:
Plus end tracking proteins are MAP proteins which bind to the tips of growing microtubules and play an important role in regulating microtubule dynamics. For example, +TIPs have been observed to participate in the interactions of microtubules with chromosomes during mitosis. The first MAP to be
497:
Dynamic instability refers to the coexistence of assembly and disassembly at the ends of a microtubule. The microtubule can dynamically switch between growing and shrinking phases in this region. Tubulin dimers can bind two molecules of GTP, one of which can be hydrolyzed subsequent to assembly.
319:
also contain microtubules. The structure of these bacterial microtubules is similar to that of eukaryotic microtubules, consisting of a hollow tube of protofilaments assembled from heterodimers of bacterial tubulin A (BtubA) and bacterial tubulin B (BtubB). Both BtubA and BtubB share features of
1030:
are the third important subclass of mitotic microtubules. These microtubules form direct connections with the kinetochores in the mitotic spindle. Each K fiber is composed of 20–40 parallel microtubules, forming a strong tube which is attached at one end to the centrosome and on the other to the
527:
proposed that microtubules use their dynamic properties of growth and shrinkage at their plus ends to probe the three dimensional space of the cell. Plus ends that encounter kinetochores or sites of polarity become captured and no longer display growth or shrinkage. In contrast to normal dynamic
467:
Following the initial nucleation event, tubulin monomers must be added to the growing polymer. The process of adding or removing monomers depends on the concentration of αβ-tubulin dimers in solution in relation to the critical concentration, which is the steady state concentration of dimers at
367:
and other mesenchymal cell-types, microtubules are anchored at the centrosome and radiate with their plus-ends outwards towards the cell periphery (as shown in the first figure). In these cells, the microtubules play important roles in cell migration. Moreover, the polarity of microtubules is
1023:
are a class of microtubules which also radiate out from the centrosome during mitosis. These microtubules radiate towards the mitotic spindle, unlike astral microtubules. Interpolar microtubules are both the most abundant and dynamic subclass of microtubules during mitosis. Around 95 percent of
297:
The lateral association of the protofilaments generates a pseudo-helical structure, with one turn of the helix containing 13 tubulin dimers, each from a different protofilament. In the most common "13-3" architecture, the 13th tubulin dimer interacts with the next tubulin dimer with a vertical
729:
Microtubule polymers are extremely sensitive to various environmental effects. Very low levels of free calcium can destabilize microtubules and this prevented early researchers from studying the polymer in vitro. Cold temperatures also cause rapid depolymerization of microtubules. In contrast,
987:
The centrosome is critical to mitosis as most microtubules involved in the process originate from the centrosome. The minus ends of each microtubule begin at the centrosome, while the plus ends radiate out in all directions. Thus the centrosome is also important in maintaining the polarity of
298:
offset of 3 tubulin monomers due to the helicity of the turn. There are other alternative architectures, such as 11-3, 12-3, 14-3, 15-4, or 16-4, that have been detected at a much lower occurrence. Microtubules can also morph into other forms such as helical filaments, which are observed in
482: 992:
astral microtubules. With the help of these astral microtubules the centrosomes move away from each other towards opposite sides of the cell. Once there, other types of microtubules necessary for mitosis, including interpolar microtubules and K-fibers can begin to form.
1143:) cause the reorganization of the microtubules so that their (-) ends are located in the lower part of the oocyte, polarizing the structure and leading to the appearance of an anterior-posterior axis. This involvement in the body's architecture is also seen in 1183:
has been described, which has provided information on the differential expression of the genes depending on the presence of these factors. This communication between the cytoskeleton and the regulation of the cellular response is also related to the action of
651:
are able to bind to tubulin and modify its assembly properties. These drugs can have an effect at intracellular concentrations much lower than that of tubulin. This interference with microtubule dynamics can have the effect of stopping a cell's
910:
is composed of two identical heavy chains, which make up two large globular head domains, and a variable number of intermediate and light chains. Dynein-mediated transport takes place from the (+) end towards the (-) end of the microtubule.
619:: the addition of a glycine polymer (2-10 residues long) to the gamma-carboxyl group of any one of five glutamates found near the end of beta-tubulin. TTL3 and 8 add the initial branching glycine, while TTL10 lengthens the polyglycine chain. 355:, the minus-ends of the microtubule polymer are anchored near the site of cell-cell contact and organized along the apical-basal axis. After nucleation, the minus-ends are released and then re-anchored in the periphery by factors such as 984:, oriented at right angles to each other. The centriole is formed from 9 main microtubules, each having two partial microtubules attached to it. Each centriole is approximately 400 nm long and around 200 nm in circumference. 451:
the protein complex augmin as a critical factor for centrosome-dependent, spindle-based microtubule generation. It that has been shown to interact with γ-TuRC and increase microtubule density around the mitotic spindle origin.
88:
Microtubules are one of the cytoskeletal filament systems in eukaryotic cells. The microtubule cytoskeleton is involved in the transport of material within cells, carried out by motor proteins that move on the surface of the
761:(MAPs) are present. The originally identified MAPs from brain tissue can be classified into two groups based on their molecular weight. This first class comprises MAPs with a molecular weight below 55-62 kDa, and are called 687:
Taxanes (alone or in combination with platinum derivatives (carboplatine) or gemcitabine) are used against breast and gynecological malignancies, squamous-cell carcinomas (head-and-neck cancers, some lung cancers), etc.
683:) block dynamic instability by stabilizing GDP-bound tubulin in the microtubule. Thus, even when hydrolysis of GTP reaches the tip of the microtubule, there is no depolymerization and the microtubule does not shrink back. 3554:
Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (June 1993). "Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding".
458:
parasites, have a MTOC but it is permanently found at the base of a flagellum. Here, nucleation of microtubules for structural roles and for generation of the mitotic spindle is not from a canonical centriole-like MTOC.
2845:
Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M, Wallar BJ, Alberts AS, Gundersen GG (September 2004). "EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration".
1170:
The cellular cytoskeleton is a dynamic system that functions on many different levels: In addition to giving the cell a particular form and supporting the transport of vesicles and organelles, it can also influence
271:. The inner space of the hollow microtubule cylinders is referred to as the lumen. The α and β-tubulin subunits are ~50% identical at the amino acid level, and both have a molecular weight of approximately 50 kDa. 1008:
This diagram depicts the organization of a typical mitotic spindle found in animal cells. Shown here are the three main types of microtubules during mitosis and how they are oriented in the cell and the mitotic
488: 487: 484: 483: 489: 926:
has a similar structure to dynein. Kinesin is involved in the transport of a variety of intracellular cargoes, including vesicles, organelles, protein complexes, and mRNAs toward the microtubule's (+)
3038:
Paturle-Lafanechère L, Eddé B, Denoulet P, Van Dorsselaer A, Mazarguil H, Le Caer JP, Wehland J, Job D (October 1991). "Characterization of a major brain tubulin variant which cannot be tyrosinated".
324:. Unlike eukaryotic microtubules, bacterial microtubules do not require chaperones to fold. In contrast to the 13 protofilaments of eukaryotic microtubules, bacterial microtubules comprise only five. 340:. The roles of the microtubule cytoskeleton include mechanical support, organization of the cytoplasm, transport, motility and chromosome segregation. In developing neurons microtubules are known as 581:
at the new C-terminus. As a result, microtubules that accumulate this modification are often referred to as Glu-microtubules. Although the tubulin carboxypeptidase has yet to be identified, the
4175:
Mikhailov A, Gundersen GG (1998). "Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol".
486: 588:
Delta2: the removal of the last two residues from the C-terminus of alpha-tubulin. Unlike detyrosination, this reaction is thought to be irreversible and has only been documented in neurons.
721:
binds to the (+) growing end of the microtubules. Eribulin exerts its anticancer effects by triggering apoptosis of cancer cells following prolonged and irreversible mitotic blockade.
1179:
mechanisms involved in this communication are little understood. However, the relationship between the drug-mediated depolymerization of microtubules, and the specific expression of
454:
Some cell types, such as plant cells, do not contain well defined MTOCs. In these cells, microtubules are nucleated from discrete sites in the cytoplasm. Other cell types, such as
493:
Animation of the microtubule dynamic instability. Tubulin dimers bound to GTP (red) bind to the growing end of a microtubule and subsequently hydrolyze GTP into GDP (blue).
81:
that can then associate laterally to form a hollow tube, the microtubule. The most common form of a microtubule consists of 13 protofilaments in the tubular arrangement.
916:
organelles throughout the cytoplasm. In order to do this, dynein molecules bind organelle membranes via a protein complex that contains a number of elements including
4259:
Waterman-Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED (May 1999). "Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts".
4653: 1158:, where tubulin's dynamics and those of the associated proteins (such as the microtubule-associated proteins) are finely controlled during the development of the 3386:"Beta3-Tubulin Is Critical for Microtubule Dynamics, Cell Cycle Regulation, and Spontaneous Release of Microvesicles in Human Malignant Melanoma Cells (A375)" 1068:
Dynamic instability of microtubules is also required for the migration of most mammalian cells that crawl. Dynamic microtubules regulate the levels of key
2577:
Weisenberg RC, Deery WJ, Dickinson PJ (September 1976). "Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules".
834:
70 (cytoplasmic linker protein), which has been shown to play a role in microtubule depolymerization rescue events. Additional examples of +TIPs include
561:
Although most microtubules have a half-life of 5–10 minutes, certain microtubules can remain stable for hours. These stabilized microtubules accumulate
4302:
Ezratty EJ, Partridge MA, Gundersen GG (June 2005). "Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase".
502:-bound state. The GTP bound to α-tubulin is stable and it plays a structural function in this bound state. However, the GTP bound to β-tubulin may be 3122:
Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (May 2002). "HDAC6 is a microtubule-associated deacetylase".
485: 2942:"The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions" 3629:
Molecular Neurobiology: Mechanisms Common to Brain, Skin and Immune System. Series: Progress in Clinical and Biological Research. Willey-Liss, Inc
1371: 4616: 3484:
Burgess J, Northcote DH (September 1969). "Action of colchicine and heavy water on the polymerization of microtubules in wheat root meristem".
2046:"Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera" 1109:. However, prokaryotic flagella are entirely different in structure from eukaryotic flagella and do not contain microtubule-based structures. 2802:
Palazzo AF, Cook TA, Alberts AS, Gundersen GG (August 2001). "mDia mediates Rho-regulated formation and orientation of stable microtubules".
2561: 824: 5281: 4396:
van Eeden F, St Johnston D (August 1999). "The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis".
1484:
Jiang S, Narita A, Popp D, Ghoshdastider U, Lee LJ, Srinivasan R, Balasubramanian MK, Oda T, Koh F, Larsson M, Robinson RC (March 2016).
4646: 2275:
Zhao B, Meka DP, Scharrenberg R, König T, Schwanke B, Kobler O, Windhorst S, Kreutz MR, Mikhaylova M, Calderon de Anda F (August 2017).
3878:
Khodjakov, A., Cole, R. W., Oakley, B. R. and Rieder, C. L. (2000). "Centrosome-independent mitotic spindle formation in vertebrates".
363:. In this manner, they can facilitate the transport of proteins, vesicles and organelles along the apical-basal axis of the cell. In 968:
A 3D diagram of a centriole. Each circle represents one microtubule. In total there are 27 microtubules organized into 9 bundles of 3.
1057:
cells, microtubules are disproportionately oriented from the MTOC toward the site of polarity, such as the leading edge of migrating
797:, and fidgetin have been observed to regulate the number and length of microtubules via their destabilizing activities. Furthermore, 1151: 600: 2459:"The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells" 4188: 2254: 2892:
Janke C, Bulinski JC (November 2011). "Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions".
1222: 562: 2781: 1139:
in order to establish the axis of the egg. Signals sent between the follicular cells and the oocyte (such as factors similar to
5800: 121: 1938:"Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies" 6069: 5912: 4639: 758: 748: 1547: 6948: 6502: 2525: 977: 424: 152: 1574: 419:
Nucleation is the event that initiates the formation of microtubules from the tubulin dimer. Microtubules are typically
185:, and other proteins important for regulating microtubule dynamics. Recently an actin-like protein has been found in the 1251: 211:(1677). However, the fibrous nature of flagella and other structures were discovered two centuries later, with improved 3654:
Hirokawa N, Noda Y, Tanaka Y, Niwa S (October 2009). "Kinesin superfamily motor proteins and intracellular transport".
582: 5209: 434:
is the primary MTOC of most cell types. However, microtubules can be nucleated from other sites as well. For example,
1709:
Weisenberg RC (September 1972). "Microtubule formation in vitro in solutions containing low calcium concentrations".
6680: 533: 240:
or the microtubule moving across the motor proteins. Consequently, some microtubule processes can be determined by
84: 3335:"Inhibition of cell migration and cell division correlates with distinct effects of microtubule inhibiting drugs" 3384:
Altonsy, Mohammed; Ganguly, Anutosh; Amrein, Matthias; Surmanowicz, Philip; Li, Shu; Lauzon, Gilles (Mar 2020).
399:
are in blue. The cytoskeleton provides the cell with an inner framework and enables it to move and change shape.
6913: 1683: 1136: 2197:"Microtubules in bacteria: Ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton" 1140: 1131: 114: 3791:""It takes two to tango": understanding how centrosome duplication is regulated throughout the cell cycle" 3627:
Hirokawa, N (1994). "The neuronal cytoskeleton: roles in neuronal morphogenesis and organelle transport".
3606: 1949: 1080:, which regulate cell contractility and cell spreading. Dynamic microtubules are also required to trigger 912: 785:
and C. The C protein plays an important role in the retrograde transport of vesicles and is also known as
499: 414: 191: 186: 148: 3234:"Reversible polyglutamylation of alpha- and beta-tubulin and microtubule dynamics in mouse brain neurons" 2706:
Cheeseman IM, Desai A (January 2008). "Molecular architecture of the kinetochore-microtubule interface".
207:
Tubulin and microtubule-mediated processes, like cell locomotion, were seen by early microscopists, like
6973: 6968: 5332: 4686: 1379: 1180: 1122: 657: 507: 369: 102: 2753: 5601: 3710: 3131: 3086: 2621: 2470: 2288: 2149: 2057: 1718: 1608: 1497: 757:. The rates of microtubule polymerization, depolymerization, and catastrophe vary depending on which 4574:"Modulation of the expression of connective tissue growth factor by alterations of the cytoskeleton" 6908: 5541: 4480:
Tucker RP (1990). "The roles of microtubule-associated proteins in brain morphogenesis: a review".
1954: 1176: 216: 3173:
Carmona, Bruno; Marinho, H. Susana; Matos, Catarina Lopes; Nolasco, Sofia; Soares, Helena (2023).
878: 5361: 4991: 4505: 4462: 4327: 4284: 3917: 3736: 3679: 3580: 3155: 2917: 2871: 2827: 2731: 2688: 2663:
Kirschner M, Mitchison T (May 1986). "Beyond self-assembly: from microtubules to morphogenesis".
2645: 1742: 1431: 798: 557:
Image of a fibroblast cell containing fluorescently labeled actin (red) and microtubules (green).
94: 65:
and have an inner diameter between 11 and 15 nm. They are formed by the polymerization of a
4525:"Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B" 3232:
Audebert S, Desbruyères E, Gruszczynski C, Koulakoff A, Gros F, Denoulet P, Eddé B (June 1993).
2553: 2547: 1486:"Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation" 446:. In addition, work from the Kaverina group at Vanderbilt, as well as others, suggests that the 3519:
Mandelkow E, Mandelkow EM (February 1995). "Microtubules and microtubule-associated proteins".
1936:
Walker RA, O'Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (October 1988).
607:. The real impact of acetylation in the structure and function of microtubules remains elusive. 553: 6759: 6462: 5123: 4595: 4554: 4497: 4454: 4413: 4378: 4319: 4276: 4241: 4192: 4157: 4113: 4064: 4015: 3966: 3909: 3861: 3812: 3771: 3728: 3671: 3636: 3572: 3536: 3501: 3466: 3417: 3366: 3312: 3263: 3214: 3196: 3147: 3104: 3055: 3020: 2971: 2909: 2863: 2819: 2773: 2723: 2680: 2637: 2594: 2557: 2498: 2439: 2390: 2355: 2314: 2228: 2177: 2118: 2083: 2026: 1977: 1918: 1869: 1820: 1812: 1777: 1734: 1675: 1636: 1525: 1466: 1423: 1352: 1303: 610: 164: 6482: 256:
Cartoon representation of the structure of α(yellow)/β(red)-tubulin heterodimer, GTP and GDP.
6707: 6414: 6399: 6394: 6389: 6384: 6374: 6295: 6004: 5984: 5954: 5949: 5831: 5186: 5181: 4585: 4544: 4536: 4489: 4444: 4405: 4368: 4358: 4311: 4268: 4231: 4223: 4184: 4147: 4103: 4095: 4054: 4046: 4005: 3997: 3956: 3948: 3901: 3851: 3843: 3802: 3763: 3718: 3663: 3564: 3528: 3493: 3456: 3448: 3407: 3397: 3356: 3346: 3302: 3294: 3253: 3245: 3204: 3186: 3139: 3094: 3047: 3010: 3002: 2961: 2953: 2901: 2855: 2811: 2765: 2715: 2672: 2629: 2586: 2488: 2478: 2429: 2421: 2382: 2345: 2304: 2296: 2218: 2208: 2167: 2157: 2110: 2073: 2065: 2016: 2008: 1997:"Structural basis of interprotofilament interaction and lateral deformation of microtubules" 1967: 1959: 1908: 1900: 1889:"Lattice defects in microtubules: protofilament numbers vary within individual microtubules" 1859: 1851: 1804: 1769: 1726: 1667: 1626: 1616: 1515: 1505: 1458: 1413: 1342: 1334: 1293: 1285: 212: 137: 70: 6624: 6619: 6614: 6609: 6364: 6354: 6344: 6339: 6310: 6014: 6009: 5056: 4944: 4934: 4909: 4889: 4793: 4773: 128:, and intracellular macromolecular assemblies. They are also involved in cell division (by 6849: 5463: 5313: 5196: 5016: 1551: 1172: 1062: 616: 447: 388: 373: 315: 3937:"Asymmetric cell division: recent developments and their implications for tumour biology" 3714: 3209: 3174: 3135: 3090: 2625: 2474: 2292: 2153: 2061: 1722: 1612: 1501: 368:
acted upon by motor proteins, which organize many components of the cell, including the
6812: 6675: 5372: 5203: 4712: 4549: 4524: 4373: 4346: 4236: 4212:"Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton" 4211: 4108: 4083: 4059: 4034: 4010: 3985: 3961: 3936: 3856: 3831: 3461: 3436: 3412: 3385: 3361: 3334: 3307: 3282: 3073:
Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA (2013-06-10).
3015: 2990: 2966: 2941: 2493: 2458: 2434: 2409: 2309: 2276: 2246: 2223: 2196: 2172: 2137: 2078: 2045: 2021: 1996: 1972: 1937: 1913: 1888: 1864: 1839: 1631: 1596: 1520: 1485: 1347: 1322: 1298: 1273: 1209: 1159: 1081: 624: 570: 520: 455: 4449: 4432: 4409: 3723: 3698: 3258: 3233: 1418: 1401: 753:
MAPs have been shown to play a crucial role in the regulation of microtubule dynamics
6962: 6876: 6871: 5836: 5706: 5655: 5605: 5545: 5467: 5435: 5376: 5162: 4681: 4493: 4084:"Genome stability is ensured by temporal control of kinetochore-microtubule dynamics" 3568: 3532: 3437:"Class III β-Tubulin Counteracts the Ability of Paclitaxel to Inhibit Cell Migration" 2676: 2114: 1217: 1185: 1118: 936: 636: 628: 524: 275: 268: 228: 171: 98: 66: 4509: 4466: 4331: 4288: 4136:"Microtubule assembly during mitosis - from distinct origins to distinct functions?" 3740: 3683: 3584: 2875: 2735: 2692: 2649: 2386: 1808: 1773: 1746: 1435: 1061:. This configuration is thought to help deliver microtubule-bound vesicles from the 6720: 5775: 5530: 5074: 4666: 3921: 3159: 2921: 2831: 2457:
Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G (April 2009).
944: 940: 932: 762: 715:
have the opposite effect, blocking the polymerization of tubulin into microtubules.
443: 396: 392: 333: 303: 160: 50: 30: 6692: 6670: 3298: 2754:"Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap" 1730: 895:
along the substrate. The major motor proteins that interact with microtubules are
252: 2989:
Ersfeld K, Wehland J, Plessmann U, Dodemont H, Gerke V, Weber K (February 1993).
2213: 1544: 1449:
Howard J, Hyman AA (February 2007). "Microtubule polymerases and depolymerases".
1053:
Microtubule plus ends are often localized to particular structures. In polarized
980:) of the cell during mitosis. Each centrosome is made up of two cylinders called 6866: 6817: 6687: 6577: 5351: 5306: 5225: 5147: 4695: 3892:
Rosenblatt J (March 2005). "Spindle assembly: asters part their separate ways".
1004: 731: 708: 697: 632: 591: 341: 208: 97:. They are involved in maintaining the structure of the cell and, together with 4631: 2517: 2463:
Proceedings of the National Academy of Sciences of the United States of America
2300: 2142:
Proceedings of the National Academy of Sciences of the United States of America
2138:"Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer" 1621: 1490:
Proceedings of the National Academy of Sciences of the United States of America
1203: 379: 117:
and are involved in a variety of cellular processes, including the movement of
6918: 6837: 6827: 6715: 5826: 5805: 5571: 5508: 5503: 5498: 5478: 5453: 5441: 5427: 5422: 5417: 5412: 5407: 5402: 5397: 5392: 5387: 5249: 5131: 5120: 5106: 4722: 2612:
Mitchison T, Kirschner M (1984). "Dynamic instability of microtubule growth".
2012: 1566: 1462: 1323:"Organization of neuronal microtubules in the nematode Caenorhabditis elegans" 1199: 1155: 1102: 1069: 1058: 1054: 973: 886: 712: 704: 693: 676: 653: 503: 431: 384: 364: 278: 199:
segregation. Other bacterial microtubules have a ring of five protofilaments.
156: 141: 58: 54: 4227: 3200: 1816: 1597:"MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules" 1243: 6747: 6742: 6737: 6697: 6535: 6530: 6525: 5883: 5863: 5518: 5513: 5493: 5488: 5483: 5473: 5382: 5286: 5220: 4621: 4363: 3754:
Pereira G, Schiebel E (February 1997). "Centrosome-microtubule nucleation".
3452: 3351: 3191: 3175:"Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation" 2769: 2483: 2410:"Microtubule network asymmetry in motile cells: role of Golgi-derived array" 2195:
Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ (December 2011).
2162: 1855: 1510: 1098: 981: 680: 661: 578: 352: 337: 261: 241: 195:, which forms a microtubule-like structure called a nanotubule, involved in 125: 118: 62: 17: 4599: 4590: 4573: 4540: 4417: 4382: 4323: 4280: 4161: 4117: 4068: 3970: 3913: 3865: 3816: 3732: 3675: 3470: 3421: 3370: 3316: 3218: 3151: 3108: 2975: 2913: 2867: 2823: 2777: 2727: 2502: 2443: 2359: 2318: 2232: 2181: 2122: 2087: 2030: 1963: 1904: 1873: 1795:
Desai, A.; Mitchison, T. J. (1997). "Microtubule polymerization dynamics".
1679: 1671: 1640: 1529: 1470: 1427: 1307: 4558: 4501: 4458: 4245: 4196: 4019: 4001: 3847: 3775: 3767: 3640: 3576: 3540: 3505: 3267: 3059: 3024: 3006: 2684: 2641: 2394: 1981: 1922: 1824: 1781: 1738: 1125:. For example, a network of polarized microtubules is required within the 947:) that require access to the nucleus to replicate their genomes attach to 105:, they form the cytoskeleton. They also make up the internal structure of 6861: 6822: 6754: 6727: 6594: 6582: 6457: 6452: 5893: 5888: 5810: 5244: 5239: 5101: 4572:
Ott C, Iwanciw D, Graness A, Giehl K, Goppelt-Struebe M (November 2003).
3402: 2598: 2425: 1356: 1338: 1289: 917: 813: 809: 718: 574: 439: 420: 223: 110: 3986:"Kinetochore microtubule dynamics and the metaphase-anaphase transition" 3905: 3497: 3249: 3051: 2590: 964: 351:
The organization of microtubules in the cell is cell-type specific. In
6888: 6842: 6732: 6662: 6631: 6561: 6556: 6520: 6515: 6510: 6477: 6447: 6442: 6437: 6432: 6117: 6049: 6044: 6039: 6034: 6029: 5921: 5858: 5346: 5291: 5232: 5215: 5176: 4662: 4152: 4135: 3807: 3790: 3099: 3074: 2752:
Infante AS, Stein MS, Zhai Y, Borisy GG, Gundersen GG (November 2000).
923: 896: 794: 790: 529: 360: 321: 299: 265: 236: 196: 182: 178: 133: 129: 74: 46: 42: 2350: 2333: 2069: 6807: 6789: 6784: 6779: 6774: 6764: 6599: 6492: 6487: 6472: 6467: 6379: 6325: 6290: 6265: 6260: 6255: 6250: 6240: 6235: 6225: 6210: 6205: 6087: 6082: 6077: 5989: 5979: 5959: 5944: 5939: 5934: 5929: 5795: 5566: 5561: 5318: 4984: 4979: 4969: 4747: 4626: 4189:
10.1002/(SICI)1097-0169(1998)41:4<325::AID-CM5>3.0.CO;2-D
2957: 2815: 2633: 2373:
Desai A, Mitchison TJ (1997). "Microtubule polymerization dynamics".
2277:"Microtubules Modulate F-actin Dynamics during Neuronal Polarization" 1760:
Desai A, Mitchison TJ (1997). "Microtubule polymerization dynamics".
1144: 1126: 1094: 907: 900: 867: 863: 843: 839: 835: 786: 672: 595: 540:, a protein that tracks along the growing plus ends of microtubules. 537: 356: 232: 174: 4315: 4099: 4050: 3952: 3667: 3143: 2905: 2859: 2719: 1655: 1595:
Kapoor V, Hirst WG, Hentschel C, Preibisch S, Reber S (March 2019).
2518:"The Self-Assembly and Dynamic Structure of Cytoskeletal Filaments" 2516:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
2101:
Nogales E (2000). "Structural insights into microtubule function".
6832: 6604: 6587: 6424: 6419: 6409: 6404: 6369: 6359: 6349: 6334: 6315: 6305: 6300: 6285: 6280: 6275: 6270: 6245: 6230: 6220: 6215: 6200: 6195: 6175: 6170: 6165: 6160: 6155: 6150: 6145: 6140: 6135: 6130: 6125: 6097: 6092: 6059: 6054: 6024: 6019: 5999: 5994: 5974: 5964: 5879: 5757: 5752: 5747: 5742: 5737: 5732: 5727: 5722: 5717: 5712: 5696: 5691: 5686: 5681: 5676: 5671: 5666: 5661: 5636: 5631: 5626: 5621: 5616: 5611: 5591: 5586: 5581: 5576: 5556: 5551: 5261: 5191: 5140: 5137: 5134: 5126: 5115: 5112: 5109: 5094: 5089: 5084: 5079: 5051: 5041: 5026: 4959: 4949: 4929: 4904: 4899: 4884: 4874: 4869: 4864: 4859: 4854: 4849: 4834: 4788: 4783: 4778: 4768: 4763: 4758: 4737: 4732: 4727: 4717: 4704: 1840:"A microtubule bestiary: structural diversity in tubulin polymers" 885: 877: 859: 851: 847: 831: 782: 778: 604: 552: 480: 435: 378: 345: 251: 106: 83: 4345:
Ganguly A, Yang H, Sharma R, Patel KD, Cabral F (December 2012).
4272: 899:, which usually moves toward the (+) end of the microtubule, and 264:, microtubules are long, hollow cylinders made up of polymerized 170:
There are many proteins that bind to microtubules, including the
6933: 6928: 6923: 6883: 6854: 6769: 6646: 6641: 6636: 6540: 6190: 6185: 6180: 6107: 6102: 5969: 5851: 5846: 5841: 5301: 5296: 5254: 5167: 5157: 5152: 5046: 5036: 5031: 5021: 5011: 5006: 5001: 4996: 4919: 4844: 4839: 4829: 4824: 4819: 4814: 4809: 4804: 4082:
Bakhoum SF, Thompson SL, Manning AL, Compton DA (January 2009).
1189: 1106: 1077: 1073: 855: 805: 777:. MAP-1 proteins consists of a set of three different proteins: 774: 770: 648: 4635: 4347:"The role of microtubules and their dynamics in cell migration" 1887:
Chrétien D, Metoz F, Verde F, Karsenti E, Wade RH (June 1992).
3598: 3435:
Ganguly, Anutosh; Yang, Hailing; Fernando, Gabral (May 2011).
3283:"Paclitaxel-dependent cell lines reveal a novel drug activity" 4035:"Chromosome congression in the absence of kinetochore fibres" 1656:"Refined structure of alpha beta-tubulin at 3.5 A resolution" 1117:
The cytoskeleton formed by microtubules is essential to the
603:. however, the reverse reaction is known to be catalyzed by 4033:
Cai S, O'Connell CB, Khodjakov A, Walczak CE (July 2009).
1402:"The molecular motor toolbox for intracellular transport" 804:
MAPs are determinants of different cytoskeletal forms of
3832:"The mechanics of microtubule networks in cell division" 3075:"αTAT1 is the major α-tubulin acetyltransferase in mice" 2044:
Bassen DM, Hou Y, Bowser SS, Banavali NK (August 2016).
1093:
Microtubules have a major structural role in eukaryotic
667:
The drugs that can alter microtubule dynamics include:
2136:
Schlieper D, Oliva MA, Andreu JM, Löwe J (June 2005).
27:
Polymer of tubulin that forms part of the cytoskeleton
1654:
Löwe J, Li H, Downing KH, Nogales E (November 2001).
1150:
Another area where microtubules are essential is the
498:
During polymerization, the tubulin dimers are in the
2549:
Cell and Molecular Biology: Concepts and Experiments
6901: 6800: 6706: 6661: 6570: 6549: 6501: 6324: 6116: 6068: 5920: 5906: 5872: 5819: 5788: 5768: 5647: 5529: 5360: 5342: 5331: 5274: 5067: 4746: 4703: 4694: 4680: 4673: 4622:
3D microtubule structures in the EM Data Bank(EMDB)
93:Microtubules play an important role in a number of 3984:Zhai Y, Kronebusch PJ, Borisy GG (November 1995). 2408:Vinogradova T, Miller PM, Kaverina I (July 2009). 882:A cytoplasmic dynein motor bound to a microtubule. 801:is predicted to be localized to the microtubules. 4433:"Axis development and early asymmetry in mammals" 4210:Ren XD, Kiosses WB, Schwartz MA (February 1999). 3699:"Cell division: The renaissance of the centriole" 2991:"Characterization of the tubulin-tyrosine ligase" 2334:"Generation of noncentrosomal microtubule arrays" 159:found in the center of many animal cells or the 4129: 4127: 3328: 3326: 2935: 2933: 2931: 2887: 2885: 2747: 2745: 2375:Annual Review of Cell and Developmental Biology 1797:Annual Review of Cell and Developmental Biology 1762:Annual Review of Cell and Developmental Biology 812:, with microtubules being farther apart in the 1274:"A "microtubule" in plant cell fine structure" 57:cells. Microtubules can be as long as 50  4647: 4398:Current Opinion in Genetics & Development 3882:10, 59–67. doi:10.1016/S0960-9822(99)00276-6. 3281:Ganguly A, Yang H, Cabral F (November 2010). 1704: 1702: 1700: 1555:. Amsterdam: Elsevier/Academic Press, p. 165. 1545:Plant Cell Biology: From Astronomy to Zoology 215:, and confirmed in the 20th century with the 8: 4431:Beddington RS, Robertson EJ (January 1999). 3333:Yang H, Ganguly A, Cabral F (October 2010). 577:from alpha-tubulin. This reaction exposes a 3390:International Journal of Molecular Sciences 2524:(4th ed.). New York: Garland Science. 1571:The Cell: A Molecular Approach. 2nd Edition 5917: 5357: 5339: 4700: 4691: 4677: 4654: 4640: 4632: 2332:Bartolini F, Gundersen GG (October 2006). 1035:Microtubule nuclear in the mitotic spindle 890:A kinesin molecule bound to a microtubule. 643:Tubulin-binding drugs and chemical effects 4589: 4548: 4448: 4372: 4362: 4235: 4151: 4107: 4058: 4009: 3960: 3855: 3806: 3722: 3460: 3411: 3401: 3360: 3350: 3306: 3257: 3208: 3190: 3098: 3014: 2965: 2492: 2482: 2433: 2349: 2308: 2222: 2212: 2171: 2161: 2077: 2020: 1971: 1953: 1912: 1863: 1630: 1620: 1519: 1509: 1417: 1346: 1297: 336:, a structural network within the cell's 3697:Marshall WF, Rosenbaum JL (March 1999). 1188:: for example, this relation exists for 1105:possess tubulin-like proteins including 1003: 963: 738:Proteins that interact with microtubules 734:promotes microtubule polymer stability. 344:, and they can modulate the dynamics of 29: 1235: 1225:– a hypothesis explaining consciousness 700:, work in a similar way to the taxanes. 4482:Brain Research. Brain Research Reviews 3941:Nature Reviews. Molecular Cell Biology 3656:Nature Reviews. Molecular Cell Biology 2940:Garnham CP, Roll-Mecak A (July 2012). 2894:Nature Reviews. Molecular Cell Biology 2708:Nature Reviews. Molecular Cell Biology 2552:. USA: John Wiley & Sons. p.  743:Microtubule-associated proteins (MAPs) 4627:Protocols for generating microtubules 3789:Hinchcliffe EH, Sluder G (May 2001). 825:Microtubule plus-end tracking protein 181:, microtubule-severing proteins like 7: 2247:"Medical Definition of Neurotubules" 286:in various species  as well as 140:, which are used to pull eukaryotic 4578:The Journal of Biological Chemistry 4351:The Journal of Biological Chemistry 3339:The Journal of Biological Chemistry 948: 423:and organized by organelles called 136:) and are the main constituents of 53:and provide structure and shape to 4177:Cell Motility and the Cytoskeleton 1567:"Microtubule Motors and Movements" 903:, which moves toward the (−) end. 819:Plus-end tracking proteins (+TIPs) 544:Regulation of microtubule dynamics 25: 4523:Rosette C, Karin M (March 1995). 4134:Meunier S, Vernos I (June 2012). 1995:Sui H, Downing KH (August 2010). 1152:development of the nervous system 1028:K fibers/Kinetochore microtubules 5282:Wiskott–Aldrich syndrome protein 3830:Forth S, Kapoor TM (June 2017). 2115:10.1146/annurev.biochem.69.1.277 1376:Rensselaer Polytechnic Institute 1272:Ledbetter MC, Porter KR (1963). 1223:Orchestrated objective reduction 1202: 573:: the removal of the C-terminal 563:post-translational modifications 549:Post-translational modifications 442:have MTOCs at their base termed 6503:Microtubule organising proteins 3609:from the original on 2017-05-01 3521:Current Opinion in Cell Biology 2784:from the original on 2024-02-21 2528:from the original on 2018-06-05 2387:10.1146/annurev.cellbio.13.1.83 2257:from the original on 2018-09-27 1838:Chaaban S, Brouhard GJ (2017). 1809:10.1146/annurev.cellbio.13.1.83 1774:10.1146/annurev.cellbio.13.1.83 1686:from the original on 2021-01-22 1577:from the original on 2021-12-03 1451:Current Opinion in Cell Biology 1254:from the original on 2022-09-29 1190:connective tissue growth factor 759:microtubule-associated proteins 599:the major acetyltransferase is 34:Microtubule and tubulin metrics 1321:Chalfie M, Thomson JN (1979). 749:Microtubule-associated protein 425:microtubule-organizing centers 163:of cilia and flagella, or the 153:microtubule-organizing centres 78: 1: 6550:Microtubule severing proteins 4450:10.1016/S0092-8674(00)80560-7 4410:10.1016/S0959-437X(99)80060-4 3935:Knoblich JA (December 2010). 3724:10.1016/s0960-9822(99)80133-x 3299:10.1158/1535-7163.MCT-10-0552 3287:Molecular Cancer Therapeutics 3238:Molecular Biology of the Cell 2522:Molecular Biology of the Cell 2103:Annual Review of Biochemistry 1844:Molecular Biology of the Cell 1731:10.1126/science.177.4054.1104 1419:10.1016/S0092-8674(03)00111-9 1021:Interpolar/Polar microtubules 988:microtubules during mitosis. 978:microtubule organizing center 332:Microtubules are part of the 113:. They provide platforms for 5210:actin depolymerizing factors 4494:10.1016/0165-0173(90)90013-E 3569:10.1016/0896-6273(93)90057-X 3533:10.1016/0955-0674(95)80047-6 2677:10.1016/0092-8674(86)90318-1 2214:10.1371/journal.pbio.1001213 1660:Journal of Molecular Biology 623:Tubulin is also known to be 6688:Plakoglobin (gamma catenin) 4529:The Journal of Cell Biology 3990:The Journal of Cell Biology 3836:The Journal of Cell Biology 2995:The Journal of Cell Biology 1942:The Journal of Cell Biology 61:, as wide as 23 to 27  6990: 2301:10.1038/s41598-017-09832-8 1622:10.1038/s41598-018-37767-1 822: 746: 534:adenomatous polyposis coli 515:"Search and capture" model 412: 404:Microtubule polymerization 328:Intracellular organization 6944: 3599:"The Human Protein Atlas" 2013:10.1016/j.str.2010.05.010 1463:10.1016/j.ceb.2006.12.009 1400:Vale RD (February 2003). 1065:to the site of polarity. 830:identified as a +TIP was 219:and biochemical studies. 6914:Prokaryotic cytoskeleton 931:Some viruses (including 4364:10.1074/jbc.M112.423905 4140:Journal of Cell Science 3795:Genes & Development 3756:Journal of Cell Science 3486:Journal of Cell Science 3453:10.18632/oncotarget.250 3352:10.1074/jbc.M110.160820 3192:10.3390/biology12040561 2770:10.1242/jcs.113.22.3907 2758:Journal of Cell Science 2484:10.1073/pnas.0901587106 2338:Journal of Cell Science 2251:www.merriam-webster.com 2163:10.1073/pnas.0502859102 1893:Journal of Cell Biology 1856:10.1091/mbc.E16-05-0271 1511:10.1073/pnas.1600129113 1327:Journal of Cell Biology 1278:Journal of Cell Biology 1141:epidermal growth factor 1132:Drosophila melanogaster 583:tubulin—tyrosine ligase 281:end-to-end into linear 227:assays for microtubule 115:intracellular transport 4591:10.1074/jbc.M309140200 4541:10.1083/jcb.128.6.1111 4228:10.1093/emboj/18.3.578 1964:10.1083/jcb.107.4.1437 1905:10.1083/jcb.117.5.1031 1672:10.1006/jmbi.2001.5077 1010: 1000:Microtubule subclasses 969: 891: 883: 558: 494: 415:Microtubule nucleation 400: 395:are in green, and the 257: 192:Bacillus thuringiensis 103:intermediate filaments 90: 75:alpha and beta tubulin 49:that form part of the 35: 5534:(hard alpha-keratins) 5365:(soft alpha-keratins) 4617:MBInfo - Microtubules 4002:10.1083/jcb.131.3.721 3848:10.1083/jcb.201612064 3768:10.1242/jcs.110.3.295 3079:Nature Communications 3007:10.1083/jcb.120.3.725 1181:transcription factors 1119:morphogenetic process 1007: 967: 889: 881: 658:programmed cell death 594:: the addition of an 556: 492: 382: 370:endoplasmic reticulum 255: 167:found in most fungi. 87: 33: 6949:cytoskeletal defects 6909:Major sperm proteins 3603:www.proteinatlas.org 3403:10.3390/ijms21051656 2426:10.4161/cc.8.14.9074 1339:10.1083/jcb.82.1.278 1290:10.1083/jcb.19.1.239 671:The cancer-fighting 472:Microtubule dynamics 5362:Epithelial keratins 4304:Nature Cell Biology 4261:Nature Cell Biology 4088:Nature Cell Biology 4039:Nature Cell Biology 3906:10.1038/ncb0305-219 3894:Nature Cell Biology 3715:1999CBio....9.R218M 3498:10.1242/jcs.5.2.433 3250:10.1091/mbc.4.6.615 3136:2002Natur.417..455H 3091:2013NatCo...4.1962K 3052:10.1021/bi00107a022 2848:Nature Cell Biology 2804:Nature Cell Biology 2626:1984Natur.312..237M 2591:10.1021/bi00664a018 2475:2009PNAS..106.6998U 2293:2017NatSR...7.9583Z 2154:2005PNAS..102.9170S 2062:2016NatSR...631723B 1723:1972Sci...177.1104W 1613:2019NatSR...9.3794K 1502:2016PNAS..113E1200J 1244:"Digital Downloads" 1177:signal transduction 1014:Astral microtubules 477:Dynamic instability 217:electron microscope 165:spindle pole bodies 4153:10.1242/jcs.092429 4146:(Pt 12): 2805–14. 3808:10.1101/gad.894001 3100:10.1038/ncomms2962 2344:(Pt 20): 4155–63. 2281:Scientific Reports 2050:Scientific Reports 1601:Scientific Reports 1565:Cooper GM (2000). 1550:2024-02-21 at the 1089:Cilia and flagella 1011: 996:mitosis to occur. 976:is the main MTOC ( 970: 892: 884: 799:CRACD-like protein 787:cytoplasmic dynein 647:A wide variety of 559: 495: 401: 391:are shown in red, 383:Components of the 274:These α/β-tubulin 258: 95:cellular processes 91: 36: 6956: 6955: 6897: 6896: 6657: 6656: 5902: 5901: 5784: 5783: 5327: 5326: 5270: 5269: 3762:(Pt 3): 295–300. 2563:978-0-471-46580-5 2469:(17): 6998–7003. 2351:10.1242/jcs.03227 2070:10.1038/srep31723 1370:Diwan JJ (2006). 1121:of an organism's 611:Polyglutamylation 490: 213:light microscopes 151:and organized by 147:Microtubules are 71:globular proteins 16:(Redirected from 6981: 5918: 5358: 5340: 4701: 4692: 4678: 4656: 4649: 4642: 4633: 4604: 4603: 4593: 4584:(45): 44305–11. 4569: 4563: 4562: 4552: 4520: 4514: 4513: 4477: 4471: 4470: 4452: 4428: 4422: 4421: 4393: 4387: 4386: 4376: 4366: 4357:(52): 43359–69. 4342: 4336: 4335: 4299: 4293: 4292: 4256: 4250: 4249: 4239: 4216:The EMBO Journal 4207: 4201: 4200: 4172: 4166: 4165: 4155: 4131: 4122: 4121: 4111: 4079: 4073: 4072: 4062: 4030: 4024: 4023: 4013: 3981: 3975: 3974: 3964: 3932: 3926: 3925: 3889: 3883: 3876: 3870: 3869: 3859: 3842:(6): 1525–1531. 3827: 3821: 3820: 3810: 3786: 3780: 3779: 3751: 3745: 3744: 3726: 3694: 3688: 3687: 3651: 3645: 3644: 3624: 3618: 3617: 3615: 3614: 3595: 3589: 3588: 3551: 3545: 3544: 3516: 3510: 3509: 3481: 3475: 3474: 3464: 3432: 3426: 3425: 3415: 3405: 3381: 3375: 3374: 3364: 3354: 3345:(42): 32242–50. 3330: 3321: 3320: 3310: 3278: 3272: 3271: 3261: 3229: 3223: 3222: 3212: 3194: 3170: 3164: 3163: 3119: 3113: 3112: 3102: 3070: 3064: 3063: 3035: 3029: 3028: 3018: 2986: 2980: 2979: 2969: 2958:10.1002/cm.21027 2937: 2926: 2925: 2889: 2880: 2879: 2842: 2836: 2835: 2816:10.1038/35087035 2799: 2793: 2792: 2790: 2789: 2749: 2740: 2739: 2703: 2697: 2696: 2660: 2654: 2653: 2634:10.1038/312237a0 2620:(5991): 237–42. 2609: 2603: 2602: 2574: 2568: 2567: 2543: 2537: 2536: 2534: 2533: 2513: 2507: 2506: 2496: 2486: 2454: 2448: 2447: 2437: 2405: 2399: 2398: 2370: 2364: 2363: 2353: 2329: 2323: 2322: 2312: 2272: 2266: 2265: 2263: 2262: 2243: 2237: 2236: 2226: 2216: 2207:(12): e1001213. 2192: 2186: 2185: 2175: 2165: 2133: 2127: 2126: 2098: 2092: 2091: 2081: 2041: 2035: 2034: 2024: 1992: 1986: 1985: 1975: 1957: 1933: 1927: 1926: 1916: 1884: 1878: 1877: 1867: 1835: 1829: 1828: 1792: 1786: 1785: 1757: 1751: 1750: 1717:(4054): 1104–5. 1706: 1695: 1694: 1692: 1691: 1651: 1645: 1644: 1634: 1624: 1592: 1586: 1585: 1583: 1582: 1562: 1556: 1542:Wayne, R. 2009. 1540: 1534: 1533: 1523: 1513: 1481: 1475: 1474: 1446: 1440: 1439: 1421: 1397: 1391: 1390: 1388: 1387: 1378:. Archived from 1367: 1361: 1360: 1350: 1318: 1312: 1311: 1301: 1269: 1263: 1262: 1260: 1259: 1240: 1212: 1207: 1206: 763:τ (tau) proteins 675:class of drugs ( 656:and can lead to 491: 313:Some species of 266:α- and β-tubulin 138:mitotic spindles 21: 6989: 6988: 6984: 6983: 6982: 6980: 6979: 6978: 6959: 6958: 6957: 6952: 6940: 6893: 6796: 6702: 6653: 6566: 6545: 6497: 6320: 6112: 6064: 5910: 5898: 5868: 5815: 5780: 5764: 5648:Ungrouped alpha 5643: 5533: 5525: 5364: 5350: 5344: 5334: 5323: 5266: 5063: 4742: 4684: 4669: 4660: 4613: 4608: 4607: 4571: 4570: 4566: 4522: 4521: 4517: 4479: 4478: 4474: 4430: 4429: 4425: 4395: 4394: 4390: 4344: 4343: 4339: 4316:10.1038/ncb1262 4301: 4300: 4296: 4258: 4257: 4253: 4209: 4208: 4204: 4174: 4173: 4169: 4133: 4132: 4125: 4100:10.1038/ncb1809 4081: 4080: 4076: 4051:10.1038/ncb1890 4032: 4031: 4027: 3983: 3982: 3978: 3953:10.1038/nrm3010 3934: 3933: 3929: 3891: 3890: 3886: 3877: 3873: 3829: 3828: 3824: 3801:(10): 1167–81. 3788: 3787: 3783: 3753: 3752: 3748: 3703:Current Biology 3696: 3695: 3691: 3668:10.1038/nrm2774 3653: 3652: 3648: 3626: 3625: 3621: 3612: 3610: 3597: 3596: 3592: 3553: 3552: 3548: 3518: 3517: 3513: 3483: 3482: 3478: 3434: 3433: 3429: 3383: 3382: 3378: 3332: 3331: 3324: 3293:(11): 2914–23. 3280: 3279: 3275: 3231: 3230: 3226: 3172: 3171: 3167: 3144:10.1038/417455a 3130:(6887): 455–8. 3121: 3120: 3116: 3072: 3071: 3067: 3046:(43): 10523–8. 3037: 3036: 3032: 2988: 2987: 2983: 2939: 2938: 2929: 2906:10.1038/nrm3227 2891: 2890: 2883: 2860:10.1038/ncb1160 2844: 2843: 2839: 2801: 2800: 2796: 2787: 2785: 2764:(22): 3907–19. 2751: 2750: 2743: 2720:10.1038/nrm2310 2705: 2704: 2700: 2662: 2661: 2657: 2611: 2610: 2606: 2585:(19): 4248–54. 2576: 2575: 2571: 2564: 2546:Karp G (2005). 2545: 2544: 2540: 2531: 2529: 2515: 2514: 2510: 2456: 2455: 2451: 2420:(14): 2168–74. 2407: 2406: 2402: 2372: 2371: 2367: 2331: 2330: 2326: 2274: 2273: 2269: 2260: 2258: 2245: 2244: 2240: 2194: 2193: 2189: 2135: 2134: 2130: 2100: 2099: 2095: 2043: 2042: 2038: 1994: 1993: 1989: 1935: 1934: 1930: 1886: 1885: 1881: 1850:(22): 2924–31. 1837: 1836: 1832: 1794: 1793: 1789: 1759: 1758: 1754: 1708: 1707: 1698: 1689: 1687: 1653: 1652: 1648: 1594: 1593: 1589: 1580: 1578: 1564: 1563: 1559: 1552:Wayback Machine 1541: 1537: 1483: 1482: 1478: 1448: 1447: 1443: 1399: 1398: 1394: 1385: 1383: 1369: 1368: 1364: 1320: 1319: 1315: 1271: 1270: 1266: 1257: 1255: 1242: 1241: 1237: 1232: 1208: 1201: 1198: 1173:gene expression 1168: 1166:Gene regulation 1115: 1091: 1051: 1046: 1037: 1002: 962: 957: 876: 827: 821: 751: 745: 740: 645: 617:Polyglycylation 585:(TTL) is known. 551: 546: 517: 481: 479: 474: 465: 448:Golgi apparatus 417: 411: 406: 389:Actin filaments 374:Golgi apparatus 330: 316:Prosthecobacter 302:organisms like 250: 205: 28: 23: 22: 15: 12: 11: 5: 6987: 6985: 6977: 6976: 6971: 6961: 6960: 6954: 6953: 6945: 6942: 6941: 6939: 6938: 6937: 6936: 6931: 6926: 6921: 6911: 6905: 6903: 6899: 6898: 6895: 6894: 6892: 6891: 6886: 6881: 6880: 6879: 6874: 6864: 6859: 6858: 6857: 6847: 6846: 6845: 6840: 6835: 6830: 6825: 6820: 6815: 6813:Corneodesmosin 6804: 6802: 6798: 6797: 6795: 6794: 6793: 6792: 6787: 6782: 6777: 6772: 6767: 6762: 6752: 6751: 6750: 6745: 6740: 6730: 6725: 6724: 6723: 6712: 6710: 6704: 6703: 6701: 6700: 6695: 6690: 6685: 6684: 6683: 6673: 6667: 6665: 6659: 6658: 6655: 6654: 6652: 6651: 6650: 6649: 6644: 6639: 6629: 6628: 6627: 6622: 6617: 6612: 6607: 6597: 6592: 6591: 6590: 6580: 6574: 6572: 6568: 6567: 6565: 6564: 6559: 6553: 6551: 6547: 6546: 6544: 6543: 6538: 6533: 6528: 6523: 6518: 6513: 6507: 6505: 6499: 6498: 6496: 6495: 6490: 6485: 6480: 6475: 6470: 6465: 6460: 6455: 6450: 6445: 6440: 6435: 6428: 6427: 6422: 6417: 6412: 6407: 6402: 6397: 6392: 6387: 6382: 6377: 6372: 6367: 6362: 6357: 6352: 6347: 6342: 6337: 6330: 6328: 6322: 6321: 6319: 6318: 6313: 6308: 6303: 6298: 6293: 6288: 6283: 6278: 6273: 6268: 6263: 6258: 6253: 6248: 6243: 6238: 6233: 6228: 6223: 6218: 6213: 6208: 6203: 6198: 6193: 6188: 6183: 6178: 6173: 6168: 6163: 6158: 6153: 6148: 6143: 6138: 6133: 6128: 6122: 6120: 6114: 6113: 6111: 6110: 6105: 6100: 6095: 6090: 6085: 6080: 6074: 6072: 6066: 6065: 6063: 6062: 6057: 6052: 6047: 6042: 6037: 6032: 6027: 6022: 6017: 6012: 6007: 6002: 5997: 5992: 5987: 5982: 5977: 5972: 5967: 5962: 5957: 5952: 5947: 5942: 5937: 5932: 5926: 5924: 5915: 5904: 5903: 5900: 5899: 5897: 5896: 5891: 5886: 5880:Nuclear lamins 5876: 5874: 5870: 5869: 5867: 5866: 5861: 5856: 5855: 5854: 5849: 5844: 5834: 5829: 5823: 5821: 5817: 5816: 5814: 5813: 5808: 5803: 5798: 5792: 5790: 5786: 5785: 5782: 5781: 5779: 5778: 5772: 5770: 5766: 5765: 5763: 5762: 5761: 5760: 5755: 5750: 5745: 5740: 5735: 5730: 5725: 5720: 5715: 5702: 5701: 5700: 5699: 5694: 5689: 5684: 5679: 5674: 5669: 5664: 5651: 5649: 5645: 5644: 5642: 5641: 5640: 5639: 5634: 5629: 5624: 5619: 5614: 5597: 5596: 5595: 5594: 5589: 5584: 5579: 5574: 5569: 5564: 5559: 5554: 5537: 5535: 5527: 5526: 5524: 5523: 5522: 5521: 5516: 5511: 5506: 5501: 5496: 5491: 5486: 5481: 5476: 5459: 5458: 5457: 5456: 5446: 5445: 5444: 5432: 5431: 5430: 5425: 5420: 5415: 5410: 5405: 5400: 5395: 5390: 5385: 5368: 5366: 5355: 5337: 5329: 5328: 5325: 5324: 5322: 5321: 5316: 5311: 5310: 5309: 5304: 5299: 5289: 5284: 5278: 5276: 5272: 5271: 5268: 5267: 5265: 5264: 5259: 5258: 5257: 5252: 5242: 5237: 5236: 5235: 5230: 5229: 5228: 5223: 5206: 5204:Arp2/3 complex 5201: 5200: 5199: 5194: 5189: 5184: 5173: 5172: 5171: 5170: 5165: 5160: 5155: 5145: 5144: 5143: 5129: 5118: 5099: 5098: 5097: 5092: 5087: 5082: 5071: 5069: 5065: 5064: 5062: 5061: 5060: 5059: 5054: 5049: 5044: 5039: 5034: 5029: 5024: 5019: 5014: 5009: 5004: 4999: 4989: 4988: 4987: 4982: 4974: 4973: 4972: 4964: 4963: 4962: 4954: 4953: 4952: 4947: 4939: 4938: 4937: 4932: 4924: 4923: 4922: 4914: 4913: 4912: 4907: 4902: 4894: 4893: 4892: 4887: 4879: 4878: 4877: 4872: 4867: 4862: 4857: 4852: 4847: 4842: 4837: 4832: 4827: 4822: 4817: 4812: 4807: 4799: 4798: 4797: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4752: 4750: 4744: 4743: 4741: 4740: 4735: 4730: 4725: 4720: 4715: 4709: 4707: 4698: 4689: 4682:Microfilaments 4675: 4671: 4670: 4661: 4659: 4658: 4651: 4644: 4636: 4630: 4629: 4624: 4619: 4612: 4611:External links 4609: 4606: 4605: 4564: 4515: 4472: 4443:(2): 195–209. 4423: 4404:(4): 396–404. 4388: 4337: 4294: 4251: 4202: 4167: 4123: 4074: 4025: 3976: 3947:(12): 849–60. 3927: 3884: 3871: 3822: 3781: 3746: 3709:(6): R218–20. 3689: 3662:(10): 682–96. 3646: 3619: 3590: 3563:(6): 1089–99. 3546: 3511: 3476: 3447:(5): 368–377. 3427: 3376: 3322: 3273: 3224: 3165: 3114: 3065: 3030: 2981: 2927: 2900:(12): 773–86. 2881: 2837: 2794: 2741: 2698: 2655: 2604: 2569: 2562: 2538: 2508: 2449: 2400: 2365: 2324: 2267: 2238: 2187: 2148:(26): 9170–5. 2128: 2093: 2036: 2007:(8): 1022–31. 1987: 1955:10.1.1.525.507 1948:(4): 1437–48. 1928: 1899:(5): 1031–40. 1879: 1830: 1787: 1752: 1696: 1666:(5): 1045–57. 1646: 1587: 1557: 1535: 1496:(9): E1200-5. 1476: 1441: 1392: 1372:"Microtubules" 1362: 1313: 1264: 1234: 1233: 1231: 1228: 1227: 1226: 1220: 1214: 1213: 1210:Biology portal 1197: 1194: 1186:growth factors 1167: 1164: 1160:nervous system 1114: 1111: 1090: 1087: 1082:focal adhesion 1050: 1049:Cell migration 1047: 1045: 1042: 1036: 1033: 1001: 998: 961: 958: 956: 953: 949:motor proteins 929: 928: 921: 875: 874:Motor proteins 872: 823:Main article: 820: 817: 747:Main article: 744: 741: 739: 736: 723: 722: 716: 701: 685: 684: 644: 641: 625:phosphorylated 621: 620: 614: 608: 589: 586: 571:Detyrosination 550: 547: 545: 542: 521:Marc Kirschner 516: 513: 478: 475: 473: 470: 464: 463:Polymerization 461: 456:trypanosomatid 413:Main article: 410: 407: 405: 402: 387:cytoskeleton. 329: 326: 320:both α- and β- 283:protofilaments 249: 246: 229:motor proteins 204: 201: 172:motor proteins 155:, such as the 99:microfilaments 79:protofilaments 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6986: 6975: 6972: 6970: 6967: 6966: 6964: 6951: 6950: 6943: 6935: 6932: 6930: 6927: 6925: 6922: 6920: 6917: 6916: 6915: 6912: 6910: 6907: 6906: 6904: 6900: 6890: 6887: 6885: 6882: 6878: 6875: 6873: 6870: 6869: 6868: 6865: 6863: 6860: 6856: 6853: 6852: 6851: 6848: 6844: 6841: 6839: 6836: 6834: 6831: 6829: 6826: 6824: 6821: 6819: 6816: 6814: 6811: 6810: 6809: 6806: 6805: 6803: 6799: 6791: 6788: 6786: 6783: 6781: 6778: 6776: 6773: 6771: 6768: 6766: 6763: 6761: 6758: 6757: 6756: 6753: 6749: 6746: 6744: 6741: 6739: 6736: 6735: 6734: 6731: 6729: 6726: 6722: 6719: 6718: 6717: 6714: 6713: 6711: 6709: 6705: 6699: 6696: 6694: 6693:Delta catenin 6691: 6689: 6686: 6682: 6679: 6678: 6677: 6674: 6672: 6671:Alpha catenin 6669: 6668: 6666: 6664: 6660: 6648: 6645: 6643: 6640: 6638: 6635: 6634: 6633: 6630: 6626: 6623: 6621: 6618: 6616: 6613: 6611: 6608: 6606: 6603: 6602: 6601: 6598: 6596: 6593: 6589: 6586: 6585: 6584: 6581: 6579: 6576: 6575: 6573: 6569: 6563: 6560: 6558: 6555: 6554: 6552: 6548: 6542: 6539: 6537: 6534: 6532: 6529: 6527: 6524: 6522: 6519: 6517: 6514: 6512: 6509: 6508: 6506: 6504: 6500: 6494: 6491: 6489: 6486: 6484: 6481: 6479: 6476: 6474: 6471: 6469: 6466: 6464: 6461: 6459: 6456: 6454: 6451: 6449: 6446: 6444: 6441: 6439: 6436: 6434: 6431:cytoplasmic: 6430: 6429: 6426: 6423: 6421: 6418: 6416: 6413: 6411: 6408: 6406: 6403: 6401: 6398: 6396: 6393: 6391: 6388: 6386: 6383: 6381: 6378: 6376: 6373: 6371: 6368: 6366: 6363: 6361: 6358: 6356: 6353: 6351: 6348: 6346: 6343: 6341: 6338: 6336: 6332: 6331: 6329: 6327: 6323: 6317: 6314: 6312: 6309: 6307: 6304: 6302: 6299: 6297: 6294: 6292: 6289: 6287: 6284: 6282: 6279: 6277: 6274: 6272: 6269: 6267: 6264: 6262: 6259: 6257: 6254: 6252: 6249: 6247: 6244: 6242: 6239: 6237: 6234: 6232: 6229: 6227: 6224: 6222: 6219: 6217: 6214: 6212: 6209: 6207: 6204: 6202: 6199: 6197: 6194: 6192: 6189: 6187: 6184: 6182: 6179: 6177: 6174: 6172: 6169: 6167: 6164: 6162: 6159: 6157: 6154: 6152: 6149: 6147: 6144: 6142: 6139: 6137: 6134: 6132: 6129: 6127: 6124: 6123: 6121: 6119: 6115: 6109: 6106: 6104: 6101: 6099: 6096: 6094: 6091: 6089: 6086: 6084: 6081: 6079: 6076: 6075: 6073: 6071: 6067: 6061: 6058: 6056: 6053: 6051: 6048: 6046: 6043: 6041: 6038: 6036: 6033: 6031: 6028: 6026: 6023: 6021: 6018: 6016: 6013: 6011: 6008: 6006: 6003: 6001: 5998: 5996: 5993: 5991: 5988: 5986: 5983: 5981: 5978: 5976: 5973: 5971: 5968: 5966: 5963: 5961: 5958: 5956: 5953: 5951: 5948: 5946: 5943: 5941: 5938: 5936: 5933: 5931: 5928: 5927: 5925: 5923: 5919: 5916: 5914: 5909: 5905: 5895: 5892: 5890: 5887: 5885: 5881: 5878: 5877: 5875: 5871: 5865: 5862: 5860: 5857: 5853: 5850: 5848: 5845: 5843: 5840: 5839: 5838: 5837:Neurofilament 5835: 5833: 5830: 5828: 5825: 5824: 5822: 5818: 5812: 5809: 5807: 5804: 5802: 5799: 5797: 5794: 5793: 5791: 5787: 5777: 5774: 5773: 5771: 5767: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5729: 5726: 5724: 5721: 5719: 5716: 5714: 5711: 5710: 5709: 5708: 5707:chromosome 12 5704: 5703: 5698: 5695: 5693: 5690: 5688: 5685: 5683: 5680: 5678: 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5659: 5658: 5657: 5656:chromosome 17 5653: 5652: 5650: 5646: 5638: 5635: 5633: 5630: 5628: 5625: 5623: 5620: 5618: 5615: 5613: 5610: 5609: 5608: 5607: 5606:chromosome 12 5603: 5599: 5598: 5593: 5590: 5588: 5585: 5583: 5580: 5578: 5575: 5573: 5570: 5568: 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5549: 5548: 5547: 5546:chromosome 17 5543: 5539: 5538: 5536: 5532: 5531:Hair keratins 5528: 5520: 5517: 5515: 5512: 5510: 5507: 5505: 5502: 5500: 5497: 5495: 5492: 5490: 5487: 5485: 5482: 5480: 5477: 5475: 5472: 5471: 5470: 5469: 5468:chromosome 12 5465: 5461: 5460: 5455: 5452: 5451: 5450: 5447: 5443: 5440: 5439: 5438: 5437: 5436:chromosome 12 5433: 5429: 5426: 5424: 5421: 5419: 5416: 5414: 5411: 5409: 5406: 5404: 5401: 5399: 5396: 5394: 5391: 5389: 5386: 5384: 5381: 5380: 5379: 5378: 5377:chromosome 17 5374: 5370: 5369: 5367: 5363: 5359: 5356: 5353: 5348: 5341: 5338: 5336: 5333:Intermediate 5330: 5320: 5317: 5315: 5312: 5308: 5305: 5303: 5300: 5298: 5295: 5294: 5293: 5290: 5288: 5285: 5283: 5280: 5279: 5277: 5273: 5263: 5260: 5256: 5253: 5251: 5248: 5247: 5246: 5243: 5241: 5238: 5234: 5231: 5227: 5224: 5222: 5219: 5218: 5217: 5214: 5213: 5212: 5211: 5207: 5205: 5202: 5198: 5195: 5193: 5190: 5188: 5185: 5183: 5180: 5179: 5178: 5175: 5174: 5169: 5166: 5164: 5161: 5159: 5156: 5154: 5151: 5150: 5149: 5146: 5142: 5139: 5136: 5133: 5130: 5128: 5125: 5122: 5119: 5117: 5114: 5111: 5108: 5105: 5104: 5103: 5100: 5096: 5093: 5091: 5088: 5086: 5083: 5081: 5078: 5077: 5076: 5073: 5072: 5070: 5066: 5058: 5055: 5053: 5050: 5048: 5045: 5043: 5040: 5038: 5035: 5033: 5030: 5028: 5025: 5023: 5020: 5018: 5015: 5013: 5010: 5008: 5005: 5003: 5000: 4998: 4995: 4994: 4993: 4990: 4986: 4983: 4981: 4978: 4977: 4975: 4971: 4968: 4967: 4965: 4961: 4958: 4957: 4955: 4951: 4948: 4946: 4943: 4942: 4940: 4936: 4933: 4931: 4928: 4927: 4925: 4921: 4918: 4917: 4915: 4911: 4908: 4906: 4903: 4901: 4898: 4897: 4895: 4891: 4888: 4886: 4883: 4882: 4880: 4876: 4873: 4871: 4868: 4866: 4863: 4861: 4858: 4856: 4853: 4851: 4848: 4846: 4843: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4823: 4821: 4818: 4816: 4813: 4811: 4808: 4806: 4803: 4802: 4800: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4756: 4754: 4753: 4751: 4749: 4745: 4739: 4736: 4734: 4731: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4710: 4708: 4706: 4702: 4699: 4697: 4693: 4690: 4688: 4683: 4679: 4676: 4672: 4668: 4664: 4657: 4652: 4650: 4645: 4643: 4638: 4637: 4634: 4628: 4625: 4623: 4620: 4618: 4615: 4614: 4610: 4601: 4597: 4592: 4587: 4583: 4579: 4575: 4568: 4565: 4560: 4556: 4551: 4546: 4542: 4538: 4535:(6): 1111–9. 4534: 4530: 4526: 4519: 4516: 4511: 4507: 4503: 4499: 4495: 4491: 4488:(2): 101–20. 4487: 4483: 4476: 4473: 4468: 4464: 4460: 4456: 4451: 4446: 4442: 4438: 4434: 4427: 4424: 4419: 4415: 4411: 4407: 4403: 4399: 4392: 4389: 4384: 4380: 4375: 4370: 4365: 4360: 4356: 4352: 4348: 4341: 4338: 4333: 4329: 4325: 4321: 4317: 4313: 4310:(6): 581–90. 4309: 4305: 4298: 4295: 4290: 4286: 4282: 4278: 4274: 4270: 4266: 4262: 4255: 4252: 4247: 4243: 4238: 4233: 4229: 4225: 4222:(3): 578–85. 4221: 4217: 4213: 4206: 4203: 4198: 4194: 4190: 4186: 4183:(4): 325–40. 4182: 4178: 4171: 4168: 4163: 4159: 4154: 4149: 4145: 4141: 4137: 4130: 4128: 4124: 4119: 4115: 4110: 4105: 4101: 4097: 4093: 4089: 4085: 4078: 4075: 4070: 4066: 4061: 4056: 4052: 4048: 4044: 4040: 4036: 4029: 4026: 4021: 4017: 4012: 4007: 4003: 3999: 3996:(3): 721–34. 3995: 3991: 3987: 3980: 3977: 3972: 3968: 3963: 3958: 3954: 3950: 3946: 3942: 3938: 3931: 3928: 3923: 3919: 3915: 3911: 3907: 3903: 3900:(3): 219–22. 3899: 3895: 3888: 3885: 3881: 3875: 3872: 3867: 3863: 3858: 3853: 3849: 3845: 3841: 3837: 3833: 3826: 3823: 3818: 3814: 3809: 3804: 3800: 3796: 3792: 3785: 3782: 3777: 3773: 3769: 3765: 3761: 3757: 3750: 3747: 3742: 3738: 3734: 3730: 3725: 3720: 3716: 3712: 3708: 3704: 3700: 3693: 3690: 3685: 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3650: 3647: 3642: 3638: 3634: 3630: 3623: 3620: 3608: 3604: 3600: 3594: 3591: 3586: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3550: 3547: 3542: 3538: 3534: 3530: 3526: 3522: 3515: 3512: 3507: 3503: 3499: 3495: 3492:(2): 433–51. 3491: 3487: 3480: 3477: 3472: 3468: 3463: 3458: 3454: 3450: 3446: 3442: 3438: 3431: 3428: 3423: 3419: 3414: 3409: 3404: 3399: 3395: 3391: 3387: 3380: 3377: 3372: 3368: 3363: 3358: 3353: 3348: 3344: 3340: 3336: 3329: 3327: 3323: 3318: 3314: 3309: 3304: 3300: 3296: 3292: 3288: 3284: 3277: 3274: 3269: 3265: 3260: 3255: 3251: 3247: 3244:(6): 615–26. 3243: 3239: 3235: 3228: 3225: 3220: 3216: 3211: 3206: 3202: 3198: 3193: 3188: 3184: 3180: 3176: 3169: 3166: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3133: 3129: 3125: 3118: 3115: 3110: 3106: 3101: 3096: 3092: 3088: 3084: 3080: 3076: 3069: 3066: 3061: 3057: 3053: 3049: 3045: 3041: 3034: 3031: 3026: 3022: 3017: 3012: 3008: 3004: 3001:(3): 725–32. 3000: 2996: 2992: 2985: 2982: 2977: 2973: 2968: 2963: 2959: 2955: 2952:(7): 442–63. 2951: 2947: 2943: 2936: 2934: 2932: 2928: 2923: 2919: 2915: 2911: 2907: 2903: 2899: 2895: 2888: 2886: 2882: 2877: 2873: 2869: 2865: 2861: 2857: 2854:(9): 820–30. 2853: 2849: 2841: 2838: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2798: 2795: 2783: 2779: 2775: 2771: 2767: 2763: 2759: 2755: 2748: 2746: 2742: 2737: 2733: 2729: 2725: 2721: 2717: 2713: 2709: 2702: 2699: 2694: 2690: 2686: 2682: 2678: 2674: 2671:(3): 329–42. 2670: 2666: 2659: 2656: 2651: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2608: 2605: 2600: 2596: 2592: 2588: 2584: 2580: 2573: 2570: 2565: 2559: 2555: 2551: 2550: 2542: 2539: 2527: 2523: 2519: 2512: 2509: 2504: 2500: 2495: 2490: 2485: 2480: 2476: 2472: 2468: 2464: 2460: 2453: 2450: 2445: 2441: 2436: 2431: 2427: 2423: 2419: 2415: 2411: 2404: 2401: 2396: 2392: 2388: 2384: 2380: 2376: 2369: 2366: 2361: 2357: 2352: 2347: 2343: 2339: 2335: 2328: 2325: 2320: 2316: 2311: 2306: 2302: 2298: 2294: 2290: 2286: 2282: 2278: 2271: 2268: 2256: 2252: 2248: 2242: 2239: 2234: 2230: 2225: 2220: 2215: 2210: 2206: 2202: 2198: 2191: 2188: 2183: 2179: 2174: 2169: 2164: 2159: 2155: 2151: 2147: 2143: 2139: 2132: 2129: 2124: 2120: 2116: 2112: 2108: 2104: 2097: 2094: 2089: 2085: 2080: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2040: 2037: 2032: 2028: 2023: 2018: 2014: 2010: 2006: 2002: 1998: 1991: 1988: 1983: 1979: 1974: 1969: 1965: 1961: 1956: 1951: 1947: 1943: 1939: 1932: 1929: 1924: 1920: 1915: 1910: 1906: 1902: 1898: 1894: 1890: 1883: 1880: 1875: 1871: 1866: 1861: 1857: 1853: 1849: 1845: 1841: 1834: 1831: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1798: 1791: 1788: 1783: 1779: 1775: 1771: 1767: 1763: 1756: 1753: 1748: 1744: 1740: 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1705: 1703: 1701: 1697: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1657: 1650: 1647: 1642: 1638: 1633: 1628: 1623: 1618: 1614: 1610: 1606: 1602: 1598: 1591: 1588: 1576: 1572: 1568: 1561: 1558: 1554: 1553: 1549: 1546: 1539: 1536: 1531: 1527: 1522: 1517: 1512: 1507: 1503: 1499: 1495: 1491: 1487: 1480: 1477: 1472: 1468: 1464: 1460: 1456: 1452: 1445: 1442: 1437: 1433: 1429: 1425: 1420: 1415: 1412:(4): 467–80. 1411: 1407: 1403: 1396: 1393: 1382:on 2014-02-06 1381: 1377: 1373: 1366: 1363: 1358: 1354: 1349: 1344: 1340: 1336: 1333:(1): 278–89. 1332: 1328: 1324: 1317: 1314: 1309: 1305: 1300: 1295: 1291: 1287: 1284:(1): 239–50. 1283: 1279: 1275: 1268: 1265: 1253: 1249: 1245: 1239: 1236: 1229: 1224: 1221: 1219: 1218:Microtentacle 1216: 1215: 1211: 1205: 1200: 1195: 1193: 1191: 1187: 1182: 1178: 1174: 1165: 1163: 1161: 1157: 1153: 1148: 1146: 1142: 1138: 1137:embryogenesis 1134: 1133: 1128: 1124: 1120: 1112: 1110: 1108: 1104: 1100: 1096: 1088: 1086: 1083: 1079: 1075: 1071: 1066: 1064: 1060: 1056: 1048: 1043: 1041: 1034: 1032: 1029: 1025: 1022: 1018: 1015: 1006: 999: 997: 993: 989: 985: 983: 979: 975: 966: 959: 954: 952: 950: 946: 942: 938: 937:herpesviruses 934: 925: 922: 919: 914: 909: 906: 905: 904: 902: 898: 888: 880: 873: 871: 869: 865: 861: 857: 853: 849: 845: 841: 837: 833: 826: 818: 816: 815: 811: 807: 802: 800: 796: 792: 788: 784: 780: 776: 772: 768: 764: 760: 756: 750: 742: 737: 735: 733: 727: 720: 717: 714: 710: 706: 703:Vinorelbine, 702: 699: 695: 691: 690: 689: 682: 678: 674: 670: 669: 668: 665: 663: 659: 655: 650: 642: 640: 638: 637:palmitoylated 634: 630: 629:ubiquitinated 626: 618: 615: 612: 609: 606: 602: 597: 593: 590: 587: 584: 580: 576: 572: 569: 568: 567: 564: 555: 548: 543: 541: 539: 536:protein, and 535: 531: 526: 525:Tim Mitchison 522: 514: 512: 509: 505: 501: 476: 471: 469: 462: 460: 457: 452: 449: 445: 441: 437: 433: 428: 426: 422: 416: 408: 403: 398: 394: 390: 386: 381: 377: 375: 371: 366: 362: 358: 354: 349: 347: 343: 339: 335: 327: 325: 323: 318: 317: 311: 307: 305: 301: 295: 291: 289: 284: 280: 277: 272: 270: 267: 263: 254: 247: 245: 243: 238: 234: 230: 226: 225: 220: 218: 214: 210: 202: 200: 198: 194: 193: 188: 187:gram-positive 184: 180: 176: 173: 168: 166: 162: 158: 154: 150: 145: 143: 139: 135: 131: 127: 123: 120: 116: 112: 108: 104: 100: 96: 86: 82: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 32: 19: 6974:Cytoskeleton 6969:Cell anatomy 6946: 6721:Dystroglycan 6676:Beta catenin 5908:Microtubules 5907: 5776:Beta-keratin 5705: 5654: 5600: 5540: 5462: 5448: 5434: 5371: 5208: 5075:Tropomodulin 4667:cytoskeleton 4581: 4577: 4567: 4532: 4528: 4518: 4485: 4481: 4475: 4440: 4436: 4426: 4401: 4397: 4391: 4354: 4350: 4340: 4307: 4303: 4297: 4273:10.1038/9018 4267:(1): 45–50. 4264: 4260: 4254: 4219: 4215: 4205: 4180: 4176: 4170: 4143: 4139: 4094:(1): 27–35. 4091: 4087: 4077: 4045:(7): 832–8. 4042: 4038: 4028: 3993: 3989: 3979: 3944: 3940: 3930: 3897: 3893: 3887: 3879: 3874: 3839: 3835: 3825: 3798: 3794: 3784: 3759: 3755: 3749: 3706: 3702: 3692: 3659: 3655: 3649: 3632: 3628: 3622: 3611:. Retrieved 3602: 3593: 3560: 3556: 3549: 3527:(1): 72–81. 3524: 3520: 3514: 3489: 3485: 3479: 3444: 3440: 3430: 3393: 3389: 3379: 3342: 3338: 3290: 3286: 3276: 3241: 3237: 3227: 3182: 3178: 3168: 3127: 3123: 3117: 3082: 3078: 3068: 3043: 3040:Biochemistry 3039: 3033: 2998: 2994: 2984: 2949: 2946:Cytoskeleton 2945: 2897: 2893: 2851: 2847: 2840: 2810:(8): 723–9. 2807: 2803: 2797: 2786:. Retrieved 2761: 2757: 2714:(1): 33–46. 2711: 2707: 2701: 2668: 2664: 2658: 2617: 2613: 2607: 2582: 2579:Biochemistry 2578: 2572: 2548: 2541: 2530:. Retrieved 2521: 2511: 2466: 2462: 2452: 2417: 2413: 2403: 2378: 2374: 2368: 2341: 2337: 2327: 2284: 2280: 2270: 2259:. Retrieved 2250: 2241: 2204: 2201:PLOS Biology 2200: 2190: 2145: 2141: 2131: 2106: 2102: 2096: 2053: 2049: 2039: 2004: 2000: 1990: 1945: 1941: 1931: 1896: 1892: 1882: 1847: 1843: 1833: 1800: 1796: 1790: 1765: 1761: 1755: 1714: 1710: 1688:. Retrieved 1663: 1659: 1649: 1604: 1600: 1590: 1579:. Retrieved 1570: 1560: 1543: 1538: 1493: 1489: 1479: 1454: 1450: 1444: 1409: 1405: 1395: 1384:. Retrieved 1380:the original 1375: 1365: 1330: 1326: 1316: 1281: 1277: 1267: 1256:. Retrieved 1248:PurSolutions 1247: 1238: 1169: 1149: 1130: 1116: 1092: 1067: 1052: 1038: 1027: 1026: 1020: 1019: 1013: 1012: 994: 990: 986: 971: 945:adenoviruses 941:parvoviruses 933:retroviruses 930: 893: 828: 803: 773:, MAP-3 and 766: 754: 752: 728: 724: 686: 679:(taxol) and 666: 646: 622: 560: 518: 496: 466: 453: 444:basal bodies 429: 418: 393:microtubules 350: 342:neurotubules 334:cytoskeleton 331: 314: 312: 308: 304:foraminifera 296: 292: 287: 282: 273: 259: 222: 221: 206: 190: 169: 161:basal bodies 146: 92: 89:microtubule. 51:cytoskeleton 39:Microtubules 38: 37: 18:Microtubules 6867:Plakophilin 6818:Desmoplakin 6578:Tau protein 5352:Cytokeratin 5148:Tropomyosin 4696:Myofilament 3880:Curr. Biol. 3635:: 117–143. 3396:(5): 1656. 2287:(1): 9583. 2109:: 277–302. 1607:(1): 3794. 1457:(1): 31–5. 1156:vertebrates 1135:during its 1123:development 1113:Development 1103:Prokaryotes 1059:fibroblasts 960:Centrosomes 732:heavy water 709:vincristine 698:Ixabepilone 694:epothilones 592:Acetylation 365:fibroblasts 209:Leeuwenhoek 142:chromosomes 59:micrometres 6963:Categories 6947:See also: 6919:Crescentin 6838:Periplakin 6828:Envoplakin 6716:Dystrophin 6333:axonemal: 5827:Internexin 5806:Peripherin 3613:2017-04-27 3441:Oncotarget 3185:(4): 561. 2788:2014-06-23 2532:2017-09-05 2414:Cell Cycle 2381:: 83–117. 2261:2018-09-26 1803:: 83–117. 1768:: 83–117. 1690:2019-09-09 1581:2019-03-12 1386:2014-02-24 1258:2020-02-20 1230:References 1154:in higher 1070:G-proteins 1055:interphase 982:centrioles 974:centrosome 713:colchicine 705:Nocodazole 677:paclitaxel 654:cell cycle 633:sumoylated 504:hydrolyzed 432:centrosome 409:Nucleation 385:eukaryotic 279:polymerize 262:eukaryotes 189:bacterium 157:centrosome 126:organelles 55:eukaryotic 6536:Centrin 3 6531:Centrin 2 6526:Centrin 1 5864:Syncoilin 5769:Not alpha 5335:filaments 5287:Fibrillin 3201:2079-7737 2056:: 31723. 2001:Structure 1950:CiteSeerX 1817:1081-0706 1044:Functions 852:Dynamitin 848:p150Glued 814:dendrites 810:dendrites 681:docetaxel 662:apoptosis 579:glutamate 519:In 1986, 421:nucleated 353:epithelia 338:cytoplasm 248:Structure 242:kymograph 149:nucleated 119:secretory 6902:Nonhuman 6862:Vinculin 6823:Dystonin 6755:Spectrin 6728:Utrophin 6708:Membrane 6663:Catenins 6595:Stathmin 6583:Dynactin 6463:DYNC2LI1 6458:DYNC1LI2 6453:DYNC1LI1 6118:Kinesins 5922:Tubulins 5811:Vimentin 5343:Type 1/2 5245:Profilin 5240:Gelsolin 5102:Troponin 4663:Proteins 4600:12951326 4510:12641708 4467:16264083 4418:10449356 4383:23135278 4332:37153935 4324:15895076 4289:26321103 4281:10559863 4162:22736044 4118:19060894 4069:19525938 3971:21102610 3914:15738974 3866:28490474 3817:11358861 3741:16951268 3733:10209087 3684:18129292 3676:19773780 3607:Archived 3585:23180847 3471:21576762 3422:32121295 3371:20696757 3317:20978163 3219:37106761 3210:10136095 3152:12024216 3109:23748901 3085:: 1962. 2976:22422711 2914:22086369 2876:29214110 2868:15311282 2824:11483957 2782:Archived 2778:11058078 2736:34121605 2728:18097444 2693:36994346 2650:30079133 2526:Archived 2503:19369198 2444:19556895 2360:17038542 2319:28851982 2255:Archived 2233:22162949 2182:15967998 2123:10966460 2088:27539392 2031:20696402 1874:29084910 1747:34875893 1684:Archived 1680:11700061 1641:30846705 1575:Archived 1548:Archived 1530:26873105 1471:17184986 1436:15100327 1428:12600311 1308:19866635 1252:Archived 1196:See also 1099:flagella 1072:such as 1009:spindle. 918:dynactin 767:In-vitro 719:Eribulin 575:tyrosine 440:flagella 372:and the 288:in vitro 231:such as 224:In vitro 122:vesicles 111:flagella 43:polymers 6889:PLEKHA7 6843:Plectin 6808:Plakins 6733:Ankyrin 6632:Dynamin 6562:Spastin 6557:Katanin 6521:CAMSAP3 6516:CAMSAP2 6511:CAMSAP1 6483:DYNLRB2 6478:DYNLRB1 6448:DYNC1I2 6443:DYNC1I1 6438:DYNC2H1 6433:DYNC1H1 6326:Dyneins 6050:TUBGCP6 6045:TUBGCP5 6040:TUBGCP4 6035:TUBGCP3 6030:TUBGCP2 5859:Synemin 5602:type II 5464:type II 5347:Keratin 5292:Filamin 5233:Destrin 5216:Cofilin 5177:Actinin 4748:Myosins 4665:of the 4559:7896875 4550:2120413 4502:2282447 4459:9988215 4374:3527923 4246:9927417 4237:1171150 4197:9858157 4109:2614462 4060:2895821 4020:7593192 4011:2120628 3962:3941022 3922:8082479 3857:5461028 3776:9057082 3711:Bibcode 3641:7536943 3577:8318230 3541:7755992 3506:5362335 3462:3248193 3413:7084453 3362:2952225 3308:2978777 3268:8104053 3179:Biology 3160:4373254 3132:Bibcode 3087:Bibcode 3060:1931974 3025:8093886 3016:2119537 2967:3459347 2922:5969290 2832:7374170 2685:3516413 2642:6504138 2622:Bibcode 2494:2668966 2471:Bibcode 2435:3163838 2395:9442869 2310:5575062 2289:Bibcode 2224:3232192 2173:1166614 2150:Bibcode 2079:4990898 2058:Bibcode 2022:2976607 1982:3170635 1973:2115242 1923:1577866 1914:2289483 1865:5662251 1825:9442869 1782:9442869 1739:4626639 1719:Bibcode 1711:Science 1632:6405942 1609:Bibcode 1521:4780641 1498:Bibcode 1348:2110421 1299:2106853 1145:mammals 955:Mitosis 924:Kinesin 897:kinesin 860:CLIP115 795:spastin 791:katanin 755:in-vivo 696:, e.g. 530:formins 361:PLEKHA7 322:tubulin 300:protist 237:kinesin 203:History 197:plasmid 183:katanin 179:kinesin 144:apart. 134:meiosis 130:mitosis 69:of two 47:tubulin 6790:SPTBN5 6785:SPTBN4 6780:SPTBN2 6775:SPTBN1 6765:SPTAN1 6600:Tektin 6493:DYNLT3 6488:DYNLT1 6473:DYNLL2 6468:DYNLL1 6415:DNALI1 6400:DNAH17 6395:DNAH14 6390:DNAH13 6385:DNAH12 6380:DNAH11 6375:DNAH10 6296:KIF26B 6291:KIF26A 6266:KIF21B 6261:KIF21A 6256:KIF20B 6251:KIF20A 6241:KIF18B 6236:KIF18A 6226:KIF16B 6211:KIF13B 6206:KIF13A 6005:TUBB4Q 5990:TUBB2C 5985:TUBB2B 5980:TUBB2A 5960:TUBA4A 5955:TUBA3E 5950:TUBA3D 5945:TUBA3C 5940:TUBA1C 5935:TUBA1B 5930:TUBA1A 5873:Type 5 5832:Nestin 5820:Type 4 5796:Desmin 5789:Type 3 5542:type I 5373:type I 5319:TRIOBP 4985:MYO18B 4980:MYO18A 4976:XVIII 4970:MYO15A 4705:Actins 4598:  4557:  4547:  4508:  4500:  4465:  4457:  4416:  4381:  4371:  4330:  4322:  4287:  4279:  4244:  4234:  4195:  4160:  4116:  4106:  4067:  4057:  4018:  4008:  3969:  3959:  3920:  3912:  3864:  3854:  3815:  3774:  3739:  3731:  3682:  3674:  3639:  3583:  3575:  3557:Neuron 3539:  3504:  3469:  3459:  3420:  3410:  3369:  3359:  3315:  3305:  3266:  3259:300968 3256:  3217:  3207:  3199:  3158:  3150:  3124:Nature 3107:  3058:  3023:  3013:  2974:  2964:  2920:  2912:  2874:  2866:  2830:  2822:  2776:  2734:  2726:  2691:  2683:  2648:  2640:  2614:Nature 2599:963034 2597:  2560:  2501:  2491:  2442:  2432:  2393:  2358:  2317:  2307:  2231:  2221:  2180:  2170:  2121:  2086:  2076:  2029:  2019:  1980:  1970:  1952:  1921:  1911:  1872:  1862:  1823:  1815:  1780:  1745:  1737:  1678:  1639:  1629:  1528:  1518:  1469:  1434:  1426:  1357:479300 1355:  1345:  1306:  1296:  1175:. The 1127:oocyte 943:, and 908:Dynein 901:dynein 868:CLASP2 866:, and 864:CLASP1 711:, and 673:taxane 635:, and 596:acetyl 532:, the 397:nuclei 357:ninein 276:dimers 269:dimers 233:dynein 175:dynein 6850:Talin 6833:MACF1 6801:Other 6760:SPTA1 6625:TEKT5 6620:TEKT4 6615:TEKT3 6610:TEKT2 6605:TEKT1 6588:DCTN1 6571:Other 6425:DNAL4 6420:DNAL1 6410:DNAI2 6405:DNAI1 6370:DNAH9 6365:DNAH8 6360:DNAH7 6355:DNAH6 6350:DNAH5 6345:DNAH3 6340:DNAH2 6335:DNAH1 6316:KIFC3 6311:KIFC2 6306:KIFC1 6301:KIF27 6286:KIF25 6281:KIF24 6276:KIF23 6271:KIF22 6246:KIF19 6231:KIF17 6221:KIF15 6216:KIF14 6201:KIF12 6196:KIF11 6176:KIF5C 6171:KIF5B 6166:KIF5A 6161:KIF4B 6156:KIF4A 6151:KIF3C 6146:KIF3B 6141:KIF2C 6136:KIF2A 6131:KIF1B 6126:KIF1A 6098:MAP1B 6093:MAP1A 6060:TUBE1 6055:TUBD1 6025:TUBG2 6020:TUBG1 6015:TUBB8 6010:TUBB6 6000:TUBB4 5995:TUBB3 5975:TUBB1 5965:TUBA8 5314:Espin 5275:Other 5262:Titin 5068:Other 5057:MYLL1 5052:MYLK2 5042:MYLIP 5027:MYL6B 4960:MYO10 4950:MYO9B 4945:MYO9A 4935:MYO7B 4930:MYO7A 4910:MYO5C 4905:MYO5B 4900:MYO5A 4890:MYO3B 4885:MYO3A 4875:MYH16 4870:MYH15 4865:MYH14 4860:MYH13 4855:MYH11 4850:MYH10 4835:MYH7B 4794:MYO1H 4789:MYO1G 4784:MYO1F 4779:MYO1E 4774:MYO1D 4769:MYO1C 4764:MYO1B 4759:MYO1A 4674:Human 4506:S2CID 4463:S2CID 4328:S2CID 4285:S2CID 3918:S2CID 3737:S2CID 3680:S2CID 3581:S2CID 3156:S2CID 2918:S2CID 2872:S2CID 2828:S2CID 2732:S2CID 2689:S2CID 2646:S2CID 1743:S2CID 1432:S2CID 1095:cilia 1063:Golgi 832:CLIP1 806:axons 775:MAP-4 771:MAP-2 649:drugs 605:HDAC6 601:ATAT1 436:cilia 346:actin 107:cilia 77:into 67:dimer 6934:ParM 6929:MreB 6924:FtsZ 6884:ACF7 6877:PKP2 6872:PKP1 6855:TLN1 6770:SPTB 6748:ANK3 6743:ANK2 6738:ANK1 6647:DNM3 6642:DNM2 6637:DNM1 6541:PCM1 6191:KIF9 6186:KIF7 6181:KIF6 6108:MAP4 6103:MAP2 6070:MAPs 5970:TUBB 5913:MAPs 5911:and 5852:NEFH 5847:NEFM 5842:NEFL 5801:GFAP 5449:none 5307:FLNC 5302:FLNB 5297:FLNA 5047:MYLK 5037:MYL9 5032:MYL7 5022:MYL6 5017:MYL5 5012:MYL4 5007:MYL3 5002:MYL2 4997:MYL1 4926:VII 4920:MYO6 4881:III 4845:MYH9 4840:MYH8 4830:MYH7 4825:MYH6 4820:MYH4 4815:MYH3 4810:MYH2 4805:MYH1 4687:ABPs 4685:and 4596:PMID 4555:PMID 4498:PMID 4455:PMID 4437:Cell 4414:PMID 4379:PMID 4320:PMID 4277:PMID 4242:PMID 4193:PMID 4158:PMID 4114:PMID 4065:PMID 4016:PMID 3967:PMID 3910:PMID 3862:PMID 3813:PMID 3772:PMID 3729:PMID 3672:PMID 3637:PMID 3573:PMID 3537:PMID 3502:PMID 3467:PMID 3418:PMID 3367:PMID 3313:PMID 3264:PMID 3215:PMID 3197:ISSN 3148:PMID 3105:PMID 3056:PMID 3021:PMID 2972:PMID 2910:PMID 2864:PMID 2820:PMID 2774:PMID 2724:PMID 2681:PMID 2665:Cell 2638:PMID 2595:PMID 2558:ISBN 2499:PMID 2440:PMID 2391:PMID 2356:PMID 2315:PMID 2229:PMID 2178:PMID 2119:PMID 2084:PMID 2027:PMID 1978:PMID 1919:PMID 1870:PMID 1821:PMID 1813:ISSN 1778:PMID 1735:PMID 1676:PMID 1637:PMID 1526:PMID 1467:PMID 1424:PMID 1406:Cell 1353:PMID 1304:PMID 1107:FtsZ 1097:and 1078:Rac1 1076:and 1074:RhoA 972:The 927:end. 856:Lis1 808:and 692:The 523:and 438:and 430:The 359:and 235:and 177:and 132:and 109:and 101:and 41:are 6698:GAN 6681:APC 6088:EB3 6083:EB2 6078:EB1 5884:A/C 5567:33B 5562:33A 4966:XV 4941:IX 4916:VI 4801:II 4586:doi 4582:278 4545:PMC 4537:doi 4533:128 4490:doi 4445:doi 4406:doi 4369:PMC 4359:doi 4355:287 4312:doi 4269:doi 4232:PMC 4224:doi 4185:doi 4148:doi 4144:125 4104:PMC 4096:doi 4055:PMC 4047:doi 4006:PMC 3998:doi 3994:131 3957:PMC 3949:doi 3902:doi 3852:PMC 3844:doi 3840:216 3803:doi 3764:doi 3760:110 3719:doi 3664:doi 3633:390 3565:doi 3529:doi 3494:doi 3457:PMC 3449:doi 3408:PMC 3398:doi 3357:PMC 3347:doi 3343:285 3303:PMC 3295:doi 3254:PMC 3246:doi 3205:PMC 3187:doi 3140:doi 3128:417 3095:doi 3048:doi 3011:PMC 3003:doi 2999:120 2962:PMC 2954:doi 2902:doi 2856:doi 2812:doi 2766:doi 2762:113 2716:doi 2673:doi 2630:doi 2618:312 2587:doi 2554:355 2489:PMC 2479:doi 2467:106 2430:PMC 2422:doi 2383:doi 2346:doi 2342:119 2305:PMC 2297:doi 2219:PMC 2209:doi 2168:PMC 2158:doi 2146:102 2111:doi 2074:PMC 2066:doi 2017:PMC 2009:doi 1968:PMC 1960:doi 1946:107 1909:PMC 1901:doi 1897:117 1860:PMC 1852:doi 1805:doi 1770:doi 1727:doi 1715:177 1668:doi 1664:313 1627:PMC 1617:doi 1516:PMC 1506:doi 1494:113 1459:doi 1414:doi 1410:112 1343:PMC 1335:doi 1294:PMC 1286:doi 1129:of 913:ATP 844:EB3 840:EB2 836:EB1 660:or 538:EB1 508:GDP 506:to 500:GTP 260:In 45:of 6965:: 5894:B2 5889:B1 5882:: 5758:80 5753:79 5748:78 5743:77 5738:76 5733:75 5728:74 5723:73 5718:72 5713:71 5697:40 5692:39 5687:28 5682:27 5677:26 5672:25 5667:24 5662:23 5637:86 5632:85 5627:84 5622:83 5617:82 5612:81 5592:38 5587:37 5582:36 5577:35 5572:34 5557:32 5552:31 5509:6C 5504:6B 5499:6A 5479:2A 5454:21 5442:18 5428:20 5423:19 5418:17 5413:16 5408:15 5403:14 5398:13 5393:12 5388:10 4992:LC 4956:X 4896:V 4755:I 4738:G2 4733:G1 4728:C1 4718:A2 4713:A1 4594:. 4580:. 4576:. 4553:. 4543:. 4531:. 4527:. 4504:. 4496:. 4486:15 4484:. 4461:. 4453:. 4441:96 4439:. 4435:. 4412:. 4400:. 4377:. 4367:. 4353:. 4349:. 4326:. 4318:. 4306:. 4283:. 4275:. 4263:. 4240:. 4230:. 4220:18 4218:. 4214:. 4191:. 4181:41 4179:. 4156:. 4142:. 4138:. 4126:^ 4112:. 4102:. 4092:11 4090:. 4086:. 4063:. 4053:. 4043:11 4041:. 4037:. 4014:. 4004:. 3992:. 3988:. 3965:. 3955:. 3945:11 3943:. 3939:. 3916:. 3908:. 3896:. 3860:. 3850:. 3838:. 3834:. 3811:. 3799:15 3797:. 3793:. 3770:. 3758:. 3735:. 3727:. 3717:. 3705:. 3701:. 3678:. 3670:. 3660:10 3658:. 3631:. 3605:. 3601:. 3579:. 3571:. 3561:10 3559:. 3535:. 3523:. 3500:. 3488:. 3465:. 3455:. 3443:. 3439:. 3416:. 3406:. 3394:21 3392:. 3388:. 3365:. 3355:. 3341:. 3337:. 3325:^ 3311:. 3301:. 3289:. 3285:. 3262:. 3252:. 3240:. 3236:. 3213:. 3203:. 3195:. 3183:12 3181:. 3177:. 3154:. 3146:. 3138:. 3126:. 3103:. 3093:. 3081:. 3077:. 3054:. 3044:30 3042:. 3019:. 3009:. 2997:. 2993:. 2970:. 2960:. 2950:69 2948:. 2944:. 2930:^ 2916:. 2908:. 2898:12 2896:. 2884:^ 2870:. 2862:. 2850:. 2826:. 2818:. 2806:. 2780:. 2772:. 2760:. 2756:. 2744:^ 2730:. 2722:. 2710:. 2687:. 2679:. 2669:45 2667:. 2644:. 2636:. 2628:. 2616:. 2593:. 2583:15 2581:. 2556:. 2520:. 2497:. 2487:. 2477:. 2465:. 2461:. 2438:. 2428:. 2416:. 2412:. 2389:. 2379:13 2377:. 2354:. 2340:. 2336:. 2313:. 2303:. 2295:. 2283:. 2279:. 2253:. 2249:. 2227:. 2217:. 2203:. 2199:. 2176:. 2166:. 2156:. 2144:. 2140:. 2117:. 2107:69 2105:. 2082:. 2072:. 2064:. 2052:. 2048:. 2025:. 2015:. 2005:18 2003:. 1999:. 1976:. 1966:. 1958:. 1944:. 1940:. 1917:. 1907:. 1895:. 1891:. 1868:. 1858:. 1848:28 1846:. 1842:. 1819:. 1811:. 1801:13 1799:. 1776:. 1766:13 1764:. 1741:. 1733:. 1725:. 1713:. 1699:^ 1682:. 1674:. 1662:. 1658:. 1635:. 1625:. 1615:. 1603:. 1599:. 1573:. 1569:. 1524:. 1514:. 1504:. 1492:. 1488:. 1465:. 1455:19 1453:. 1430:. 1422:. 1408:. 1404:. 1374:. 1351:. 1341:. 1331:82 1329:. 1325:. 1302:. 1292:. 1282:19 1280:. 1276:. 1250:. 1246:. 1192:. 1162:. 1147:. 951:. 939:, 935:, 870:. 862:, 858:, 854:, 850:, 846:, 842:, 838:, 793:, 781:, 765:. 707:, 639:. 631:, 627:, 376:. 290:. 244:. 124:, 73:, 63:nm 5604:/ 5544:/ 5519:8 5514:7 5494:5 5489:4 5484:3 5474:1 5466:/ 5383:9 5375:/ 5354:) 5349:, 5345:( 5255:2 5250:1 5226:2 5221:1 5197:4 5192:3 5187:2 5182:1 5168:4 5163:3 5158:2 5153:1 5141:3 5138:2 5135:1 5132:I 5127:2 5124:1 5121:C 5116:3 5113:2 5110:1 5107:T 5095:4 5090:3 5085:2 5080:1 4796:) 4723:B 4655:e 4648:t 4641:v 4602:. 4588:: 4561:. 4539:: 4512:. 4492:: 4469:. 4447:: 4420:. 4408:: 4402:9 4385:. 4361:: 4334:. 4314:: 4308:7 4291:. 4271:: 4265:1 4248:. 4226:: 4199:. 4187:: 4164:. 4150:: 4120:. 4098:: 4071:. 4049:: 4022:. 4000:: 3973:. 3951:: 3924:. 3904:: 3898:7 3868:. 3846:: 3819:. 3805:: 3778:. 3766:: 3743:. 3721:: 3713:: 3707:9 3686:. 3666:: 3643:. 3616:. 3587:. 3567:: 3543:. 3531:: 3525:7 3508:. 3496:: 3490:5 3473:. 3451:: 3445:2 3424:. 3400:: 3373:. 3349:: 3319:. 3297:: 3291:9 3270:. 3248:: 3242:4 3221:. 3189:: 3162:. 3142:: 3134:: 3111:. 3097:: 3089:: 3083:4 3062:. 3050:: 3027:. 3005:: 2978:. 2956:: 2924:. 2904:: 2878:. 2858:: 2852:6 2834:. 2814:: 2808:3 2791:. 2768:: 2738:. 2718:: 2712:9 2695:. 2675:: 2652:. 2632:: 2624:: 2601:. 2589:: 2566:. 2535:. 2505:. 2481:: 2473:: 2446:. 2424:: 2418:8 2397:. 2385:: 2362:. 2348:: 2321:. 2299:: 2291:: 2285:7 2264:. 2235:. 2211:: 2205:9 2184:. 2160:: 2152:: 2125:. 2113:: 2090:. 2068:: 2060:: 2054:6 2033:. 2011:: 1984:. 1962:: 1925:. 1903:: 1876:. 1854:: 1827:. 1807:: 1784:. 1772:: 1749:. 1729:: 1721:: 1693:. 1670:: 1643:. 1619:: 1611:: 1605:9 1584:. 1532:. 1508:: 1500:: 1473:. 1461:: 1438:. 1416:: 1389:. 1359:. 1337:: 1310:. 1288:: 1261:. 920:. 783:B 779:A 20:)

Index

Microtubules
Tubulin and Microtubule Metrics Infographic
polymers
tubulin
cytoskeleton
eukaryotic
micrometres
nm
dimer
globular proteins
alpha and beta tubulin
protofilaments

cellular processes
microfilaments
intermediate filaments
cilia
flagella
intracellular transport
secretory
vesicles
organelles
mitosis
meiosis
mitotic spindles
chromosomes
nucleated
microtubule-organizing centres
centrosome
basal bodies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.